Skkn tuyển chọn xây dựng hệ thống bài tập chọn lọc nhằm bồi dưỡng năng lực tư duy cho học sinh chuyên vật lý thpt

  • Số trang: 29 |
  • Loại file: DOC |
  • Lượt xem: 20 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 24000 tài liệu

Mô tả:

DANH MỤC VIẾT TẮT Viết tắt BDTD BT BTCL BTVL DH DHVL ĐLVL HS HSG HTVL NLTD NLTD PP PPDH QTDH TDST THPT TL VL Cụm từ bồi dưỡng tư duy bài tập bài tập chọn lọc bài tập vật lý dạy học dạy học vật lý đại lượng vật lý học sinh học sinh giỏi hiện tượng vật lý năng lực tư duy năng lực tư duy phương pháp phương pháp dạy học quá trình dạy học tư duy sáng tạo trung học phổ thông tâm lý vật lý 0 MỤC LỤC Trang 1. ĐẶT VẤN ĐỀ ......................................................................................... 2. GIẢI QUYẾT VẤN ĐỀ 2.1. Vai trò của BTVL trong việc bồi dưỡng năng lực tư duy của học sinh ... 2.2. Bài tập trong việc bồi dưỡng và phát triển tư duy cho HS chuyên lí ....... 2.3. Nguyên tắc xây dựng, tuyển chọn và phân loại bài tập theo logic nhận thức trong hệ thống bài tập chọn lọc .................................................. 2.4. Các tiêu chí dùng để xây dựng hệ thống bài tập....................................... 2.6. Ví dụ minh họa ........................................................................................ 3. KẾT LUẬN .............................................................................................. 2 3 3 5 5 6 20 1 1. ĐẶT VẤN ĐỀ Việc bồi dưỡng năng lực TDST cho HS cần được tiến hành trong suốt thời gian các em còn ngồi trên ghế nhà trường thông qua việc thực hiện các quá trình sư phạm, việc dạy các bộ môn, trong đó có bộ môn Vật lý. Cũng như việc học tập môn Vật lí nói chung, việc giải BTVL ở nhà trường nói riêng giúp HS hiểu sâu hơn các HTVL xảy ra trong thế giới tự nhiên xung quanh ta, và từ sự hiểu biết sâu sắc đó mà thúc đẩy HS học giải quyết những vấn đề khác nhau của đời sống và công nghệ sau này. Các BT giáo khoa của chúng ta đang còn khác xa với những bài toán mà HS sẽ gặp trong cuộc sống. Nếu HS không hiểu thấu đáo VL học và nhất là không quen với việc giải BTVL một cách thông minh sáng tạo thì HS sẽ khó lòng giải quyết tốt những bài toán trong đời sống khoa học và kỹ thuật. Nội dung DH là kiến thức khoa học, là cơ sở để tạo nên nhân cách, khắc phục khó khăn trên con đường chiếm lĩnh tri thức nên nhà giáo đồng thời còn phải là nhà khoa học. Người giáo viên phải lựa chọn PP để giảng dạy và giáo dục cho từng đối tượng HS và vì thế đòi hỏi ở người thầy lòng nhiệt tình và óc sáng tạo cao. Nghị quyết 51/2001/QH10 ngày 25 tháng 12 năm 2001 của Quốc Hội khóa X, kì họp thứ 10 cũng đã chỉ rõ: “Phương pháp giáo dục phổ thông phải phát huy tính tích cực, chủ động sáng tạo của học sinh; phù hợp với đặc trưng của từng lớp học, môn học; bồi dưỡng PP tự học; khả năng làm việc theo nhóm; rèn luyện kỹ năng vận dụng kiến thức vào thực tiễn; tác động đến tình cảm, đem lại niềm vui, hứng thú học tập cho học sinh”. Được sự quan tâm của Đảng và Nhà nước, hệ thống trường chuyên lớp chọn được hình thành và phát triển nhằm đào tạo nguồn nhân lực cho đất nước. Trong những năm qua các trường chuyên cũng đã gặt hái được nhiều thành công trong các kỳ thi Quốc tế và khu vực châu Á. Đối tượng HS chuyên là những HS có NLTD tốt, được phát hiện và tuyển chọn qua nhiều kỳ thi. 2 Thế nhưng chương trình giảng dạy trong các trường chuyên nói chung và bộ môn VL nói riêng còn chưa có sự thống nhất, ổn định. Đa phần chương trình giảng dạy được xây dựng theo kinh nghiệm của các cá nhân giáo viên giảng dạy lâu năm hoặc trên cơ sở thống nhất ở nhóm chuyên môn của từng trường. Trình độ HS mỗi năm một khác, năm sau tốt hơn năm trước. Yêu cầu đề thi Quốc Gia, Quốc tế ngày càng cao, nhiều vấn đề mới mang tính thời sự được cập nhật vào trong đề thi. Với những đặc điểm đó sự đổi mới liên tục của giáo viên thực tế là không thể. Hơn thế nữa HS phải hoàn tất chương trình PTTH và các chuyên đề nâng cao để đến giữa học kì I năm lớp 11 (tức chỉ sau hơn 1 năm vào THPT) để có thể tham dự các kì thi HSG Quốc Gia, Quốc tế ! Vậy làm thế nào để giải quyết được khó khăn trên ? Để làm được việc đó cần phải dạy cho HS các PP tư duy khoa học với PP giảng dạy phù hợp. Bản thân tôi nhận thấy dạy BT là một phương án thích hợp. Với những lí do nêu trên, tôi chọn đề tài: “Tuyển chọn xây dựng hệ thống bài tập chọn lọc nhằm bồi dưỡng năng lực tư duy cho học sinh chuyên lí” 3 2. GIẢI QUYẾT VẤN ĐỀ 2.1. Vai trò của BTVL trong việc bồi dưỡng năng lực tư duy của học sinh -BTVL có vài trò vô cùng quan trọng, chúng được sử dụng trong DHVL với những mục đích khác nhau. -BTVL được sử dụng như các phương tiện nghiên cứu tài liệu mới khi trang bị kiến thức mới cho HS nhằm đảm bảo cho HS lĩnh hội kiến thức một cách sâu sắc và vững chắc. BT có thể là điểm khởi đầu để dẫn dắt đến kiến thức mới ở bậc THPT. Với trình độ toán học đã khá phát triển, nhiều khi các BT được sử dụng khéo léo có thể dẫn HS đến những suy nghĩ về một hiện tượng mới hoặc xây dựng khái niệm mới để giải thích hiện tượng mới do BT đưa ra. -Bài tập VL là phương tiện rèn luyện cho HS kỹ năng kỹ xảo vận dụng kiến thức, liên hệ lý thuyết với thực tiễn, đời sống. Có thể xây dựng rất nhiều BT có nội dung thực tiễn, trong đó yêu cầu HS phải vận dụng kiến thức lý thuyết để giải thích các hiện tượng có thể xảy ra trong thực tiễn ở những điều kiện cho trước. -BTVL là phương tiện có tầm quan trọng đặc biệt trong việc rèn luyện tư duy, bồi dưỡng PP nghiên cứu khoa học cho HS bởi vì giải BTVL là hình thức làm việc căn bản của HS. Trong quá trình giải BTVL học sinh phải phân tích điều kiện trong đề bài, tự xây dựng những lập luận, thực hiện việc tính toán khi cần thiết phải tiến hành cả thí nghiệm, xác định sự phụ thuộc hàm số giữa các đại lượng để kiểm tra kết luận của mình. Trong những việc làm cụ thể đó tư duy lôgic, TDST của HS được nâng cao. Có nhiều BTVL không chỉ dừng lại trong phạm vi vận dụng những kiến thức đã học mà còn giúp HS bồi dưỡng TDST. Đặc biệt là BT giải thích hiện tượng, BT thí nghiệm. -BTVL là phương tiện ôn tập và củng cố kiến thức đã học một cách sinh động và có hiệu quả. -Thông qua việc giải BTVL có thể rèn luyện được những đức tính tốt như: tính độc lập, tính cẩn thận, kiên trì, vượt khó. Giải BT là một trong những hình thức 4 làm việc tự lực của HS. Trong quá trình làm bài tập, do phải tự mình phân tích các điều kiện của đầu bài, tự xây dựng những lập luận, kiểm tra và phê phán những kết luận mà HS rút ra được nên tư duy của HS được phát triển, năng lực làm việc của họ nâng cao, tính kiên trì được phát triển. -BTVL là phương tiện để kiểm tra đánh giá kiến thức, kỹ năng của một HS một cách chính xác. -Từ việc giải BT học sinh buộc phải tự tìm hiểu bổ sung phần lí thuyết thiếu hụt mà thời gian không cho phép giáo viên truyền thụ chi tiết đầy đủ. 2.2. Bài tập trong việc bồi dưỡng và phát triển tư duy cho HS chuyên lí Thực tế kinh nghiệm bản thân cho thấy: Học sinh chuyên có các điểm mạnh như làm việc dưới áp lực cao, có nhiều cảm thông với người khác, có sự rõ ràng, quả quyết và có sự nhận thức cá nhân cao. Phần lớn HS biết kìm chế thái độ và cảm xúc của mình. Quá trình hình thành và biến đổi xúc cảm, tình cảm diễn ra ôn hòa hơn và có kỹ năng làm chủ cảm xúc tốt. HS biết làm chủ sự tức giận, xử lý những thất vọng, đau buồn và lo âu và biết đối phó với sự mất mát, lạm dụng, chấn thương. Tính cách mạnh mẽ, ý thức cao về bản thân đã làm HS các trường chuyên có tính quyết đoán, sẵn sàng tranh luận với người khác về một vấn đề nào đó cho đến tận cùng chân lí. HS các trường chuyên ý thức tốt về bản thân, biết được mặt mạnh, mặt yếu, thể hiện ước muốn của bản thân cũng như những điều mà các em không thích, tự nhận ra stress hay tình trạng bị áp lực để ứng phó kịp thời. Bên cạnh đó, kỹ năng xã hội của các em cũng được đánh giá cao. Các em có thể đồng cảm, biết lắng nghe và hiểu nhu cầu, hoàn cảnh của người khác cũng như biểu lộ sự hiểu biết này thông qua những hành động cụ thể. Tình cảm đạo đức cũng được phát triển mạnh ở các HS trường chuyên. Nó là một trong những động cơ thúc đẩy hành vi xã hội và các hoạt động, điều chỉnh mọi hành vi của các em. 5 Tuy nhiên, các HS lại hay gặp khó khăn trong việc chấp nhận ý kiến của người khác, thường đặt vị trí, vai trò của mình quá cao trong tập thể. Mặc dù, khả năng “đặt chân mình vào đôi giày của người khác” để thấu hiểu những gì họ trải qua lại được đánh giá cao. Đó là quan tâm đến cảm xúc người khác và sẵn sàng hỗ trợ họ về mặt tình cảm. HS chuyên có thể thông cảm với người không bằng mình, nhưng khó chấp nhận có người hơn mình và chính tư duy này đã làm cản trở những nỗ lực nhằm phát huy hết các tiềm năng của các em, làm cho kỹ năng hợp tác và làm việc theo nhóm cũng như giải quyết vấn đề của HS không được phát triển đúng mức. Học sinh chuyên không sợ BT khó, phức tạp. Bản thân các em rất ham muốn được thử sức ở những vấn đề mới. Đặc biệt đối với những BT mà sau khi đọc xong đề thì HS rơi vào trạng thái tâm lí vừa hơi căng thẳng, vừa hưng phấn khao khát vượt qua khó khăn nhằm giải quyết được mâu thuẫn. Được trang bị nhiều kiến thức toán học nên HS chuyên không ngại BT tính toán phức tạp, tuy nhiên có thể dẫn đến việc lạm dụng kiến thức toán mà không chú ý đến bản chất VL của bài toán. Khi đó nên điều chỉnh hạn chế trên bằng những BT có tính bất ngờ cao. Với HS bình thường để đưa các em đến mâu thuẫn giữa một bên là nhu cầu, nhiệm vụ nhận thức mới phải giải quyết và một bên là trình độ kiến thức hiện có không đủ để giải quyết nhiệm vụ đó, cần phải xây dựng kiến thức mới, tìm giải pháp mới … giáo viên thường phải mô tả hiện tượng, đưa ra câu hỏi định tính hoặc các BT đơn giản … Đối với HS chuyên có thể thay bằng BT khó, BT mở… mà để giải quyết buộc HS phải tự nghiên cứu lý thuyết, tự trang bị kiến thức toán. Điều này giúp HS tăng cường khả năng tự học, qua đó trưởng thành nhanh hơn. Học sinh chuyên không sợ BT khó, nhưng lại thường lười nhác khi gặp loại BT giải theo khuôn mẫu, không có yếu tố bất ngờ … Đây là điều bất lợi khi muốn rèn luyện kỹ năng cho HS. Thông qua BT ta có thể giúp HS chuyên: 6 -Thói quen quan sát, nhận biết các dấu hiệu đặc trưng của sự vật, hiện tượng. -Khả năng phân tích hiện tượng phức tạp thành những hiện tượng đơn giản. -Xác định rõ những giai đoạn diễn biến của hiện tượng. -Tìm thấy các dấu hiệu giống nhau giữa các sự vật, hiện tượng. -Tìm được những tính chất chung của nhiều sự vật, hiện tượng (khái quát hóa). -Tìm ra mối quan hệ nhân quả giữa các hiện tượng vật lý. Tìm mối quan hệ hàm số giữa các đại lượng vật lý, biểu diễn bằng công cụ toán học. -Dự đoán diễn biến của một hiện tượng trong những điều kiện thực tế xác định. -Giải thích một hiện tượng thực tế. -Hình thành phương pháp chung để giải quyết một loại vấn đề. 2.3. Nguyên tắc xây dựng, tuyển chọn và phân loại bài tập theo logic nhận thức trong hệ thống bài tập chọn lọc Việc lựa chọn, phân loại hệ thống các BT theo chủ đề là một việc khó. Những BT khó đòi hỏi vận dụng nhiều vùng kiến thức (như cơ trong quang, cơ trong điện…). Vậy cần phải có những tìm tòi về PP nhằm xác định những mối liên hệ quan trọng nhất, điển hình nhất và những biểu hiện của chúng trong các bài tập, từ đó xác định loại BT xuất phát, số lượng của chúng và trình tự giải. Kết quả rèn luyện kỹ năng, kỹ xảo giải BT phụ thuộc rất nhiều vào việc chọn lựa và trình tự sắp xếp các bài tập, nên để HS sau mỗi BT đều phát hiện ra những cái mới hay nảy sinh những vấn đề mới cần giải quyết tiếp BTVL nói chung có tác dụng rất lớn về các mặt: giáo dục, giáo dưỡng phát triển tư duy và giáo dục kỹ thuật tổng hợp. Tác dụng ấy càng tích cực nếu trong QTDH có sự lựa chọn thật cẩn thận hệ thống bài tập: chặt chẽ về nội dung, thích hợp về PP và bám sát mục đích, nhiệm vụ DH ở trường phổ thông. 2.4. Các tiêu chí dùng để xây dựng hệ thống bài tập. Đặc điểm của HS chuyên được thể hiện rõ qua các năng lực hoạt động tư duy của các em, cụ thể như: 7 -Ưa tìm tòi, khám phá những tri thức mới. -Hứng thú với các dạng BT mới, với PP giải mới. -Thích luyện tập, củng cố kiến thức. -Thích sáng tạo, tìm sự độc đáo trong cách giải. -Ưa vận dụng tư duy toán học. -Nhàm chán với những BT đơn giản, quen thuộc. Từ những nguyên tắc chung nêu trên và đặc điểm của HS chuyên, chúng ta có thể xây dựng hệ thống BTCL nhằm bồi dưỡng NLTD cho học sinh chuyên phù hợp với thực tế và hệ thống BT đó là của riêng mình. Nhưng cần lưu ý Với mỗi chủ đề, các BT cần được sắp xếp theo trình tự: +Xuất phát bằng BT điển hình. +Bài tập phát triển dựa trên BT xuất phát. +Lời giải, hướng dẫn giải hoặc đáp số. Như vậy khi giảng dạy sẽ hiệu quả và tiện lợi hơn, không gây khó đột ngột cho HS dễ dẫn đến trạng thái căng thẳng thiếu tự tin ở HS. Ngược lại nếu gặp HS giỏi hơn, ta có thể bỏ qua các bài trung gian, hoặc yêu cầu HS tự giải quyết như là BT về nhà. Hệ thống các BT được lựa chọn cần thỏa mãn các tiêu chí sau: -Tiêu chí 1: Các BT phải đi từ dễ đến khó, từ đơn giản đến phức tạp về mối quan hệ giữa những đại lượng và khái niệm đặc trưng cho quá trình hoặc hiện tượng, sao cho từng bước HS hiểu được kiến thức một cách vững chắc và có kỹ năng, kỹ xảo, vận dụng linh hoạt sáng tạo các kiến thức đó. -Tiêu chí 2: Mỗi BT được chọn phải là một mắt xích trong hệ thống kiến thức vật lý, đóng góp được phần nào vào việc hoàn chỉnh các kiến thức của học sinh, giúp họ hiểu được mối liên hệ giữa các đại lượng, cụ thể hoá các khái niệm… -Tiêu chí 3: Hệ thống BT phải giúp cho HS có kỹ năng vận dụng toán học tốt để sau này dễ tiếp thu kiến thức các phần mới và có thời gian nhiều hơn dành cho phần bản chất VL của các BT phải giải quyết. -Tiêu chí 4: Hệ thống BT phải đảm bảo được tính tích cực, chủ động, sáng tạo của HS trong học tập. 8 -Tiêu chí 5: Hệ thống các BT được chọn lọc phải giúp cho HS nắm được PP giải từng loại, dạng cụ thể. -Tiêu chí 6: Hệ thống BT phải giúp HS tự tìm ra vấn đề mới, nảy sinh từ những BT đã làm, để từ đó tự tìm tòi nghiên cứu nhằm đạt đến mức cao hơn về nhận thức. -Tiêu chí 7: Nội dung BT phải phù hợp yêu cầu ngày càng cao của các kì thi HS giỏi, nhưng vẫn phải đảm bảo phù hợp với thời gian học tập của HS ở lớp và ở nhà. 2.5. Ví dụ minh họa Với suy nghĩ đã trình bày ở các phần trên, thực tế với tất cả các phần trong chương trình, tôi đã xây dựng được và đang tiếp tục hoàn thiện một hệ thống BT riêng cho bản thân. Với hệ thống BT đó vận dụng trong giảng dạy bản thân tôi cũng đã đạt được một số kết quả nhất định và tự cảm thấy là phù hợp với HS và yêu cầu giảng dạy thực tế. Trong khuôn khổ đề tài tài này tôi xin minh họa một chủ đề bài tập khó, phần điện từ trong chương trình chuyên mà tôi đã sử dụng trong giảng dạy 1. Một khối nặng được gắn vào trần nhà bởi một lò xo có độ cứng k. Một thanh dẫn điện được gắn vào khối. Khối lượng của khối và thanh là m. Thanh có thể trượt không ma sát dọc theo hai đường ray thẳng đứng song song, cách nhau L. Tụ điện có k r B C L điện dung C gắn với đường ray bằng dây dẫn. Hệ thống được đặt trong từ trường đều B. Bỏ qua mọi điện trở. Tìm chu kì dao động của thanh. Giải Tại độ dời y, khối có vận tốc v. Do từ thông biến đổi  có s.đ.đ cảm ứng e = BLv, tích điện cho tụ q = CBLv  I = CBL dv dt 9 dv Lực từ tác dụng lên thanh: F = BIL = CB2L2 dt dv d2 y mg - ky - CB2L2 dt = m dt 2 mg d2u k u0 Đặt u = y  2  k dt m  CB2 L2  Dao động điều hòa:  = k m  CB2 L2  T = 2π m  CB2 L2 k 2. Hai thanh giống hệt nhau nằm trên hai thanh ray nằm ngang song song. Các thanh vuông góc với đường ray. Khoảng cách giữa các thanh là L. Tại thời điểm nào đó, một từ trường thẳng đứng hướng lên được bật. Từ trường này nhanh chóng đạt đến cường độ tối đa của nó và sau đó được giữ không đổi. Bỏ qua ma sát, tìm khoảng cách giữa các thanh. Giả sử điện trở của mỗi thanh là lớn hơn nhiều so với điện trở của đường ray. L r B Giải Sự xuất hiện đột ngột của từ trường sinh ra dòng cảm ứng ngược chiều kim đồng hồ  có lực từ tác dụng lên các thanh là chúng chuyển động lại gần nhau hơn. Do đối xứng mà gia tốc của mỗi thanh là - & x& 2 Theo định luật II Niutơn cho một đoạn dây: 10 �2 B � & �F � �2 � �2B � �e � �B �d & & x& 2 � �  � � I  B     x  B     � �� � � �   � � xB  xB m m m 2R mR dt mR � � � � � � � � � � � �  là khoảng cách hai thanh ray; R là điện trở của các thanh Vì từ trường xuất hiện đột ngột và nhanh chóng đạt giá trị cực đại  giả thiết nó đạt cực đại khi x còn nhỏ, vì vậy trong giai đoạn quá độ số hạng thứ hai trong phương trình trên là rất nhỏ và x  L 2 B & 2 L d 2 & x&   LB   2mR dt  B  mR Cuối giai đoạn quá độ, vận tốc các thanh là: x& V   2 LB2 2mR 2 B 2 B2 &= 0  & & & Sau đó: B x xB   x&  mR mR 2 B2 x&  x +C mR x& V   Vậy: 2 LB2 2 B2 2 B2 = L +C  C= L 2mR mR 2mR 2 B2 2 B2 x&  x + L mR 2mR Khi x& = 0  x = L/2 3. Một khung hình vuông cạnh b làm bằng dây siêu dẫn được đặt trên bàn nằm ngang không ma sát. Khối lượng của khung là m. Một từ trường thẳng đứng có độ lớn B = B0(1 + kx), B0 và k là các hằng số. Khung được cấp tức thời vận tốc ban đầu v dọc theo trục x như hình vẽ. Khung dừng lại sau một khoảng thời gian . Tìm độ tự cảm của khung. b v x Giả sử từ trường hướng ra phía trước tờ giấy 11 Khi khung dịch chuyển sang phải, từ thông biến thiên qua mạch:  = Bb2 biến thiên tăng làm xuất hiện suất điện động cảm ứng: e cư = - d sinh ra dòng điện dt cảm ứng có chiều kim đồng hồ. Chú ý rằng dB dx dx  B0 k không phải là hằng số (vì vận tốc giảm từ v đến 0) dt dt dt  I  const mà biến thiên giảm  có dòng điện tự cảm cùng chiều kim đồng hồ với suất điện động tự cảm là etc = -L dI d =dt dt dB dI L dt  b2B = LI + C Khung siêu dẫn  b2 dt Ban đầu B = 0  I = 0  C = 0 Vậy: b2 b B0( 1 + kx) = LI  I = B0  1  kx  L 2 Lực từ tác dụng lên các cạnh // x bằng nhau về độ lớn nhưng ngược hướng  tổng bằng 0 Hợp lực từ tác dụng lên hai cạnh còn lại ngược hướng x F = -bI{B0(1 + kx) - B0[1 + k(x - b)]} = -B0kIb2 = b4 B02 k 2 F=L b4 B02 k  1  kx  L � � 1� � x�  � � �= -K(x - x0) � � k� �  Khung dao động điều hòa quanh VTCB x0 = - 1 k Giả sử ban đầu khung ở VTCB thì vận tốc bằng 0 sau: T  m  mL  =  4 2 2 4 2 K 2 b B0 k 42 b4 B02 k 2  L= m2 12 Thay đổi giả thiết kết luận ta có bài toán mới (cũng có thể thay đổi quy luật của B) 4. Một khung siêu dẫn hình vuông cạnh b được đặt trên bàn nằm ngang không ma sát. Khối lượng của khung là m, độ tự cảm là L. Một từ trường thẳng đứng có độ lớn B  B0 kx , B0 và k là các hằng số. Khung được cấp tức thời vận tốc ban đầu v dọc theo trục x như hình vẽ. Khung dừng lại sau một khoảng thời gian bao lâu ? r g r B b v Đáp số:  = x  mL 2bB0 k 4. Một khung dây dẫn hình vuông cạnh b, khối lượng m, điện trở không đáng kể có thể quay tự do quanh trục nằm ngang đi qua cạnh trên. Hệ thống đặt trong từ trường đều B như hình. Độ tự cảm của khung dây là L. Đưa khung dây đến vị trí nằm ngang rồi thả nhẹ. Khung dao động tắt dần do sức cản không khí. Tìm góc hợp bởi mặt phẳng khung dây và phương thẳng đứng ở vị trí cuối cùng. Giải 13 d = RI = 0   = const dt r r r với  = n, B và  là góc hợp bởi mpkd và B (phụ với ) Trong khung có suất điện động cảm ứng:  = Bb2sin + LI  E =-  Tại vị trí ban đầu của khung, I = 0   = Bb2 Ở vị trí cuối cùng theo điều kiện cân bằng momen 1 IBb2cosc = mg b.sinc 2 (1)  = Bb = Bb sin0 + LI Bb2  1  sin 0  (2)  I = , thay vào (1) rồi rút gọn, L 2 2 biến đổi B2 b3  1  sin 0  mg cos0  sin 0 L 2 2B2 b3  1  sin 0  = A(1 - sin0)  tan0 = mgL 2B2 b3 A 0 = A(1 - 0)  0 = A= mgL 1 A 5. Hai tụ C1, C2 nối với nhau bằng dây dẫn lí tưởng d thành hình vuông cạnh d. Một dây dẫn lí tưởng khác nối trung điểm hai cạnh hình vuông như hình vẽ. Mạch đặt trong từ trường hướng vào trong, độ lớn B = kt, với k là hằng số dương. Sau một thời gian dây nối được cắt và r+ B C C 1 2 từ trường được giữ không đổi. Tìm điện tích trên mỗi bản tụ sau khi trạng thái cân bằng được thiết lập. Giải d � d � kd 2  �Bd. � ' e = dt � 2 � 2 Q1 = C1e Sau khi cắt dây: Q2 = C2e Q = e(C1 - C2)  U = Q Q   C C1  C2 14 C1  C1  C 2  kd 2 Q1’ = C1U = 2  C1  C2  C2  C1  C2  kd 2 Q2’ = C2U = 2  C1  C2  6. Một khối kim loại mỏng hình vuông cạnh b, y dày d được treo nằm ngang bởi lò xo nhẹ thẳng r B đứng có độ cứng k trong từ trường đều B nằm ngang song song với mặt tấm. Tìm chu kì dao động nhỏ của khối theo phương thẳng đứng. Giải Khi khối dao động, nhìn từ trái sang ta có thanh dài d chuyển động cắt các đường sức từ  E = Bvd Khi thanh đi xuống, dòng điện có chiều từ trong ra  mặt trước mang điện dương, mặt sau mang điện âm, ta có tụ điện C = Năng lượng của tụ Lực điện F=- 0S 0 b 2  d d 1 1 0 b 2 1 2 2 W = CE  � Bvd   0 b2 B2 v 2d 2 2 d 2 dW dv dy dv  0 b2 B2 v d  0 b 2 B2d. . = 0 b2 B2 d.a dy dy dt dy 2 2 Theo định luật II Niutơn: ma = -ky 0 b2 B2d.a   m  0 b B d  a   ky = Ma M m   0 b 2 B2 d  T = 2  2 k k k1 7. Mạch điện gồm pin có suất điện động e, điện trở k2 trong r, hai cuộn cảm thuần L 1; L2 và điện trở thuần R R mắc như hình. Ban đầu đóng k1, sau một thời gian thì L L đóng k2. Điện tích dịch chuyển qua R sau khi đóng k 2 1 2 r là bao nhiêu ? Giải 15 Hiệu điện thế giữa cực dương và âm của nguồn sau khi đóng k2 là dI U = RI + L1 dt (1) U = e - r(I + i) (2) di U = L2 dt (3) Từ (1) và (3) có: dI di RI + L1 dt = L2 dt (4) Giả sử U = U0e-kt thì I = I0e-kt do đó dI   kI 0e  kt dt i = i0(1 - e-kt) do đó di  ki0e  kt dt Thay vào (4) R I0e-kt - L1kI0e-kt = L2ki0e-kt  R e e e - L1k = L2k  Rr Rr r R k= L1  L2  R  r  r Điện tích dịch chuyển qua điện trở R � � I Idt  I 0 � e dt  0 = Q= � k 0 0  kt e Rr L1  � L2  R  r  r R L � �L Q = e� 1  2 � �R  r r � 8. Một khung dây hình chữ nhật có chiều dài L = 10 m lớn hơn nhiều so với chiều rộng b = 100 mm (được đo giữa các trục đối diện của khung) làm bằng một dây dẫn có bán kính a = 1 mm. Tính độ tự cảm L của khung. Độ từ thẩm của môi trường bằng 1. Bỏ qua trường ở bên trong dây dẫn. Đáp số: L = 0 L b  a ln  a 16 9. Hai thanh ray kim loại cố định trên mặt phẳng ngang, song song nhau cách nhau một đoạn d. Hai M đầu thanh nối với điện trở thuần R, thanh kim loại R L d MN khối lượng m đặt vuông góc với hai ray và có r B N thể trượt trên hai thanh ray. Thiết lập một từ trường r đều B0 hướng thẳng đứng lên trên trong thời gian rất ngắn. Ban đầu thanh cách điện trở một khoảng L. Tính khoảng cách cực tiểu giữa thanh và R trong hai trường hợp: a. Bỏ qua ma sát giữa thanh và và hai ray. b. Hệ số ma sát giữa thanh và ray là R Giải M *Giai đoạn quá độ R Khi thiết lập từ trường, cảm ứng từ tăng từ 0  B0 Khi cảm ứng từ có độ lớn là B, chiều dòng điện như hình vẽ. x v0 L I r B N O Trong mặt phẳng xuất hiện một điện trường xoáy Suất điện động xuất hiện trong mạch E=  d dB  Ld. dt dt Dòng cảm ứng: I = (vận tốc của thanh bằng 0 do chưa kịp thay đổi) E Ld dB  . R R dt Theo chiều chuyển động của thanh (về phía R), áp dụng định luật II Niutơn Ftừ - Fms = m BId = m v0 dv dt Thời gian thiết lập từ trường rất ngắn nên Fms << Ftừ dv Ld 2 BdB . = dt R dt Ld 2 dv  v= � mR 0 B0 BdB  � 0  dv = Ld 2 BdB mR LB20 d 2 v0 = 2mR *Giai đoạn ổn định của từ trường 17 Thanh chuyển động về phía R,  giảm, dòng điện có chiều ngược lại: I= E B vd = 0 R R a. Trường hợp không có ma sát dv B02 vd 2 B02d 2 dx -B0Id = m == � dt R dt R v0 B02d 2 m� dv   R 0 Vậy: x max �dx  mv0 = 0 Lmin = L - xmax = B02d 2  mdv = dx R mv R L B02d 2 x max  xmax = 2 0 2 = Bd 2 R L : Không phụ thuộc R, B0, d 2 b. Có ma sát -B0Id - mg = m dv dt dv B02 vd 2 - mg = m (*) dt R B02d 2 � mgR � dv �v  2 2 �= m R � B0d � dt � mgR � v d �v  2 2 � 2 2 � �  mgR B02d 2 B d 0 � �  B0 d dt  ln v   t � 2 2 � B d mR mgR mR 0 � � v0 v 2 2 B0 d Khi thanh ngừng chuyển động: v = 0; t = T mgR � mgR � B20 d 2 mR � v 0 B02 d 2 � ln 2 2 - ln �v 0  2 2 �= 1 T  T = 2 2 ln � B0 d B d B d mgR � mR � � 0 0 � � Biến đổi lại (*) - dv B02 vd 2 - mg = m dt R dv B02d 2 dx � - mg = m  dt R dt B02d 2 �dx - mg.dt = mdv R 18 Tích phân với: t từ 0  T; v từ v0  0; x từ 0 đến xmax ta được: B02d 2 xmax - mgT = -mv0 R gm 2 R � v 0 B02d 2 � LB02d 2 B02d 2 ln � 1 .xmax + �= B02d 2 R � mgR � 2R gm 2 R 2 � v 0 B02d 2 � L ln � 1 xmax + �= B04d 4 � mgR � 2 2 2 � v 0 B02d 2 � L gm R ln 1 Lmin = L - xmax = + � � B04d 4 2 � mgR � 10. Trên mặt phẳng ngang nhẵn có đặt một vòng dây không dẫn điện mảnh khối lượng m, tích điện q (điện tích phân bố đều). Vòng dây nằm trong từ trường r ngoài đồng nhất có cảm ứng từ B0 vuông góc với vòng dây. Tìm tốc độ góc của vòng dây khi ngắt từ trường. Giải Khi từ trường giảm thì xuất hiện điện trường xoáy bao quanh vòng dây, do đó lực điện tiếp tuyến với vòng làm cho vòng quay. Xét một đường sức  với vòng dây Tại thời điểm t, cường độ điện trường xoáy tại một điểm trên vòng dây là E x(t)  s.đ.đ cảm ứng ở thời điểm này là: r r E e = i�x dl = Ex.2πr dB d r dB 2 dt Mặt khác e = - dt = -πr  Ex = - 2 dt Phần tử dl = rd mang điện dq = q d chịu tác dụng của lực điện: 2 19
- Xem thêm -