SKKN PHƯƠNG PHÁP GIẢI NHANH VÀ BÀI TẬP TRẮC NGHIỆM VẬT LÝ 12

  • Số trang: 46 |
  • Loại file: DOC |
  • Lượt xem: 30 |
  • Lượt tải: 0
nguyen-thanhbinh

Đã đăng 8358 tài liệu

Mô tả:

SƠ LƯỢC LÝ LỊCH KHOA HỌC I. THÔNG TIN CHUNG VỀ CÁ NHÂN 1) Họ và Tên: PHAN ANH NGỌC 2) Ngày tháng năm sinh: 16/06/1979 3) Dân tộc: kinh - Tôn giáo: không - Giới tính: nam 4) Địa chỉ: 330C/A3, Tam Hòa, Hiệp Hòa, Biên Hòa, Đồng Nai 5) Điện thoại nhà trường: 0613.812250 – Điện thoại riêng: 0933675343 6) E-mail: anhngoclqd@gmail.com.vn 7) Chức vụ : Tổ trưởng chuyên môn vật lí 8) Đơn vị công tác: TRƯỜNG THPT LÊ QUÝ ĐÔN-BIÊN HÒAĐỒNG NAI II. TRÌNH ĐỘ ĐÀO TẠO 1) Trình độ chuyên môn: Cử nhân vật lí – Tốt nghiệp năm 2003 2) Chuyên môn đào tạo: ngành vật lí GV: PHAN ANH NGỌC PHƯƠNG PHÁP GIẢI NHANH VÀ BÀI TẬP TRẮC NGHIỆM VẬT LÝ 12 I. LÍ DO CHỌN CHUYÊN ĐỀ Trong những năm qua, tôi nhận thấy học sinh khi học bài vật lý các em rất khó nhớ các công thức cũng như kĩ năng làm bài trắc nghiệm. Những trăn trở của các em đã học được đến đâu, làm sao tóm tắt được các kiến thức đã học, có bí quyết nào để học nhanh và hoàn thiện kiến thức trong thời gian ngắn không?... Để chia sẻ những lo âu cùng các em học sinh, trên cơ sở bám sát chương trình, nội dung thi, chuẩn kiến thức, tôi viết chuyên đề phương pháp giải nhanh và bài tập trắc nghiệm vật lý 12 gồm hai phần. Phần 1: PHƯƠNG PHÁP GIẢI NHANH BÀI TẬP Phần 2: HỆ THỐNG BÀI TẬP TRẮC NGHIỆM GV: PHAN ANH NGỌC II. NỘI DUNG CHUYÊN ĐỀ 1. Cơ sở lý luận: Trong các kì thi như kì thi tốt ngiệp THPT, cao đẳng và đại học thì môn vật lí là môn các em phải làm bài thi dưới dạng trắc nghiệm. Nhằm giúp các em học tốt và đạt kết quả khả quan trong các kì thi đó. Tôi đã đưa ra chuyên đề phương pháp giải nhanh và bài tập trắc nghiệm với mục tiêu: Tóm tắt công thức, phương pháp giải nhanh để làm sao các em học sinh dễ học dễ nhớ không phức tạp mà vẫn đầy đủ. Bên cạnh đó phương pháp giải nhanh còn giúp cho học sinh có kĩ năng giải bài tập đạt hiệu quả cao. GV: PHAN ANH NGỌC 2. Nội dung, biện pháp thực hiện các giải pháp CHƯƠNG I: DAO ĐỘNG CƠ BÀI 1: DAO ĐỘNG ĐIỀU HOÀ A. KIẾN THỨC TRỌNG TÂM: 1. Dao động cơ: Là chuyển động qua lại quanh vị trí cân bằng. 2. Dao động tuần hoàn: Là dđộng lặp đi lặp lại như cũ sau những khoảng thời gian bằng nhau 3. Định nghĩa dao động điều hoà: Là dao động trong đó li độ của vật là một hàm cosin hay sin theo thời gian 4. Phương trình của dao động điều hoà là: x  A cos(t   ) ; Trong đó A , w, φ là các hằng số 5. Các đại lượng đặc trưng của dao động điều hòa a) Chu kì (Kí hiệu T), đo bằng đơn vị (s). Chu kì dao động là khoảng thời gian để vật thực hiện một dao động toàn phần Hay chu kì là khoảng thời gian ngắn nhất sau đó trạng thái dao động lặp lại như cũ b) Tần số (f ), đơn vị tần số Héc (Hz) Tần số của dao động điều hoà là số dao động thực hiện trong 1 giây Công thức: f = 1 T c)Công thức liên hệ giữa tần số góc, chu kì và tần số:   2  2 f T d) x là li độ của dao động, đo bằng cm hoặc m e) A là biên độ dao động, (A = xmax li độ cực đại). Biên độ dao động luôn luôn dương f)  là tần số góc của dao động, có đơn vị là rad/s g) (  t +  ) là pha của dao động tại thời điểm t, có đơn vị là rad. Cho phép xác định trạng thái dao động của vật ở thời điểm t h)  là pha ban đầu của dao động (rad), có thể dương, âm hoặc bằng 0 k) Vận tốc: v = x’ =  A sin(t   ) +) Ở vị trí biên theo chiều dương x = +A và v = 0 +) Ở vị trí biên ngược chiều dương x = -A và v = 0. +) Ở VTCB x = 0 thì vmax=  A Kết luận: Vận tốc là đại lượng biến thiên điều hòa theo hàm sin. l) Gia tốc: a = v’ =  2 A cos(t   ) hay a = - w2 . x +) Ở VTCB, x = 0 thì a = 0 và hợp lực F = 0 +) Ở vị trí biên theo chiều dương, x = +A thì a = - w2 A < 0 +) Ở vị trí biên ngược chiều dương, x = -A thì a = + w2 A > 0 Vậy: Gia tốc luôn luôn ngược dấu với li độ và có độ lớn tỉ lệ với độ lớn của li độ +) Độ lớn gia tốc cực đại: amax = w2 A. GV: PHAN ANH NGỌC B. PHƯƠNG PHÁP GIẢI NHANH: I. DẠNG TOÁN TÌM ĐẠI LƯỢNG LI ĐỘ, VẬN TỐC VÀ GIA TỐC DAO ĐỘNG ĐIỀU HÒA: VTCB Biên x = -A V= 0 amax   2 . A x=0 Vmax =  .A a=0 Biên x = +A V= 0 a max   2 . A II. DẠNG TOÁN TÌM CÁC ĐẠI LƯỢNG T, f, A,  ,  : t 1) Tìm chu kì T: T  trong đó t là khoảng thời gian, N là số dao động N N 2) Tìm tần số f: f  tần số là số dao động thực hiện trong một giây t 3) Tìm biên độ dao động: Tùy theo dữ kiện bài toán đã cho, ta có thể dựa vào các công thức sau đây. A vmax amax L v2 2 A  A  hay hay ( L chiều dài quỹ đạo) hay A  x  2  2 2  4) Tìm tần số góc: Tùy theo dữ kiện bài toán đã cho, ta có thể dựa vào các công thức sau đây.  a v 2 a hay   2 f hay   max hay   max hay   max vmax T A A III. DẠNG TOÁN VIẾT PHƯƠNG TRÌNH DAO ĐỘNG: Viết phương trình dao động x  A cos(t   ) thực chất tìm A,  và  . 1) Tìm biên độ dao động: Tùy theo dữ kiện bài toán đã cho, ta có thể dựa vào các công thức sau đây. A vmax a L v2 2 A  hay A  max hay ( L chiều dài quỹ đạo) hay A  x   2 2 2 2) Tìm tần số góc: Tùy theo dữ kiện bài toán đã cho, ta có thể dựa vào các công thức sau đây.  a v 2 a hay   2 f hay   max hay   max hay   max vmax T A A GV: PHAN ANH NGỌC 3) Tìm pha ban đầu: a. Trường hợp đặc biệt: VTCB Biên     2 Biên    0  2 b. Phương pháp chung: � x  A.cos  � � v  . A.sin  � IV. DẠNG TOÁN TÌM THỜI GIAN ĐỂ VẬT ĐI TỪ LI ĐỘ X1 ĐẾN LI ĐỘ X2: 1) Các trường hợp đặc biệt: Biên x A 2 x VTCB t A 2 T 12 t t t t Biên T 4 T 2 a. Thời gian ngắn nhất để vật đi từ biên độ tới biên độ là t T ứng với    2 b. Thời gian ngắn nhất để vật đi từ vị trí cân bằng tới biên hoặc ngược lại là t T  ứng với   4 2 c. Thời gian ngắn nhất để vật đi từ x  t GV: PHAN ANH NGỌC A tới biên hoặc ngược lại là 2 T  ứng với   6 3 TT 66 2) Tổng quát: t  T 2 V. DẠNG TOÁN SO SÁNH SỰ LỆCH PHA: 1) So sánh độ lệch pha của vận tốc và li độ: Ta có phương trình li độ x  A cos(t   )  Phương trình vận tốc v =  A sin(t   )   A cos(t    ) 2 Vậy vận tốc biến đổi điều hòa sớm pha  so với li độ x 2 2) So sánh độ lệch pha của gia tốc và vận tốc  Phương trình vận tốc v =  A sin(t   )   A cos(t    ) 2 Phương trình gia tốc a =  2 A cos(t   )   2 A cos(t     ) Vậy gia tốc biến đổi điều hòa sớm pha  so với vận tốc v 2 3) So sánh độ lệch pha của gia tốc và li độ Ta có phương trình li độ x  A cos(t   ) Phương trình gia tốc a =  2 A cos(t   )   2 A cos(t     ) Vậy gia tốc biến đổi điều hòa ngược pha so với li độ x GV: PHAN ANH NGỌC BÀI 2 : CON LẮC LÒ XO A. KIẾN THỨC TRỌNG TÂM: 1. Tần số góc của con lắc lò xo ( ) , đo bằng (rad/s): w = k m 2. Chu kì dao động của con lắc lò xo (T), đo bằng giây (s): T  2 m  2 .  k +) Chu kì con lắc lò xo phụ thuộc khối lượng m và độ cứng k +) Chu kì con lắc lò xo không phụ thuộc biên độ dao động và gia tốc trọng trường +) Chu kì con lắc lò xo không phụ thuộc điều kiện kích thích ban đầu +) Chu kì của con lắc lò xo tỉ lệ thuận với m và tỉ lệ nghịch với 3. Tần số dao động của con lắc lò xo (f), đo bằng héc (Hz): f  4. Lực k 1 1 k  . T 2 m kéo về: +) Lực luôn hướng về VTCB gọi là lực kéo về. +) Lực kéo về có độ lớn tỉ lệ với li độ , là lực gây ra gia tốc cho vật dao động điều hoà. +) Lực kéo về phụ thuộc độ cứng k và li độ x +) Lực kéo về không phụ thuộc vào khối lượng của vật +) Công thức của lực kéo về tác dụng vào con lắc lò xo F = - k.x 5. Biên độ dao động của con lắc lò xo: +) Biên độ dao động phụ thuộc vào điều kiện kích thích ban đầu +) Biên độ dao động không phụ thuộc khối lượng m, độ cứng k và gia tốc g 6. Động năng của con lắc lò xo: 1 1 1 Wđ  m.v 2  m. 2 A2 .sin 2 (.t   )  k . A2 .sin 2 (.t   ) 2 2 2 Trong đó động năng Wđ : (Jun), v vận tốc(m/s), m là khối lượng(kg) 1 2 1 2 2 7. Thế năng của con lắc lò xo : Wt  k .x  k . A .cos (.t   ) 2 2 Trong đó thế năng Wt : (Jun), x là li độ của vật, k độ cứng lò xo đơn vị (N/m) 1 1 2 2 2 8. Cơ năng của con lắc lò xo: Wtđ  W t  W  k . A  m. . A . 2 2 a) Cơ năng được bảo toàn nếu bỏ qua mọi ma sát b) Cơ năng của con lắc lò xo tỷ lệ với bình phương biên độ dao động. GV: PHAN ANH NGỌC B. PHƯƠNG PHÁP GIẢI NHANH: I. CÁC ĐẠI LƯỢNG ĐẶC TRƯNG DAO ĐỘNG ĐIỀU HÒA CỦA CON LẮC LÒ XO: VTCB Biên x = -A V= 0 amax   2 . A Biên x=0 Vmax =  .A a=0 1 1 Wđ  .m 2 . A2  .k . A2 2 2 Wt = 0 W = Wđ max F=0 Wđ  0 1 1 Wt max  .k . A2  .m. 2 A2 2 2 W W = t max Fmax  k . A Wt max x = +A V= 0 amax   2 . A Wđ  0 1 1  .k . A2  .m. 2 A2 2 2 W = Wt max Fmax  k . A II. DẠNG TOÁN TÌM CÁC ĐẠI LƯỢNG  , T , f Con lắc lò xo nằm theo phương ngang k a) Tần số góc:   m b) Chu kì dao động: T  2 . b) Chu kì dao động: m k c) Tần số dao động: f  Con lắc lò xo treo phương thẳng đứng k g a) Tần số góc:    m l 1 2 k m T  2 . c) Tần số dao động: f  1 2 m l  2 . k g k 1  m 2 g l III. DẠNG TOÁN TÌM CÁC ĐẠI LƯỢNG vmax , amax , Fmax Con lắc lò xo nằm theo phương ngang Con lắc lò xo treo phương thẳng đứng Tốc độ cực đại: vmax  . A 2 Gia tốc cực đại: amax   . A Lực đàn hồi cực đại: Fmax = k.A Lực đàn hồi cực đại: Fmax  k .( l  A) IV. DẠNG TOÁN VIẾT PHƯƠNG TRÌNH DAO ĐỘNG x  A cos(.t   ) : Bài toán này thực chất tìm A,  ,  1) Tìm biên độ dao động: Tùy theo dữ kiện bài toán đã cho, ta có thể dựa vào các công thức sau đây. A vmax a L 2W v2 2 hay A  max hay hay A  ( L chiều dài quỹ đạo) A  x  2 hay A  2   2 k  GV: PHAN ANH NGỌC 2) Tìm tần số góc: Tùy theo dữ kiện bài toán đã cho, ta có thể dựa vào các công thức sau  đây. v 2 a hay   2 f hay   max hay   max T A A hay   amax k g hay   hay   vmax m l 3) Tìm pha ban đầu a) Trường hợp đặc biệt: Biên   VTCB    2  Biên  2  0 b) Phương pháp chung: � x  A.cos  � � v  . A.sin  � V. DẠNG TOÁN LIÊN QUAN ĐẾN THẾ NĂNG, ĐỘNG NĂNG VÀ CƠ NĂNG: 1) Thế năng của con lắc lò xo: 1 2 1 1 1 1  cos(2t  2 ) � � k .x  k . A2 cos 2 (.t   )  k. A2 � 1  sin 2 (.t   ) �  k . A2 . � � � � 2 2 2 2 2 � � 2) Động năng của con lắc lò xo: 1 1 1 1 1  cos(2t  2 ) � � Wđ  m.v 2  k . A2 .sin 2 (.t   )  k. A2 � 1  cos 2 (.t   ) �  k . A2 . � � � � 2 2 2 2 2 � � 3) Cơ năng của con lắc lò xo: 1 1 1 1 W  Wđ  Wt  m.v 2  k .x 2  k . A2  m. 2 . A2 2 2 2 2 Kết luận: T , +) Động năng biên thiên điều hòa với  ,  2 hay f ,  2 f hay T  so với vận tốc v 2 T , +) Thế năng biên thiên điều hòa với  ,  2  ,  2 hay f ,  2 f hay T  so với li độ x 2 +) Cơ năng được bảo toàn nếu bỏ qua mọi ma sát và tỷ lệ với bình phương biên độ dao động Wt  VI. DẠNG TOÁN TÌM LI ĐỘ X HOẶC TÌM BIÊN ĐỘ A KHI BIẾT Wđ  nWt : . t Theo bài toán ta có Wđ  nW 1 1 2 2 Mặt khác cơ năng W  Wđ  Wt  Wt (n  1) � k . A  k .x (n  1) 2 2 A � �x  � n 1 � �A  x. n  1 � GV: PHAN ANH NGỌC VII. DẠNG TOÁN TÌM VẬN TỐC V KHI BIẾT Wtđ  nW : . Theo bài toán ta có Wtđ  nW 1 1 . đ  Wđ (1  n) � k . A2  m.v 2 (1  n) Mặt khác cơ năng W  Wđ  nW 2 2 . A v� n 1 VIII. DẠNG TOÁN TÌM CHU KỲ KHI LÒ XO GHÉP VỚI NHAU: 1) Nếu các lò xo mắc nối tiếp: T  T12  T2 2  ...  Tn 2 2) Nếu các lò xo mắc song song : 1 1 1 1  2  2  ...  2 2 T T1 T2 Tn Bài 3: CON LẮC ĐƠN A. KIẾN THỨC TRỌNG TÂM: I. DẠNG TOÁN TÍNH TẦN SỐ GÓC, CHU KÌ, TẦN SỐ VÀ LỰC KÉO VỀ: g 1) Tần số góc (w) đo bằng rad/s: w = l l 2) Chu kì dao động (T) đo bằng giây (s): T  2 g +) Chu kì của con lắc đơn phụ thuộc chiều dài và gia tốc trọng trường. +) Chu kì của con lắc đơn không phụ thuộc khối lượng con lắc. +) Chu kì của con lắc đơn không phụ thuộc biên độ dao động +) Chu kì của con lắc đơn tỉ lệ thuận với 3) Tần số dao động (f), đo bằng héc (Hz): f  1 2 l và tỉ lệ nghịch với g g l 4) Lực kéo về của con lắc đơn: +) Lực luôn hướng về vị trí cân bằng gọi là lực kéo về. +) Lực kéo về của con lắc đơn phụ thuộc khối lượng của vật nặng. +) Lực kéo về của con lắc đơn không phụ thuộc vào biên độ dao động II. DẠNG TOÁN TÍNH VẬN TỐC Ở LI ĐỘ GÓC BẤT KÌ: v  � 2 gl (cos   cos  0 ) 1) Nếu  �100 thì có thể tính gần đúng: v  � 2 gl ( 2   0 2 ) 2) Khi vật qua vị trí cân bằng vmax  2 gl (1  cos  0 ) III. DẠNG TOÁN LIÊN QUAN ĐẾN ĐỘNG NĂNG, THẾ NĂNG VÀ CƠ NĂNG: 1 1) Động năng của con lắc đơn (Wđ), đo bằng (J): Wđ  mv 2  mgl (cos   cos  0 ) 2 2) Thế năng của con lắc đơn (Wt) đo bằng (J): Wt  mgh  mgl (1  cos  ) , Với h  l (1  cos  ) GV: PHAN ANH NGỌC 3) Cơ năng của con lắc đơn: W  Wđ  Wt  mgl (1  cos  0 )  Wđ max  Wt max a. Trong dao động điều hòa của con lắc đơn: - Khi con lắc đơn đi từ vị trí biên về vị trí cân bằng thì thế năng giảm dần, động năng tăng dần. - Khi con lắc đơn đi từ VTCB đến vị trí biên thì thế năng tăng dần, động năng giảm dần. b. Sự bảo toàn cơ năng: Cơ năng được bảo toàn khi bỏ qua ma sát 1 2 W = mv  mgl (1  cos  )  hằng số. 2 B. PHƯƠNG PHÁP GIẢI NHANH: I. VIẾT PHƯƠNG TRÌNH DAO ĐỘNG VÀ TÍNH CÁC ĐẠI LƯỢNG LIÊN QUAN: 1) Viết phương trình dao động s  s0 cos(t   ) Bài toán này thực chất tìm các đại lượng s0,  ,  +) Xác định biên độ s0  s 2  +) Xác định tần số góc:   v2 hay s0  l 0 2 2  2 f hay   T g l +) Xác định pha ban đầu Biên a) Trường hợp đặc biệt:     VTCB  2  Biên  2  0 b) Phương pháp chung: � x  A.cos  � � v  . A.sin  � 2) Tìm các đại lượng chu kì, vận tốc và gia tốc +) Xác định chu kì: T  2 l t hoặc T  ( t là khoảng thời gian, n số g n dao động) ' +) Phương trình vận tốc: v  s   s0 sin(t   ) . vmax   S0 ( lúc này vật ở vị trí cân bằng) ' 2 2 +) Phương trình gia tốc: a  v   s0 cos(t   )   s amax   2 S 0 ( lúc này vật ở vị trí biên) GV: PHAN ANH NGỌC BÀI 4: TỔNG HỢP HAI DAO ĐỘNG ĐIỀU HOÀ CÙNG PHƯƠNG CÙNG TẦN SỐ PHƯƠNG PHÁP GIẢN ĐỒ FRE-NEN A. KIẾN THỨC TRỌNG TÂM: 1) Tổng hợp hai dao động điều hoà cùng phương cùng tần số. Dao động tổng hợp của hai dao động điều hoà cùng phương, cùng tần số là một dđộng điều hoà cùng phương, cùng tần số với hai dao động đó x1  A1 cos(t   1 ) và x 2  A2 cos(t   2 ) thành dao động tổng hợp x  A cos(t   ) Phương trình dao động điều hoà tổng hợp: x = A cos (wt + φ) a. Biên độ của dao động tổng hợp: A  A12  A2 2  2 A1 A2 cos(2  1 ) b. Pha ban đầu của dđ tổng hợp: tan   A1 sin 1  A2 sin  2 A1 cos 1  A2 cos  2 2) Ảnh hưởng của độ lệch pha. +) Biên độ tổng hợp A phụ thuộc các biên độ thành phần A1, A2 và độ lệch pha φ2 – φ1 của các dao động thành phần. +) Nếu các dao động thành phần, cùng pha, tức là  = φ2 – φ1 = 2n.л, với (n = 0,  1,  2,...) thì biên độ tổng hợp lớn nhất. A  A1  A2 +) Nếu 2 dđ thành phần, ngược pha tức là  = φ2 – φ1 = (2n +1)л. (với n = 0,  1,  2,...) thì biên độ tổng hợp có giá trị nhỏ nhất. A  A1  A2  +) Nếu 2 dao động thành phần vuông pha tức là   2   1 (2n  1) thì biên độ 2 2 dao động tổng hợp là A  A1  A2 2 B. PHƯƠNG PHÁP GIẢI NHANH: 1) Nếu  2  1 tức là cùng pha thì  A A1  A2  2 1 2) Nếu  2   ; 1  0 hoặc  2  0; 1   tức là ngược pha thì 3) Nếu  2    ; 1  0 hoặc  2  0; 1  tức là vuông pha thì 2 2 4) Nếu độ lệch pha bất kì thi: A1  A2 �A �A1  A2 GV: PHAN ANH NGỌC � �A A1  A2 �tan   A1 sin 1  A2 sin 2 � A1 cos1  A2 cos 2 � �A A12  A22 � A sin 1  A2 sin  2 tan   1 A1 cos 1  A2 cos  2 � CHƯƠNG III:DÒNG ĐIỆN XOAY CHIỀU BÀI 5. ĐẠI CƯƠNG VỀ DÒNG ĐIỆN XOAY CHIỀU I. KHÁI NIỆN VỀ DÒNG ĐIỆN XOAY CHIỀU 1. Khái niệm: Dòng điện xoay chiều là dòng điện có cường độ biến thiên tuần hoàn theo quy luật của hàm số sin hay côsin của thời gian. Dạng tổng quát: i  I 0 cos(t   ) Trong đó: +) i: cường độ dòng điện tức thời, có đơn vị (A) +) I0: cường độ cực đại, có đơn vị (A); I0 > 0 +)  : pha ban đầu, có đơn vị (rad) +) ω: tần số góc (rad/s); ω > 0 +) ωt +  : là pha của i (rad) 2 +) Chu kì: T=  1  +) Tần số: f= = T 2 3. Khniệm cường độ dđiện hiệu dụng được xây dựng dựa vào: Tác dụng nhiệt của dòng điện 4.Dòng điện xoay chiều : +) Gây ra từ trường biến thiên +) Gây ra tác dụng nhiệt trên điện trở +) Không dùng dòng điện xoau chiều để đúc điện và mạ điện. 5. Dòng điện xoay chiều có tần số f thì trong mỗi giây nó đổi chiều : Số lần đổi chiều = 2xf ( với f là tần số của dòng điện) II. NGUYÊN TẮC TẠO RA DÒNG ĐIỆN XOAY CHIỀU Dòng điện xoay chiều được tạo ra bằng máy phát điện xoay chiều, dựa trên hiện tượng cảm ứng điện tư III. GIÁ TRỊ HIỆU DỤNG 1. Cường độ dòng điện hiệu dụng: I  I0 I I 0 2 2 Trong đó: I0: cường độ cực đại (A); I: cường độ hiệu dụng (A) 2. Điện áp hiệu dụng (hiệu điện thế hiệu dụng): U  U0 2 Trong đó : U0: điện áp cực đại (v); U: điện áp hiệu dụng (v) 3. Suất điện động hiệu dụng: E  E0 2 Trong đó: E0 suất điện động cực đại (v); E suất điện động hiệu dụng (v) GV: PHAN ANH NGỌC 4. Những đại lượng đo bằng giá trị hiệu dụng: + Cường độ hiệu dụng + Điện áp hiệu dụng (hiệu điện thế hiệu dụng) + Suất điện động hiệu dụng 5. Những đại lượng không phải đo bằng giá trị hiệu dụng: +) Tần số góc, tần số và chu kì +) Pha và pha ban đầu +) Điện năng tiêu thụ và công suất điện. BÀI 6: CÁC MẠCH ĐIỆN XOAY CHIỀU 1) Bài toán mạch điện xoay chiều chỉ có điện trở: a) Quan hệ giữa cường độ dòng điện và điện áp I  � UR U R  I .R �� UR R �R  I b) Quan hệ về pha và giản đồ vectơ i cùng pha với u  i  I 2 cos t u Ur 2 cos t r I UR c) Giản đồ vectơ: 2) Bài toán mạch điện xoay chiều chỉ có tụ điện: a) Công thức tính dung kháng, điện dung, tần số góc: ZC  1 1  C 2 fC 1 1 C  � � � �  .1ZC 2 fZC  C .Z C � b) Quan hệ giữa cường độ dòng điện và điện áp: I  � UC U C  I . ZC �� U ZC  C ZC � I c) Quan hệ về pha và giản đồ vectơ  i  I 2 cos(t i ) u U 2 cos(t u ) +) Quan hệ về pha   i sớm pha so với u hay u trễ pha so với i 2 2 �i  I 2 cos(t  2 ) �u U 2 cos(t ) � GV: PHAN ANH NGỌC Hoặc � i  I 2 cos(t ) �  u U 2 cos( t  ) � 2 +) Độ lệch pha của u đối với i     �  2  u  u  i   � �      i 2 � 2 r I +) Giản đồ vectơ u i i u r UC 3) Bài toán mạch điện xoay chiều chỉ có cuộn cảm: a) Công thức tính cảm kháng, độ tự cảm, tần số góc: Z  L � Z L   L  2 fL � � ZLL �L   b) Quan hệ giữa cường độ dòng điện và điện áp: I  � UL U L  I .Z L �� U ZL  L ZL � I c) Quan hệ về pha và giản đồ vectơ  i  I 2 cos(t i ) u U 2 cos(t u ) +) Quan hệ về pha   i trễ pha so với u hay u sớm pha so với i 2 2 �i  I 2 cos(t  2 ) �u U 2 cos(t ) � Hoặc +) Độ lệch pha của u đối với i u i +) Giản đồ vectơ �u i  2   u  i  � �  2 �i u  2 r I r UC GV: PHAN ANH NGỌC  u U 2 cos( t  ) � 2 � i  I 2 cos(t ) � BÀI 7: MẠCH CÓ R, L, C MẮC NỐI TIẾP 1) Điện áp giữa hai đầu đoạn mạch R, L, C U2 = UR2 + U2LC = UR2 + (UL - UC)2 � U  U 2 R  (U L  U C )2 � U  U 2 R  (U L  U C ) 2 2) Công thức tính tổng trở của đoạn mạch có R,L,C mắc nối tiếp 1 2 ) C 3) Quan hệ giữa cường độ dòng điện và điện áp U U U I   Z 1 2 R 2  (Z L  ZC )2 R 2  ( L  ) C 4) Độ lệch pha giữa điện áp và dòng điện. Gọi  là độ lệch pha của u đối với i 1 L.  U LC U L  UC Z L  ZC .C tan u  � tan u  � tan u   i i i UR UR R R +) Nếu ZL> Zc � tan u > 0 �  > 0 thì điện áp u sớm pha so với dòng điện i một Z  R 2  ( Z L  Z C )2  R 2  ( L  i góc  +) Nếu ZL< Zc � tan  < 0 �  < 0 thì điện áp u trễ pha so với dòng điện i một góc  +) Nếu ZL= Zc � tan  = 0 �  = 0 thì u cùng pha với i 3. Cộng hưởng điện a. Hiện tượng cộng hưởng trong mạch RLC mắc nối tiếp xảy ra khi 1 1 1 � 2  �  +) Nếu Z L  Z C � L.  LC LC C +) Tan  = 0 �  = 0 thì u cùng pha i và uR cùng pha với i nên u cùng pha với u R +) Tổng trở đạt giá trị cực tiểu Z = R +) Cường độ đạt giá trị cực đại I max  U R +) Công suất đạt giá trị cực đại Pmax U .I max  U2 R +) Điện áp hiệu dụng giữa hai đầu tụ điện bằng điện áp hiệu dụng giữa hai đầu cuộn cảm Uc = UL b. Điều kiện để có cộng hưởng điện: Z L  Z C � L.  � 2  1 �  LC GV: PHAN ANH NGỌC 1 � L.C. 2  1 LC 1 C BÀI 8: CÔNG SUẤT ĐIỆN TIÊU THỤ CỦA MẠCH ĐIỆN XOAY CHIỀU. HỆ SỐ CÔNG SUẤT I. Công suất của mạch điện xoay chiều 1. Biểu thức tính công suất: P = UI cos  Trong đó: U: Điện áp hiệu dụng (v), I: Cường độ hiệu dụng (A) Cos  : Hệ số công suất, P: Công suất điện (W) 2. Điện năng tiêu thụ của mạch W = P.t Điện năng tiêu thụ đo bằng đơn vị Jun (J) II. Hệ số công suất 1. Biểu thức tính hệ số công suất Cos  = UR R Hay Cos  = Z U 2. Bảng ví dụ về hệ số công suất Mạch điện Chỉ có R Cos  1 Chỉ có C 0 Có R và C nối tiếp R 2 R  Z 2C Chỉ có L 0 Có R và L nối tiếp R 2 R  Z 2L 3. Tầm quan trọng của hệ số công suất trong quá trình cung cấp và sử dụng điện năng a. Công suất hao phí trong quá trình truyền tải điện năng Php r.I 2 r P2 U 2 cos 2 b. Tầm quan trọng của cos  Để giảm công suất hao phí trong quá trình truyền tải điện năng, người ta tăng hệ số công suất cos  c. Biện pháp giảm công suất hao phí: Để giảm công suất hao phí trong quá trình truyền tải điện năng, người ta tăng điện áp U. Ví dụ: Điện áp hiệu dụng U tăng lên 100 lần thì công suất hao phí giảm đi 10000 lần 4. Công suất tỏa nhiệt trên điện trở R GV: PHAN ANH NGỌC P = U.I.cos  =R.I2 Vậy: Công suất điện tiêu thụ trên đoạn mạch xchiều chính là công suất tỏa nhiệt trên điện trở R BÀI 9: TRUYỀN TẢI ĐIỆN NĂNG. MÁY BIẾN ÁP I. Bài toán truyền tải điện năng đi xa 1. Công suất hao phí do tỏa nhiệt trong quá trình truyền tải điện năng +) Công suất của máy phát điện: Pphát = Uphat.I 2 +) Công suất hao phí: Php r.I r Pphat 2 U phat 2 2. Các giải pháp làm giảm công suất hao phí +) Biện pháp 1: Làm giảm điện trở bằng cách thay dây nhôm bằng dây bạc hoặc dây siêu dẫn giải pháp này quá tốn kém. +) Biện pháp 2: Để giảm công suất hao phí thì người ta tăng điện áp. Biện pháp này hiệu quả hơn. II. Máy biến áp 1. Định nghĩa: Máy biến áp là thiết bị có khả năng biến đổi điện áp (xoay chiều) 2. Cấu tạo và nguyên tắc hoạt động của máy biến áp: a. Cấu tạo: - Bộ phận chính của máy biến áp là một khung bằng sắt non có pha silic gọi là lõi biến áp - Cuộn thứ nhất D1 có N1 vòng dây được nối vào nguồn phát điện, gọi là cuộn sơ cấp - Cuộn thứ hai D2 có N2 vòng dây nối ra các cơ sở tiêu thụ điện năng, gọi là cuộn thứ cấp b. Nguyên tắc hoạt động của máy biến áp: Dựa vào hiện tượng cảm ứng điện từ. 3. Khảo sát thực nghiệm của một máy biến áp Một máy biến áp có thể làm việc ở hai chế độ - Cuộn thứ cấp hở mạch (chế độ không tải) - Cuôn thứ cấp nối với cơ sở tiêu thụ (chế độ có tải) a. Thí nghiệm 1: Khi khóa K ngắt, (chế độ không tải, I2 = 0) * Khảo sát đặc tính biến áp U2 N  2 U1 N1 (Tỉ số điện áp bằng tỉ số của số vòng dây) + Vậy: Tỉ số các cuộn điện áp hiệu dụng ở hai đầu cuộn thứ cấp và cuộn sơ cấp luôn luôn bằng tỉ số vòng dây của hai cuốn đó. Trong đó: N1: số vòng dây của cuộn sơ cấp N2: số vòng dây của cuộn thứ cấp U1: điện áp hiệu dụng giữa hai đầu cuôn sơ cấp U2: điện áp hiệu dụng giữa hai đầu cuộn thứ cấp + Nhận xét: GV: PHAN ANH NGỌC N2 > 1 � N2 > N1 � U2 > U1, gọi là tăng điện áp, giảm cường độ N1 N2 - Nếu < 1 � N2 < N1 � U2 < U1, gọi là giảm điện áp, tăng cường độ N1 * Khảo sát công suất tiêu thụ ở mạch sơ cấp và thứ cấp: Khi một máy biến áp ở chế độ không tải, thì nó hầu như không tiêu thụ điện năng. b. Thí nghiệm 2: Khi đóng khóa K, (có tải điện I2 �0) +) Công suất điện ở cuộn sơ cấp và thứ cấp là như sau: P1 = P2 � U1.I1 = U2.I2 - Nếu U2 I  1 U1 I2 Hay I1 N 2  I 2 N1 I1: cường độ hiệu dụng cuộn sơ cấp I2: cường độ hiệu dụng của cuộn thứ cấp N1: số vòng dây của cuộn sơ cấp N2: số vòng dây của cuộn thứ cấp U1: điện áp hiệu dụng giữa hai đầu cuôn sơ cấp U2: điện áp hiệu dụng giữa hai đầu cuộn thứ cấp +) Kết luận: Khi một máy biến áp làm việc trong điều kiện lý tưởng: N2 N1 - Tỉ số các cường độ hiệu dụng ở mạch thứ cấp và mạch sơ cấp bằng nghịch đảo tỉ N2 số N1 Chú ý: Cuộn sơ cấp nối với nguồn phát điện xoay chiều, cuộn thứ cấp được nối với tải tiêu thụ Tần số của dòng điện xoay chiều ở cuộn thứ cấp và cuộn sơ cấp bằng nhau. Máy biến áp chỉ biến đổi điện áp xoay chiều. - Tỉ số các điện áp hiệu dụng ở cuộn thứ cấp và cuộn sơ cấp bằng tỉ số 4. - III. Công dụng của máy biến áp. 1. Truyền tải điện năng 2. Nấu chảy kim loại và hàn điện BÀI 10: MÁY PHÁT ĐIỆN XOAY CHIỀU GV: PHAN ANH NGỌC
- Xem thêm -