Đăng ký Đăng nhập
Trang chủ So sánh hiệu quả của lọc vi sinh và lọc bằng rong biển (caulerpa serrata) trong ...

Tài liệu So sánh hiệu quả của lọc vi sinh và lọc bằng rong biển (caulerpa serrata) trong hệ thống tuần hoàn ương nuôi ấu trùng tôm hymenocera picta dana, 1852

.PDF
73
232
50

Mô tả:

i LỜI CẢM ƠN Tôi xin gửi lời cảm ơn chân thành đến TS. Vorathep Muthuwan và PGS.TS Lại Văn Hùng vì sự hướng dẫn, chỉ bảo nhiệt tình trong quá trình tôi thực hiện đề tài, cũng như trong quá trình hoàn thành cuốn luận văn này. Tôi cũng đồng thời gửi lời cảm ơn đến tập thể lãnh đạo cũng như cán bộ làm việc và nghiên cứu tại Viện Nghiên Cứu Biển – trường Đại học Burapha, đặc biệt là TS. Saowapa Sawatpeera và cán bộ thuộc đơn vị Aquarium unit vì đã nhiệt tình giúp đỡ, chỉ bảo cho tôi, cả về kiến thức, kinh nghiệm, và cơ sở vật chất trong thời gian tôi thực hiện đề tài tại Viện. Tôi cũng xin gửi lời cảm ơn đến ba bạn Linh, Trang, Dũng, những người đã luôn sát cánh bên tôi trong suốt thời gian thực hiện đề tài. Cuối cùng, tôi xin bày tỏ lòng biết ơn sâu sắc của bản thân đến gia đình vì tình yêu thương, sự động viên, giúp đỡ và khích lệ trong suốt quá trình học cũng như thời gian tôi thực hiện đề tài. ii LỜI CAM ĐOAN Tôi xin cam đoan những kết quả được trình bày trong luận văn này là trung thực, do tôi trực tiếp thực hiện. Và những kết quả này chưa từng được công bố trong bất kì công trình nghiên cứu nào khác. Người cam đoan Phạm Trung Hiếu iii MỤC LỤC LỜI CẢM ƠN ....................................................................................................i LỜI CAM ĐOAN .............................................................................................ii MỤC LỤC ...................................................................................................... iii DANH MỤC CÁC BẢNG ................................................................................ v DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ........................................................... vi MỞ ĐẦU .......................................................................................................... 1 Chương 1 TỔNG QUAN ................................................................................ 3 1.1. Hệ thống tuần hoàn nước trong Nuôi trồng Thủy sản ................... 3 1.2. Lọc sinh học trong hệ thống tuần hoàn .......................................... 5 1.2.1. Lọc vi sinh (Bacterial biofilter) ................................................... 5 1.2.2. Lọc bằng rong biển (Seaweed biofilter) .................................... 14 1.3. Đặc điểm sinh học sinh thái tôm cảnh Hymenocera picta ............ 18 1.3.1. Hệ thống và đặc điểm phân loại ................................................ 18 1.3.2. Một số đặc điểm sinh học sinh sản của tôm Hymenocera picta 19 1.3.3. Nghiên cứu sản xuất giống tôm Hymenocera picta ................... 21 1.3.4. Một vài nét về tình hình sản xuất giống các đối tượng giáp xác cảnh .................................................................................................... 21 Chương 2 VẬT LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU ....................... 25 2.1. Thời gian và địa điểm nghiên cứu................................................. 25 2.2. Đối tượng nghiên cứu .................................................................... 25 2.3. Sơ đồ khối nội dung nghiên cứu của đề tài ................................... 25 2.4. Vật liệu và phương pháp ............................................................... 26 2.4.1. Vật liệu cần dùng và chuẩn bị các điều kiện thí nghiệm .......... 26 2.4.2. Phương pháp nghiên cứu ........................................................... 30 iv 2.4.3. Phương pháp phân tích chất lượng nước ................................. 33 2.4.4. Xử lý số liệu ................................................................................ 34 Chương 3 KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN ............................. 35 3.1. Tính toán thiết lập hệ thống tuần hoàn nước ............................... 35 3.1.1. Tốc độ bài tiết Ammonia ........................................................... 35 3.1.1. Tốc độ xử lý Ammonia ............................................................... 35 3.1.2. Tính toán kích thước lọc sinh học cần dùng cho thí nghiệm.... 39 3.2. Ảnh hưởng của các hình thức lọc sinh học khác nhau trong RAS lên ương nuôi ấu trùng tôm cảnh Hymenocera picta .......................................... 39 3.2.1. Một số yếu tố môi trường cơ bản trong quá trình thí nghiệm . 39 3.2.2. Diễn biến các yếu tố Ammonia, Nitrite, Nitrate trong các hệ thống nuôi khác nhau ....................................................................................... 41 3.2.3. Hiệu quả của các hệ thống ương nuôi khác nhau đến ương nuôi ấu trùng tôm cảnh Harlequin Hymenocera picta ............................................ 48 Chương 4 KẾT LUẬN VÀ ĐỀ XUẤT Ý KIẾN ........................................... 55 4.1. Kết luận .......................................................................................... 55 4.2. Đề xuất ý kiến ................................................................................ 56 TÀI LIỆU THAM KHẢO ............................................................................ 57 v DANH MỤC CÁC BẢNG Bảng 1.1: Thời gian phát triển ấu trùng của một số loài giáp xác cảnh ............ 23 Bảng 3.1: Diễn biến các yếu tố môi trường cơ bản - Thí nghiệm đợt 1 ............ 40 Bảng 3.2: Diễn biến các yếu tố môi trường cơ bản - Thí nghiệm đợt 2 ............ 41 Bảng 3.3: Khoảng dao động và giá trị trung bình (±ĐLC) nồng độ các hợp chất Nitơ qua hai đợt thí nghiệm ....................................................................................... 46 Bảng 3.4: Tỷ lệ chuyển giai đoạn ấu trùng tôm trong các hệ thống nuôi khác nhau – thí nghiệm đợt 2 ............................................................................................. 49 vi DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1-1: Đường cong diễn biến nồng độ TAN, NO2-N và NO3-N trong hệ thống lọc sinh học mới thiết lập. .................................................................................. 6 Hình 1-2: Bể lọc sinh học nhỏ giọt (Trickling filter)........................................ 10 Hình 1-3: Sơ đồ bể lọc đĩa quay sinh học (Rotating Biological Contactors)..... 11 Hình 1-4: Sơ đồ cấu tạo đơn giản của một bể lọc sinh học tầng hóa lỏng (Fluidized bed filters)................................................................................................. 12 Hình 1-5: Sơ đồ cấu tạo lọc sinh học với giá thể dạng hạt (Bead filters). ......... 13 Hình 1-6: Tôm bố mẹ Hymenocera picta. ....................................................... 20 Hình 2-1: Sơ đồ khối nội dung nghiên cứu. ..................................................... 25 Hình 2-2: Hệ thống nuôi vỗ tôm Hymenocera picta bố mẹ. ............................. 26 Hình 2-3: Giá thể lọc sinh học dùng trong thí nghiệm. .................................... 27 Hình 2-4: Bể ương nuôi ấu trùng ..................................................................... 28 Hình 2-5: Sơ đồ hệ thống thí nghiệm............................................................... 29 Hình 3-1: Quá trình hấp thụ Ammonia của rong Caulerpa serrata. ................. 36 Hình 3-2: Diễn biến quá trình oxy hóa Ammonia của vi khuẩn Nitrate hóa. .... 37 Hình 3-3: Diễn biến nồng độ Nitrite trong hệ thống bể lọc vi sinh. .................. 38 Hình 3-4: Diễn biến nồng độ TAN trong các hệ thống nuôi khác nhau - Thí nghiệm đợt 1. ............................................................................................................. 41 Hình 3-5: Diễn biến nồng độ TAN trong các hệ thống nuôi khác nhau - Thí nghiệm đợt 2. ............................................................................................................. 42 Hình 3-6: Diễn biến nồng độ NO2--N trong các hệ thống nuôi khác nhau – Thí nghiệm đợt 1. ............................................................................................................. 43 Hình 3-7: Diễn biến nồng độ NO2--N trong các hệ thống nuôi khác nhau – Thí nghiệm đợt 2. ............................................................................................................. 44 Hình 3-8: Diễn biến nồng độ NO3-N trong các hệ thống nuôi khác nhau – Thí nghiệm đợt 1. ............................................................................................................. 45 vii Hình 3-9: Diễn biến nồng độ NO3-N trong các hệ thống nuôi khác nhau – Thí nghiệm đợt 2. ............................................................................................................. 45 Hình 3-10: Tỷ lệ chuyển giai đoạn ấu trùng tôm trong các hệ thống nuôi khác nhau – thí nghiệm đợt 2. ............................................................................................ 49 Hình 3-11: Tỷ lệ sống của ấu trùng trong các hệ thống nuôi khác nhau – Thí nghiệm đợt 1. ............................................................................................................. 52 Hình 3-12: Tỷ lệ sống của ấu trùng trong các hệ thống nuôi khác nhau – Thí nghiệm đợt 2. ............................................................................................................. 53 1 MỞ ĐẦU Kinh doanh các đối tượng sinh vật cảnh nước mặn là một ngành công nghiệp triệu đô. Cùng với san hô, giáp xác cảnh là một trong những đối tượng phổ biến của ngành công nghiệp này [16, 61]. Với hình dạng kì lạ, màu sắc rực rỡ, tôm Harlequin Hymenocera picta nhận được rất nhiều sự quan tâm của những người chơi sinh vật cảnh [14, 32]. Tuy nhiên, cho đến hiện nay, vẫn chưa có nhiều nghiên cứu được tiến hành trên đối tượng này. Giảm thiểu các tác động tiêu cực đến môi trường của các hoạt động có liên quan đến Nuôi trồng thủy sản là nhân tố chính đảm bảo cho sự phát triển nền vững của ngành nghề này [109]. Một trong những giải pháp lâu dài là ứng dụng hệ thống nuôi tuần hoàn, một hình thức nuôi đã được bắt đầu nghiên cứu và phát triển từ hơn 30 thập niên trước. Đây là một hình thức nuôi thâm canh [106] mà ở đó, vật nuôi được duy trì ở mật độ cao, được cho ăn đầy đủ để đạt tốc độ tăng trưởng tối đa, trong khi vẫn đảm bảo duy trì sự ổn định của chất lượng môi trường nước [65], nhờ đó giảm thiếu được sự trao đổi nước với môi trường bên ngoài, từ đó hạn chế vấn đề ô nhiễm và lây lan dịch bệnh [91]. Hệ thống nuôi tuần hoàn là sự lựa chọn phổ biến cho các đối tượng tôm cảnh nước mặn, đặc biệt là ở giai đoạn ấu trùng, do có thể thiết lập một cách dễ dàng trong điều kiện diện tích hạn chế, có thể vận hành với cả nước mặn tự nhiên hay nhân tạo. Hơn nữa, vấn đề kiểm soát chất lượng nước và sinh vật kí sinh được thực hiện dễ dàng hơn trong hệ thống tuần hoàn [13]. Hạn chế lớn nhất của hệ thống tuần hoàn là sự tích lũy của các chất thải Nitơ, trong đó, đặc biệt là Ammonia, sản phẩm bài tiết chủ yếu [93, 121], và cũng là chất có độc tính cao đối với động vật thủy sản [94]. Vì lí do này, hệ thống lọc sinh học, với vai trò chủ yếu là kiểm soát nồng độ Ammonia, được xem là trái tim của hệ thống tuần hoàn. Về cơ bản, có hai phương thức khác nhau được sử dụng để loại bỏ Ammonia ra khỏi môi trường nước trong hệ thống lọc sinh học. 2 - Lọc vi sinh (Bacterial biofilter): là quá trình xử lý Ammonia dựa trên hoạt động của các vi khuẩn Nitrate hóa, oxy hóa Ammonia thành các dạng ít độc hơn là Nitrite và sau đó là Nitrate, được thực hiện bởi hai chủng Vi khuẩn Nitrosomonas và Nitrobacter, thông qua quá trình Nitrate hóa. - Lọc sinh học bằng rong biển (Seaweed biofilter): dựa trên khả năng hấp thụ các chất dinh dưỡng (C, N, và P) để hình thành nên sinh khối của cơ thể [81], rong biển được sử dụng với vai trò lọc sinh học để xử lý nguồn nước thải của hoạt động Nuôi trồng thủy sản. Các nghiên cứu sử dụng rong biển với vai trò lọc sinh học chủ yếu tập trung trên hai giống là Ulva và Gracilaria. Và các nghiên cứu này, hầu hất được thực hiện ở những khu vực ôn đới và hàn đới. Rong biển thuộc giống Caulerpa, một loài phân bố phổ biến ở vùng nhiệt đới, gần đây cũng đã được chứng minh là có thể được sử dụng với vai trò lọc sinh học [88]. Hai hình thức lọc sinh học trên đã được nghiên cứu và ứng dụng trong thực tiễn nghề nuôi từ hơn 3 thập niên qua, nhưng cho đến hiện nay, chưa có một nghiên cứu cụ thể nào được tiến hành để so sánh và đánh giá hiệu quả của hai hệ thống lọc sinh học nêu trên trong vấn đề duy trì chất lượng nước, tính ổn định trong quá trình hoạt động. Xuất phát từ những lí do trên, đề tài “So sánh hiệu quả của lọc vi sinh và lọc bằng rong biển (Caulerpa serrata) trong hệ thống tuần hoàn ương nuôi ấu trùng tôm Hymenocera picta Dana, 1852” được tiến hành với những nội dung như sau: - So sánh hiệu quả xử lý nước của hai hình thức lọc sinh học (vi khuẩn và rong biển), với sự nhấn mạnh đến các Ammonia, Nitrite và Nitrate. - Ảnh hưởng của chất lượng môi trường nước trong từng hệ thống lên ương nuôi ấu trùng tôm cảnh biển Harlequin Hymenocera picta 3 Chương 1 TỔNG QUAN 1.1. Hệ thống tuần hoàn nước trong Nuôi trồng Thủy sản Nuôi trồng thủy sản được nhận định sẽ là một trong ba ngành kinh tế có tiềm năng lớn trong thiên niên kỷ mới. Hiện nay, Nuôi trồng thủy sản đáp ứng gần 1/3 nhu cầu tiêu dùng của thế giới [106], và con số này sẽ còn tăng cao trong tương lai cùng với sự phát triển của khoa học kỹ thuật. Nuôi trồng thủy sản truyền thống làm gia tăng mối lo ngại của cộng đồng về các vấn đề môi trường do nguồn nước thải nó sản xuất ra. Bên cạnh đó, quỹ đất thích hợp cho phát triển nghề Nuôi cũng đang dần trở nên hạn chế do vấn đề bùng nổ dân số. Vì thế, phát triển hình thức nuôi mới, vừa đảm bảo sản lượng trong khi giảm thiểu các mâu thuẫn do hoạt động của nó gây ra là cơ sở đảm bảo cho sự phát triển bền vững của hoạt động Nuôi trồng thủy sản. Ứng dụng hệ thống tuần hoàn trong Nuôi trồng thủy sản (Recirculating Aquaculture System – RAS) được xem là một giải pháp thích hợp. Theo định nghĩa của Lybey (1996), hệ thống tuần hoàn nước trong Nuôi trồng thủy sản là một hệ thống nuôi, trong đó, nước liên tục được xử lý và tái sử dụng, nhờ đó mà giảm thiểu được sự trao đổi nước với môi trường bên ngoài [58]. Các nghiên cứu nhằm phát triển và cải tiến việc ứng dụng hệ thống tuần hoàn trong nuôi trồng thủy sản đã được tiến hành trong suốt hơn 3 thập niên qua [71]. Tuy hiện nay, hệ thống nuôi này vẫn chủ yếu được sử dụng nhằm phục vụ cho mục đích nghiên cứu, nuôi với quy mô nhỏ trong phòng thí nghiệm; trong khi tiềm năng của nó trong nuôi công nghiệp quy mô lớn mới chỉ bắt đầu được nhận ra và chứng minh, ứng dụng trong thực tiễn sản xuất còn hạn chế [102]. Nhưng trong tương lai, hình thức nuôi này sẽ ngày càng trở nên phổ biến do những ưu thế của nó so với các hình thức nuôi khác. Một trong những ưu thế chính của hệ thống tuần hoàn là có thể quản lý một cách hiệu quả môi trường và các thông số chất lượng nước để có thể tối ưu sức khỏe cũng như là tốc độ tăng trưởng của vật nuôi thông qua các hệ thống xử lý chất lượng nước (lọc sinh học, lọc cơ học), cũng như là các hệ thống hỗ trợ khác (sục khí, hệ 4 thống ổn nhiệt, hệ thống khử trùng bằng Ozon hay tia UV). Nhờ đó mà hoạt động sản xuất trong RAS có thể tiến hành liên tục trong năm với tỷ lệ trao đổi nước với môi trường bên ngoài là thấp nhất (5-10%). Điều này, một mặt giúp giảm bớt các vấn đề về môi trường có liên quan đến Nuôi trồng thủy sản, nhưng cũng đồng thời tránh được các nguy cơ đe dọa đến vụ nuôi như ô nhiễm, dịch bệnh, địch hại từ bên ngoài. RAS linh động hơn các hình thức nuôi truyền thống trong việc lựa chọn địa điểm nuôi, có thể được xây dựng ở nhưng nơi nguồn nước là một yếu tố giới hạn (như không đảm bảo về số lượng và chất lượng) hay điều kiện tự nhiên không phù hợp (thời gian thích hợp cho sản xuất ngắn hay không thích hợp đối tượng nuôi) [57] nhờ khả năng quản lý tốt các yếu tố môi trường, ít phụ thuộc vào nguồn nước cấp. Vì thế, RAS có thể được phân bố ở những nơi gần thị trường tiêu thụ. Điều này giúp cung cấp cho người tiêu dùng sản phẩm thủy sản chất lượng, an toàn; còn đối với người sản xuất, sẽ góp phần tăng lợi nhuận do sản phẩm tươi có giá thành cao hơn so với hàng đông lạnh, trong khi chi phí vận chuyển được giảm đến mức thấp nhất. Hệ thống tuần hoàn có thể áp dụng cho đa dạng các loại đối tượng nuôi (cá, giáp xác, nhuyễn thể) ở các môi trường sống khác nhau (ngọt, mặn, lợ), ở các giai đoạn nuôi và trên các quy mô khác nhau. Bên cạnh đó, nhờ khả năng kéo dài thời gian nuôi nhốt, nên hệ thống tuần hoàn cho phép người nuôi xác định thời điểm thu hoạch thích hợp, tùy theo nhu cầu của thị trường, giúp tối đa năng suất và lợi nhuận. Với những lợi thế trên, có thể nói, hệ thống nuôi tuần hoàn cho phép đạt được năng suất và lợi nhuận tối đa trong điều kiện hạn chế cả về quỹ đất xây dựng cũng như là sự hạn chế về nguồn nước cấp [112]. Đây là yếu tố hết sức quan trọng, đảm bảo cho sự phát triển của nghề nuôi trồng thủy sản. Tuy nhiên, hệ thống tuần hoàn cũng có những hạn chế nhất định. Hạn chế lớn nhất của hệ thống tuần hoàn là chi phí đầu tư và duy trì hoạt động của cả hệ thống tương đối lớn so với các hình thức nuôi truyền thống. Hơn nữa, đây là một tập hợp phức tạp, bao gồm các bộ phận có quan hệ chặt chẽ với nhau. Bất kì một bộ phận nào trục trặc, hoạt động không hiệu quả, có thể dẫn đến nguy cơ ảnh hưởng đến toàn bộ hệ thống, từ đó ảnh hưởng xấu, thậm chí là gây chết vật nuôi. Do đó, vận hành RAS đòi hỏi phải là người có kiến thức tốt, nắm được những nguyên lý cơ bản quá trình xử lý của từng bộ phận và sự vận hành của cả hệ thống. 5 Mặc dù có những hạn chế nhất định, nhưng với những lợi ích mà hệ thống nuôi tuần hoàn mang lại như quản lý chất thải, bảo vệ môi trường, chất lượng sản phẩm, tính sẵn có của sản phẩm, hệ thống nuôi này vẫn hấp dẫn đối với nhà đầu tư, và là sự lựa chọn cho các dự án Nuôi trồng thủy sản trong tương lai [106]. 1.2. Lọc sinh học trong hệ thống tuần hoàn Trong quản lý môi trường nuôi thủy sản, kiểm soát các hợp chất có chứa Nitơ được xem là mối quan tâm chủ yếu [106]. Trong đó, Ammonia, sản phẩm bài tiết chủ yếu của động vật thủy sinh, nhận được nhiều sự quan tâm nhất [102]. Ammonia là sản phẩm cuối cùng của quá trình trao đổi protein và được cá bài tiết qua mang dưới dạng Ammonia phi ion (NH3). Ngoài ra Ammonia còn được hình thành từ quá trình phân hủy của phân, thức ăn thừa và các chất vẩn trong hệ thống nuôi. Ammonia (hay còn gọi là Ammonia tổng số - TAN) tồn tại dưới hai dạng là Ammonia ion (NH4+-N) và Ammonia phi ion (NH3-N). Trong đó trạng thái phi ion được xem là có độc tính cao đối với động vật thủy sinh. Chính vì lí do này mà kiểm soát nồng độ Ammonia trong môi trường nước được xem là mục đích thiết kế chủ yếu của hệ thống tuần hoàn nước [64, 65]. Với lí do này, hệ thống lọc sinh học (Biofiltration) được xem như là trái tim của hệ thống tuần hoàn nước. 1.2.1. Lọc vi sinh (Bacterial biofilter) Nguyên lý hoạt động của hình thức lọc sinh học này là Ammonia (ở trạng thái ion NH4+-N) sẽ được chuyển hóa thành các dạng có độc tính thấp hơn là Nitrite (NO2-N) và sau đó là Nitrate (NO3--N) nhờ sự hoạt động của các vi khuẩn hóa tự dưỡng (chemosynthetic autotrophic bacteria). Quá trình chuyển hóa Ammonia gồm hai bước nêu trên được gọi là quá trình Nitrate hóa (Nitrification proccess), và các vi khuẩn tham gia vào các phản ứng đó được gọi là vi khuẩn Nitrate hóa (Nitrifying bacteria). Có nhiều chủng vi khuẩn khác nhau tham gia vào quá trình này, trong đó hai chủng phổ biến nhất là Nitrosomonas và Nitrobacter. Các chủng vi khuẩn này sử dụng O2 như là tác nhân oxi hóa (Oxidizing agent) và sử dụng CO2 hoặc HCO3- như là nguồn Carbon cho sự sinh trưởng. Phương trình mô tả quá trình chuyển đổi hóa học cơ bản xảy ra trong quá trình Nitrate hóa như sau: 6 Nitrosomonas: Nitrobacter: Nồng độ (ppm) Phương trình tổng quát: Thời gian (ngày) Hình 1-1: Đường cong diễn biến nồng độ TAN, NO2-N và NO3-N trong hệ thống lọc sinh học mới thiết lập. (Nguồn: Timmons, 2002) [106] Hiệu quả cũng như là tốc độ của quá trình Nitrate hóa phụ thuộc vào các yếu tố sau đây: 7 Ammonia: bản thân nồng độ Ammonia cũng có ảnh hưởng trực tiếp đến tốc độ của quá trình Nitrate hóa. Nhìn chung, khi nồng độ của Ammonia tăng lên thì hiệu quả của lọc sinh học cũng tăng. Các nghiên cứu đã chỉ ra rằng, nồng độ Ammonia trên 3mg/L sẽ đạt hiệu quả xử lý tốt nhất. Tuy nhiên, nồng độ Ammonia quá cao cũng sẽ có khả năng ức chế hoạt động của các vi sinh vật. Oxy hòa tan: bởi vì vi sinh vật cần oxy cho sự tăng trưởng, đồng thời còn dùng trong quá trình chuyển đổi Ammonia thành Nitrate. Do đó nhất thiết phải cung cấp đủ lượng oxy cần thiết cho hệ thống lọc sinh học trong suốt chu trình sản xuất. Các nghiên cứu đã chỉ ra rằng, hoạt động của chủng vi khuẩn Nitrosomonas giảm khi lượng oxy trong nước xuống dưới mức 4mg/L, trong khi đó, nồng độ tương tự của Nitrobacter là 2 mg/L. Nhiệt độ: tương tự như các phản ứng hóa học và các phản ứng động năng sinh học, nhiệt độ đóng một vai trò quan trọng đến tốc độ của quá trình Nitrate hóa. Hoạt động của vi khuẩn xảy ra trong khoảng từ 0 cho đến 30oC, và tốc độ phản ứng tăng khi nhiệt độ tăng trong biên độ này. Nhiệt độ tối ưu cho hoạt động của Vi khuẩn là khoảng 30oC. Tuy nhiên, vi khuẩn vẫn có thể hoạt động với hiệu quả cao ở nhiệt độ thấp nếu quá trình thuần hóa nhiệt độ được diễn ra một cách từ từ. pH: quá trình Nitrate hóa có thể diễn ra trong khoảng pH dao động tương đối lớn. Tuy nhiên, trong một nghiên cứu của Antoniou et al. (1990) cho thấy, ngưỡng pH tối ưu cho vi khuẩn Nitrate hóa là từ 7.2 đến 7.8 [6]. Mặc dù vậy, hệ thống lọc sinh học vẫn có thể hoạt động trong khoảng pH từ 6 đến 9, tùy thuộc vào sự thích nghi của vi sinh vật trong điều kiện vận hành thực tế. Độ kiềm (Alkalinity): là khả năng ổn định pH của môi trường nước. Nitrate hóa là quá trình acid hóa do ion H+ được hình thành. Do đó, nếu nước trong hệ thống lọc sinh học có hệ đệm kém, pH hệ thống sẽ bị giảm, từ đó ảnh hưởng đến hoạt động của lọc sinh học. Vật chất hữu cơ: sự hiện diện của vật chất hữu cơ trong hệ thống lọc sinh học cũng sẽ có ảnh hưởng đến quá trình thực hiện chức năng của hệ thống lọc sinh học. Bởi đây là điều kiện cho cho các chủng vi khuẩn khác phát triển bên trong hệ thống lọc và cạnh tranh với vi khuẩn Nitrate hóa. Các chủng vi khuẩn hiếu khí dị dưỡng sử 8 dụng các chất hữu cơ như là nguồn Carbon, và với tốc độ phát triển nhanh hơn [118], chúng sẽ dần dần thay thế cho các vi khuẩn Nitrate hóa. Độ mặn: cũng có ảnh hưởng đến quá trình Nitrate hóa, bởi vì ion chlor Cl- gây ức chế sự sinh trưởng của vi khuẩn. Vì lí do này mà Nitrate hóa trong nước ngọt diễn ra nhanh hơn trong nước mặn. Ánh sáng: hệ thống lọc sinh học cần phải được che tối để hạn chế ánh sáng. Mặc dù nguyên nhân chính xác vẫn chưa được xác định, nhưng ánh sáng được cho là có khả năng làm giảm hiệu quả của quá trình Nitrate hóa [5]. Ngoài ra, hạn chế ánh sáng còn nhằm mục đích hạn chế sự phát triển không mong muốn của các loại vi tảo trên bề mặt giá thể, vốn có thể ảnh hưởng đến sự hoạt động của hệ thống lọc sinh học [102]. Giá thể: giá thể được sử dụng phải có tỷ lệ diện tích bề mặt trên một đơn vị thể tích lớn (high specific surface area), đồng thời phải có tỷ lệ khoảng trống thích hợp để quá trình lưu thông của nước được dễ dàng. Vật liệu sử dụng làm giá thể lọc sinh học phải là chất trơ, tính chịu nén cao, và không bị phân hủy sinh học. Các loại vật liệu phổ biến thường được dùng trong hệ thống lọc sinh trong Nuôi trồng thủy sản bao gồm cát, sỏi, nhựa hoặc vật liệu từ sứ có dạng hạt nhỏ, hình cầu, hay vòng. Đã có nhiều công nghệ khác nhau phát triển dựa trên nguyên lý cơ bản của hệ thống lọc sinh học sử dụng vi sinh vật. Mỗi loại đều có những điểm mạnh cũng như là điểm yếu, tùy theo từng điều kiện sử dụng cụ thể mà cho hiệu quả tốt nhất. Những công nghệ lọc sinh học được sử dụng rộng rãi trong Nuôi trồng thủy sản là: Lọc sinh học ngập nước (Submerged biofilter): hay còn gọi là lọc ướt. Đây là hình thức lọc sinh học được sử dụng rộng rãi nhất trong Nuôi trồng thủy sản. Đúng như tên gọi, giá thể mà ở các loại vi khuẩn Nitrate hóa bám vào và phát triển được đặt hoàn toàn trong môi trường nước. Nước thải đi vào bề lọc có thể từ trên xuống hay từ dưới lên, nhờ đó mà thời gian lưu giữ nước có thể được điều chỉnh bằng cách thay đổi tốc độ dòng chảy [118]. Có nhiều loại giá thể khác nhau được dùng trong hình thức lọc sinh học này, nhưng nhìn chung thì có thể phân thành 2 nhóm là giá thể cố định (fixed media) và giá thể ngẫu nhiên hay tự do (random media). Mỗi giá thể ngẫu nhiên là một đơn vị vật 9 liệu nhỏ dùng để cung cấp bề mặt cho vi sinh vật bám và sinh trưởng. Các giá thể này được phân tán ngẫu nhiên trong bể lọc sinh học. Các ví dụ thường gặp của loại giá thể này bao gồm cầu sinh học (bioball), vòng nhựa, sỏi. Giá thể cố định là một tấm hay khối vật liệu lọc sinh học được xếp theo dãy cố định. Giá thể có thể là một khối của những tấm nhựa có nếp gấp hoặc các tấm làm bằng vật liệu dạng sợi. Oxy hòa tan cung cấp cho bề lọc sinh học là oxy có trong nước đi qua bể lọc. Đây chính là hạn chế của hình thức lọc sinh học này. Một vấn đề khác là các chất rắn lơ lững từ bể nuôi có thể bị tích lũy trong bể lọc sinh học. Quá trình này có thể làm giảm khoảng không trong bể lọc, do đó đòi hỏi vệ sinh thường xuyên để đảm bảo vận hành lâu dài. Để hạn chế hiện tượng tắc, một giải pháp là sử dụng giá thể có kích thước lớn. Tuy nhiên, hạn chế của phương pháp này là diện tích bề mặt cho vi sinh vật phát triển bị giảm đi đáng kể. Ngoài ra, thiết kế lọc sinh học theo hình thức này còn có hạn chế là chi phí xây dựng và vận hành cao, và có nguy cơ của ô nhiễm sinh học (biofouling). Lọc phun hay lọc nhỏ giọt (Trickling filter): kết cấu và cách thức vận hành của hình thức lọc sinh học này hoàn toàn giống với lọc ướt, điểm khác biệt duy nhất là giá thể ở đây được giữ ẩm thay vì ngâm hoàn toàn trong nước [118]. Trong bể lọc, các lớp vật liệu có độ rỗng và diện tích mặt tiếp xúc trong một đơn vị thể tích lớn nhất trong điều kiện có thể. Nước thải được bơm lên trên đỉnh của bể lọc và được hệ thống phân phối phun thành giọt đều khắp trên bề mặt của lớp vật liệu. Nước sau khi chạm lớp vật liệu chia thành các hạt nhỏ chảy thành màng mỏng qua khe vật liệu đi xuống dưới. Bởi vì không khí có thể đi vào khe hở giữa các giá thể nên vi sinh vật luôn nhận đủ lượng oxy cần thiết. Ngoài ưu điểm đó ra, khả năng loại bỏ khí CO2 cũng như là chi phí đầu tư ban đầu cho lọc sinh học dạng này tương đối rẻ nên nó đang được ứng dụng rộng rãi trong Nuôi trồng thủy sản. Trong hệ thống xử lý nước thải, giá thể thường được dùng cho lọc sinh học dạng này là đá. Tuy nhiên, hiện nay hầu hết giá thể được làm từ nhựa do có khối lượng nhẹ, diện tích bề mặt riêng cao (100-300m2/m3), và tỷ lệ khoảng trống cao (>90%). Hạn chế lớn nhất của hệ thống lọc sinh học này là kích thước tương đối lớn, và chi phí cho giá thể lọc sinh học là lớn [65]. 10 Nước đi vào Trục tay quay phân bố nước Giá thể lọc sinh học Vị trí lắp đặt hệ thống sục khí Nước ra khỏi bể lọc, được đưa trở lại bể nuôi Hình 1-2: Bể lọc sinh học nhỏ giọt (Trickling filter). (Nguồn: Losodor, 1999) [65] Đĩa quay sinh học (Rotating biological contactors - RBC): được sử dụng lần đầu tiên tại Đức vào năm 1960, và ngày càng được ứng dụng rộng rãi trong xử lý nước thải sinh hoạt, và cũng đang dần trở nên phổ biến trong Nuôi trồng thủy sản. RBC gồm hàng loạt đĩa tròn, phẳng làm bằng polystyren (PS) hoặc polyvinylclorua (PVC) lắp trên một trục bằng thép có đường kính tới 3,5m. Các đĩa được đặt ngập một phần trong nước thải (40%). Tốc độ quay của trống phải được tính toán một cách hợp để có thể đảm bảo duy trì quần thể vi khuẩn Nitrate hóa , nhưng vẫn đạt hiệu quả xử lý nước. Nếu tốc độ quay quá chậm có thể làm cho vi khuẩn bị thiếu khí khi nổi lên khỏi mặt nước. Nhưng nếu tốc độ qúa nhanh thì màng sinh học có thể bị tách ra khỏi trống. Tốc độ quay phổ biến là 1.5 – 3 vòng/phút. Trong quá trình vận hành, các vi sinh vật sẽ sinh trưởng gắn kết trên bề mặt đĩa và hình thành lớp màng mỏng nhầy trên bề mặt ướt của đĩa (1 – 4mm). Khi đĩa quay, 11 lần lượt làm cho lớp màng vi sinh vật tiếp xúc với chất hữu cơ trong nước thải và với không khí để hấp thụ oxy. Đĩa quay cũng là cơ chế để tách các chất rắn thừa ra khỏi bề mặt các đĩa nhờ lực ly tâm. Ưu điểm của hệ thống này là vận hành đơn giản, có khả năng loại bỏ CO2, tự làm sạch và bổ sung O2. Hạn chế của hệ thống trên là chi phí đầu tư cao, hiệu quả xử lý thấp, và có thể xuất hiện các vấn đề về cơ học trong quá trình vận hành [57, 65, 106]. Giá thể lọc sinh học Trục tay quay Mực nước Nước vào Nước ra Bể lọc RBC Hình 1-3: Sơ đồ bể lọc đĩa quay sinh học (Rotating Biological Contactors). (Nguồn: Losodor, 1999) [65] Lọc sinh học tầng sôi hay tầng hóa lỏng (Fluidized bed filters): hệ thống lọc này đã được ứng dụng trong các hệ thống Nuôi trồng thủy sản thương mại quy mô lớn. Một đặc điểm nổi bật của của hệ thống lọc sinh học này là có diện tích bề mặt riêng lớn với giá thể là các hạt cát có cùng kích cỡ (đường kính nhỏ hơn cát sử dụng trong bể lọc thô) hay các hạt nhựa có kích thước nhỏ. Một dòng nước đi từ dưới lên, đi qua đáy cát (hay các hạt nhựa) với một lưu tốc đủ để nâng và giữ cho cát luôn ở trạng thái lơ lửng (vì lí do này nên còn được gọi là hóa lỏng) và di chuyển liên tục. Nước đi ra ngoài qua ống thoát gần đỉnh của bể lọc. Lưu tốc trong bể phải được điều chỉnh cẩn thận để đảm bảo giữ cho giá thể lơ lững những vẫn không bị tràn ra ngoài. Thông thường, lưu tốc được điều chỉnh để thể tích của giá thể tăng thêm 50%. 12 Lọc sinh học tầng hóa lỏng là một môi trường lý tưởng cho sự phát triển của vi khuẩn. Vi khuẩn có thể hình thành khuẩn lạc trên toàn bộ diện tích bề mặt của giá thể. Sự va chạm giữa các giá thể trong khi được xáo trộn trong bể lọc giúp loại bỏ những vi khuẩn chết, nhờ đó mà hệ thống lọc có khả năng tự làm sạch. Lợi thế lớn của hệ thống lọc sinh học này là có diện tích bề mặt riêng lớn, nên có khả năng Nitrate hóa cao. Lọc sinh học tầng hóa lỏng có khả năng loại bỏ 50 đến 90% lượng Ammonia có trong nước chỉ với 1 lần lọc trong hệ thống Nuôi trồng thủy sản nước lạnh và nước mát [105]. Tốc độ Nitrate hóa trong hệ thống nước lạnh là 0.20.4 kg TAN/day/m3, và 0.6-1.0 kg TAN/day/m3 đối với hệ thống nước lạnh [107]. Chi phí đầu tư cho giá thể là cát rẻ hơn rất nhiều so với các loại giá thể khác. Nước quay trở lại bể nuôi Giá thể lọc sinh học - cát Nước đi vào từ bể nuôi Đĩa có đục lỗ để phân bố nước Hình 1-4: Sơ đồ cấu tạo đơn giản của một bể lọc sinh học tầng hóa lỏng (Fluidized bed filters). (Nguồn Losodro, 1999) [65] 13 Hạn chế chính của hệ thống lọc sinh học tầng hóa lỏng là chi phí cho năng lượng (sử dụng bơm) khá cao, vận hành phức tạp hơn so với các hệ thống lọc sinh học vi sinh khác, gặp nhiều khó khăn trong công tác bảo dưỡng vì vấn đề liên quan đến chất vẩn lơ lửng và ô nhiễm sinh học. Lọc sinh học với giá thể dạng hạt (Bead filters): mục đích sử dụng ban đầu của hệ thống lọc này là để loại bỏ chất rắn lơ lửng trong nước. Các hạt nhựa có kích thước nhỏ, tỷ trọng thấp được sử dụng để giữ và loại bỏ chất rắn lơ lửng có trong nước thải khi nước được cho đi qua lớp hạt theo chiều từ dưới lên. Chất rắn lơ lững được loại bỏ bằng cách chạy một mô tơ quay hệ thống các chân vịt có trong bể lọc. Các chân vịt làm xáo trộn các hạt lọc và phải phóng chất vẩn dính trên các hạt. Khi hệ thống các chân vịt ngừng hoạt động, các hạt nhựa nổi lên bề mặt của bể lọc còn chất rắn thì từ từ lắng xuống đáy bể. Trục quay để xáo trộn giá thể Nước ra Van điều chỉnh nước cấp Nước vào Hình 1-5: Sơ đồ cấu tạo lọc sinh học với giá thể dạng hạt (Bead filters).
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất