Skkn phát triển tư duy và khả năng tính nhẩm của học sinh trong trường thcs

  • Số trang: 31 |
  • Loại file: DOC |
  • Lượt xem: 16 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 24000 tài liệu

Mô tả:

Lê Văn Lộc I. KHÁI QUÁT NỘI DUNG CHÍNH . A : ĐẶT VẤN ĐỀ - Vai trò, tác động của toán học với đời sống, với các ngành khoa học kỹ thuật . - Vị trí của môn toán trong trường THCS . - Khả năng học toán của các em ở trường THCS hiện nay . - Do yêu cầu của đổi mới phương pháp : " Thầy chủ đạo , trò chủ động ". B . GIẢI QUYẾT VẤN ĐỀ . 1. Ý tưởng đi nghiên cứu đề tài từ một bài toán thực tế với cách giải độc đáo được đúc rút từ sự vận dụng linh hoạt của các nội dung cơ bản của chương trình . 2. Phương pháp dạy học của thầy, cách tìm tòi thực nghiệm để đúc rút ra các dạng vận dụng kiến thức cơ bản vào làm phép tính nhẩm . 3. Tám dạng bài tập khác nhau, mỗi dạng đều nêu ví dụ cụ thể, cơ sở của cách làm, tại sao làm như vậy . Dạng 1 : Nhẩm bình phương của một số có chữ số tận cùng là 5. Dạng 2 : Vận dụng hằng đẳng thức ( a + b )2 vào làm phép tính nhẩm . Dạng 3 : Nhẩm bình phương của một số lớn hơn 50 một chút . Dạng 4 : Nhẩm căn bậc hai của một số chính phương. Dạng 5 : Nhẩm tích hai số nhỏ hơn 100 một chút. Dạng 6 : Nhân nhẩm tích của hai số lớn hơn 100. Dạng 7 : Nhẩm tích của hai số có bốn chữ số mà chữ số hàng nghìn , hàng trăm giống nhau. Tổng chữ số hàng chục và hàng đơn vị của hai thừa số là 100 . Dạng 8 : Tính nhanh một số biểu thức . Dạng 9 : Dãy các phân thức viết theo quy luật . Dạng 10 : Nhận xét , đề suất cách giải một số dạng toán khác. C. KẾT QUẢ THỰC HIỆN - BÀI HỌC KINH NGHIỆM . - Kết quả qua 1 số năm giảng dạy gần đây . - Bài học rút ra qua đề tài . 1 Lê Văn Lộc II. NỘI DUNG CHI TIẾT . A. ĐẶT VẤN ĐỀ : Trong thời đại công nghiệp hoá , hiện đại hoá ngày nay , một trong những điểm đáng chú ý của cuộc cách mạng khoa học kĩ thuật đang diễn ra nhanh như vũ bão hiện nay là sự thâm nhập ngày càng nhiều của máy tính điện tử , của công nghệ thông tin vào các ngành khoa học khác mà chìa khoá của nó là toán học . Toán học không chỉ xâm nhập vào các ngành khoa học tự nhiên và kỹ thuật mà còn vào cả sinh học, ngôn ngữ học, tâm lý học, xã hội học . Trong sự nghiệp công nghiệp hoá, hiện đại hoá ở nước ta hiện nay , toán học giữ một vị trí nổi bật . Nó có tác dụng rất lớn đối với các nghành khoa học khác , đối với kỹ thuật , sản xuất , chiến đấu … Trong trường THCS môn toán có vị trí vô cùng quan trọng. Nó có khả năng to lớn để thực hiện mục tiêu giáo dục : "Nâng cao dân trí, bồi dưỡng nhân lực , đào tạo nhân tài" . Môn toán là công cụ thiết yếu giúp các em học tốt môn học khác , giúp các em phát triển năng lực và phẩm chất trí tuệ . Chúng ta đều biết : Một trong những yêu cầu của việc dạy học sinh học toán là tạo cho các em có phương pháp tư duy , óc sáng tạo , khả năng lập luận , kỹ năng tính toán hợp lý , trình bày bài khoa học , rõ ràng . Tuy nhiên trong các trường THCS hiện nay , đặc biệt là các vùng nông thôn tình trạng các em học yếu toán , sợ toán không phải là ít , kiến thức toán học hời hợt , thiếu vững chắc . Nhiều em nghĩ toán học khô khan , hóc búa , học toán đau đầu . Trước một bài toán nhiều em không biết bắt đầu từ đâu ? Làm thế nào ? Nếu giáo viên càng thuyết trình thì học sinh càng thụ động . Do đó các em càng sợ , càng yếu , không nắm được các kiến thức cơ bản . Trước yêu cầu của đổi mới phương pháp : " Thầy chủ đạo , trò chủ động " , làm thế nào để củng cố đào sâu suy nghĩ và rèn luyện tư duy toán học . Làm thế nào để giúp các em độc lập suy nghĩ , xây dựng ý thức tự giác trong học tập ? Câu hỏi này luôn làm tôi băn khoăn suy nghĩ để rồi qua đó tự tìm hiểu , nghiên cứu cách thức phương pháp , trong đó tôi thấy phương pháp sử dụng phép tính nhẩm là tâm đắc . Tôi đem trao đổi cùng anh chị em đồng nghiệp , cùng họ mang đi thực nghiệm trong thực tế giảng dạy . Và chúng tôi đều thấy kết quả thu được rất khả quan . 2 Lê Văn Lộc B . GIẢI QUYẾT VẤN ĐỀ . 1a) Khi bồi dưỡng cho các em giỏi toán , tôi đã cho các em làm bài tập sau : Tính giá trị của biểu thức : 1 A = 1 4 .0,8 + 20,04.2211 2004.22,11 2,003 : 95,9 - 20,03 : 959 . Trong khi đại đa số các em khác dùng máy tính để tính giá trị của biểu thức A . Tôi quan sát không thấy em Kiên làm bài mà chỉ ngồi suy ngẫm , sau đó em hỏi tôi ngay : " Thưa cô A = 1 " . Nhiều em ngỡ ngàng không tin vì em nói ngay đáp số mà không cần dùng máy tính , không làm nháp . Em trình bày nhận xét của mình : 1 Em nhận thấy1 4 và 0,8 là hai số nghịch đảo của nhau vì : 1 1 4 = 5 4 ; 0,8 = 4 5 1 => 1 4 .0,8 = 1 . * 20,04 . 2211 = 2004 . 22,11 => * 2,003 : 95,9 = 20,03 : 959 Do đó A = 1 +1 -1 => 20,04.2211 2004.22,11 2,003 : 95,9 20,03 : 959 =1 =1 => A = 1 Qua lời giải trên đã xác định được sự linh hoạt của em Kiên dựa vào những kiến thức cơ bản và vận dụng một cách sáng tạo những nội dung sau đây của toán học : + Quan hệ giữa các thừa số với kết quả của phép nhân ( chia ) . + Quy tắc biểu diễn hỗn số bằng phân số . + Rút gọn phân số . + Quy tắc nhân phân số ( xác định số nghịch đảo của nhau ). + Thứ tự thực hiện các phép tính . 1b) Khi luyện tập giải toán : Không phải em nào cũng thấy ngay vai trò của phép tính nhẩm, không phải thích thú ngay với phép tính nhẩm. Nhiều em cho rằng trong thời đại công nghệ thông tin điện tử chỉ cần bấm máy tính là xong , không cần tính nhẩm làm gì cho đau đầu . Để giúp các em bỏ quan điểm này tôi yêu cầu các em nghiên cứư để giải các bài toán mà nhiều khi tính nhẩm còn nhanh hơn bấm máy . Chẳng hạn những bài toán sau : a(a - 1) 1) Tìm a  N biết : = 36 . 2 3 Lê Văn Lộc 2) Tìm x biết : 150 x + 15 - 150 x =1 3) Tính tích : +/ ( a2+ a + 1 ) ( a2 - a - 1 ) . +/ ( a + 1 ) (a 3 -1 2 + 2 a  2a  1 2 ). 2 x 2 + xy + 3y 2 3x 2 - xy 2 y 2 4) Thu gọn biểu thức : A = 5) Tính giá trị của biểu thức : A = 2004(1.9.4.6 )(1.9.4.7 )...(1.9.9.9) B = ( 100 - 12 ) ( 100 - 22 ) …( 100 - 252) Lời giải bài toán trên thực ra không có gì khó nếu như không có yêu cầu tính nhẩm , tìm tòi lời giải nhanh nhất , đơn giản nhất . Để giúp các em thực hiện được các yêu cầu đề ra tôi yêu cầu các em thực hiện đúng quy trình sau : + Ở nhà : Cá nhân tự nghiên cứu , đề xuất cách giải . + Đến lớp : Tiết 1 : Thảo luận cách giải trong từng nhóm . Tiết 2 : Thảo luận cách giải hay của từng nhóm . Tiết 3 : Áp dụng cách giải hay đó vào các bài toán khác . Chẳng hạn vào ba ví dụ sau đây . * Ví dụ 1 : Tính nhẩm nghiệm nguyên , dương của phương trình có dạng x ( x + 1 ) = p hay ( x - 1 ) x = q Cụ thể : Tính nhẩm nghiệm nguyên , dương của phương trình : ( x - 3 ) ( x + 5 ) = 65 . Ta thấy x nguyên , dương nên x + 5 > x - 3 ; 5 . 13 = 65  x - 3 = 5 ( hoặc x + 5 = 13 ) => x = 8 . * Ví dụ 2 : Phân tích đa thức 12a2 - 15 ab + 3b2 ra thừa số để từ đó rút ra cách phân tích đa thức có dạng : Số hạng ở giữa có hệ số là đối của tổng các hệ số của hai số hạng còn lại hoặc tích các hệ số của hai số hạng bằng tích các hệ số của hai số hạng còn lại . * Ví dụ 3 : Áp dụng công thức nhân nhanh : chẳng hạn áp dụng a2 = ( a - b ) ( a + b ) + b2 vào tính nhẩm 1152 , 352 … 4 Lê Văn Lộc Trong mỗi bài tập tôi luôn yêu cầu các em tự đặt ra và trả lời câu hỏi : " Tại sao làm như vậy ? " , " Còn có cách nào ngắn hơn không ? " 2. Không phải mọi học sinh đều tự giác làm bài , chịu khó suy nghĩ tìm lời giải hay . Bản thân người dạy phải lựa chọn phương pháp giảng dạy cho phù hợp để hướng các em vào mục tiêu do mình đề ra. Qua nghiên cứu và thực nghiệm, tôi đã lựa chọn phương pháp dạy như sau : + Để các em đào sâu suy nghĩ, tự giác học tập, người thầy cần dạy, đúng trọng tâm , kiến thức chính xác , ngôn ngữ truyền đạt trong sáng , có sức thuyết phục , phải xây dựng được không khí thầy trò cùng làm việc " Thầy chủ đạo , trò chủ động " . + Thầy trò cùng mạn đàm trao đổi để rồi thực hiện theo đúng quy trình đã được thống nhất trong tập thể . Cụ thể : a) Khi được cung cấp bài toán , trò cần tạo thói quen suy nghĩ : bắt đầu từ đâu ? (với đề bài toán) . Phải làm gì ? (Thấy được bài toán càng rõ ràng , càng sáng sủa càng tốt) . Làm như thế tiện lợi gì ? (quen với bài toán) . b) Khi hiểu rồi , cần đi sâu nghiên cứu xây dựng chương trình (Thầy dùng lời nhắc nhở , kiên nhẫn) . c) Thực hiện chương trình . d) Nhìn lại cách giải . e) Tìm cách giải khác. Các em cần luôn đặt câu hỏi : " Còn cách nào hợp lý hơn không ? Cách nào ngắn hơn ? " . Với bài 1 ở phần 1(b) : a( a  1) 2 = 36 => a( a - 1 ) = 72 => a2 - a - 72 = 0 + Ta có thể dùng công thức nghiệm để giải phương trình bậc hai một ẩn này . + Tôi cho các em nhận xét a và a - 1 là hai số nguyên dương . Đó là hai số tự nhiên liên tiếp nhau và trong bảng nhân 9 ta có 9.8 = 72 => a = 9 . * Từ nhận xét này cá em có thể dễ dàng giải phương trình dạng ( x - n )( x + m) = q . Với bài 3 ở phần 1 (b) : Tính ( a2 + a + 1 ) ( a2 - a - 1 ) . Vận dụng nhân hai đa thức các em có thể tính được kết quả . Nhưng nếu quan sát giữa các hạng tử ở hai đa thức đó ta có thể tính nhanh hơn 5 Lê Văn Lộc [ a2 + ( a + 1 ) ] [ a2 - ( a + 1 ) ] = a4 - a2 - 2a - 1 . Tương tự : (a+1) ( 3 2 a -1 + 2 2 a + 2a + 1 )= 3 a -1 + 2 a 1 = 5a  1 a2 - 1 với a  1 Thông qua bài tập ta thấy được tác dụng của phép tính nhẩm trong việc giúp các em đào sâu suy nghĩ , rèn luyện tư duy toán học . Làm thế nào để các em tự đề suất cách giải nhanh ? Đây là vấn đề nan giải , nó tuỳ thuộc vào sự linh hoạt , nhanh nhẹn , sáng tạo của trò . Tuy vậy để phần nào tạo ra sự linh hoạt , sự hứng thú với môn toán tôi đã cung cấp cho các em một số thủ thuật để các em có thể tính nhẩm được . Các thủ thuật đó được rút ra dưới một số dạng sau đây : Dạng 1 : Nhẩm bình phương của những số có chữ số tận cùng là 5 . Ví dụ : 152 = 225 . 1052 = 11025 . 352 = 1225 . 1152 = 13225 . 652 = 4225 . 1552 = 24025 . Nhận xét các kết quả trên : + Hai chữ số hàng chục và hàng đơn vị bao giờ cũng là 25 . + Các chữ số còn lại là tích của các số đó với số tự nhiên liên tiếp đứng đằng sau nó . Chẳng hạn số 3 có số liên tiếp đằng sau nó là 4 => 3.4 = 12 => 352 = 1225 . Số 10 có số liên tiếp đằng sau nó là 11 => 10.11 = 110 => 1052 = 11025 . Dạng 2: Vận dụng hằng đẳng thức ( a + b )2 vào làm phép tính nhẩm 1) . Ví dụ 1 a) Tính 112 . Ta có ( 1 + 1 )2 = 1 + 2 + 1 Ta xoá các dấu cộng đi . Vậy 112 = 121 . b) Tính 132 . Ta có ( 1+3 )2 = 1 + 6 + 9 . => 132 = 169 . c) Tính 312 : ( 3 + 1 )2 = 9 + 6 +1 => 312 = 961 . Tại sao làm được như vậy ? Sở dĩ ta làm được như vậy vì ta đã áp dụng : ( ab )2 = ( 10a + b)2 = 100a2 + 10. 2ab + b2 . Như vậy ta có b2 đơn vị , 2ab chục , a2 trăm . các dấu cộng mà ta xoá đi chính là vì ta đã biết nó thuộc hàng nào rồi . 6 Lê Văn Lộc 2) Ví dụ 2 : a) Tính 232 Ta có ( 2 + 3 )2 = 4 + 12 + 9 . Nếu cứ máy móc ghi 232 = 4129 là sai ? Tại sao sai? Ta đã biết trong tập hợp các số tự nhiên , các chữ số thuộc một hàng nào đó phải nguyên dương , nhỏ hơn hoặc bằng 9 . Nếu nó lớn hơn hoặc bằng 10 thì phải chuyển lên hàng đứng trước nó . Với ví dụ ở trên thì 12 là 1 trăm và 2 chục nên 1 trăm này phải được cộng với 4 trăm . => 232 = 529 . b) Tính 362 . Có ( 3 + 6 )2 = 9  3 6  3 6 3+ 6 = 9 Vậy 362 = 1296 3 + 9 = 12 c) Tính 462 Có ( 4 + 6 )2 = 1 6  4 6  3 6 . Lấy 3 + 8 = 11 chỉ giữ lại 1 chuyển 1 lên hàng trên : Lấy 1+ 4 + 6 = 11 chỉ giữ lại 1 chuyển 1 lên hàng trên 1+1= 2 Vậy 462 = 2116 . d) Tính 982 : Có ( 9 + 8 )2 = 81 + 144 + 64 . Lấy 6 + 4 = 10 giữ lại 0 ở hàng chục chuyển 1 lên hàng trăm . Lấy 1 + 4 + 1 = 6 . 8+1=9 Vậy 982 = 9604 . Dạng 3 : Nhẩm bình phương của một số lớn hơn 50 một chút . Ví dụ 1 : 582 = 3364 Cách làm như sau : + Lấy hiệu của số đó với 25 . + Viết tiếp vào kết quả 2 chữ số cuối cùng của bình phương của hiệu giữa số đó và 50 . Với ví dụ trên ta làm như sau : 58 - 25 = 33 . 2 2 ( 58 - 50 ) = 8 = 64 . Viết tiếp 64 vào sau 33 => 582=3364 572 ; 57- 25 = 32 ( 57 - 50 )2 = 72 = 49 => 572 = 3249 . Tuy nhiên không phải mọi trường hợp đều áp dụng cách làm náy móc Ví dụ 2 : 7 Lê Văn Lộc như vậy . Chẳng hạn tính 622 ; 62 - 25 = 37 . ( 62 - 50 ) 2 = 122 = 144 => 622 = 37144. Lại là sai. Trong trường hợp này : Nếu bình phương của hiệu giữa số đó và 50 là số có 3 chữ số thì phải đem chữ số hàng trăm này cộng lên với chữ số cuối cùng của hiệu trên . Ví dụ 3 : Tính 622 ; 62 - 25 = 37 . ( 62 - 50 ) 2 = 122 = 144 => 37+1 = 38 Viết tiếp 44 vào sau số 38 . Vậy 622 = 3844 . Ví dụ 4 : Tính 642 ; 64 - 25 = 39 . (64 - 50 )2 = 142 = 196 . Ta lấy 39 + 1 = 40 . Rồi viết tiếp 96 vào bên phải số 40 . Vậy 642 = 4096 . Dạng 4 : Nhẩm căn bậc hai của một số chính phương . Để tính nhẩm căn bậc hai của một số chính phương , vận dụng tính Δ trong việc giải bài toán bằng cách lập phương trình . Tôi hướng dẫn các em vận dụng ngay chữ số hàng đơn vị để tính nhẩm sơ bộ ban đầu . Sau đó vận dụng ngược lại ba dạng trên vào tính nhẩm các chữ số còn lại . Cụ thể như sau : a . Một số là số chính phương thì chữ số hàng đơn vị chỉ có thể là các số 0 ,1 ,4 , 5 , 6 , 9 . * Với chữ số hàng đơn vị là 0 và 5 thì chỉ có thể là số có chữ số tận cùng là 0 hoặc 5 bình phương . * Chữ số hàng đơn vị là 1 thì do số có chữ số hàng đơn vị là 1 hoặc 9 đem bình phương . * Chữ số hàng đơn vị là 4 thì do số có chữ số hàng đơn vị là 2 hoặc 8 đem bình phương . * Chữ số hàng đơn vị là 6 thì do số có chữ số hàng đơn vị là 4 hoặc 6 đem bình phương . * Chữ số hàng đơn vị là 9 thì do số có chữ số hàng đơn vị là 3 hoặc 7 đem bình phương . b. Các chữ số thuộc các hàng còn lại ta vận dụng ngược lại của ba 8 Lê Văn Lộc dạng nhẩm trên Ví dụ 1 : Tính 15625 = 125 . Nhận xét : Chữ số hàng đơn vị là 5 , chữ số hàng chục là 2 chắc chắn kết quả là số có chữ số hàng đơn vị là 5 ;156 = 12 . 13 . Vậy 15625 = 125 . Ví dụ 2 : Tính 3844 = 62 . Nhận xét : Chữ số 4 do 22 hoặc 82 . Ta thử các chữ số hàng chục để ghép với 2 hoặc 8 . Ta thấy nếu lấy 52 = 25 < 38 quá nhiều 72 = 49 > 38 cũng không được . Do vậy ta thử 62 = 36 gần 38 . Vậy được 622 hoặc 682 . Bằng cách áp dụng dạng 3 ta thấy 622 = 3844 . Vậy 3844 = 62 . Ví dụ 3 : Tính 1369 . Chữ số tận cùng là 9 do 3 hoặc 7 đem bình phương . 32 = 9 < 10 ; 42 = 16 > 13 . Tính 332 = 1089 ; 372 = 1369 . Vậy 1369 = 37 . Ví dụ 4 : Tính 4761 ; Chữ số tận cùng là 1 do 1 hoặc 9 đem bình phương . 62 = 36 < 47 ; 72 = 49 > 47 . Tính 612 = 3721 ; 692 = 4761 . Vậy 4761 = 69 . Ví dụ 5 : Tính 576 . Chữ số tận cùng là 6 do 4 hoặc 6 đem bình phương . 22 = 4 < 5 ; 32 = 9 > 5 => Tính 262 = 676 ; 242 = 576 . Vậy 576 = 24 . Dạng 5 : Nhẩm tích hai số nhỏ hơn 100 một chút . Xuất phát từ hằng đẳng thức ( 100 -a ) ( 100 - b ) = ( 100 - a - b ) 100 + ab Ta xây dựng quy tắc nhân nhẩm như sau : Gọi độ lệch của mỗi số với 100 là phần bù . Muốn nhân nhẩm hai số nhỏ hơn 100 một chút ta lấy số này trừ đi 9 Lê Văn Lộc phần bù của số kia rồi viết tiếp vào sau tích của hai phần bù bằng (hai chữ số). a) Ví dụ 1 : Tính 98 . 93 . Cách làm như sau : 100 - 98 = 2 98 93 100 - 93 = 7 2 . 7 Ta viết hai số 2 ; 7 dưới số 98 ; 93 . Gọi 2 là phần bù của 98 ; 7 là phần bù của 93 với 100 . Ta lấy một số ( 98 ) trừ đi phần bù của số kia ( 93 ) với 100 là 7 ta được kết quả 98 - 7 = 91 . Cuối cùng viết tích của hai phần bù vào bên phải kết quả vừa thu được ( 91) . Có 7 . 2 =14 . Vậy 93 . 98 = 9114 . b) Nếu tích của phần bù là một số có một chữ số thì phải viết chữ số 0 đứng trước nó vào kết quả . Ví dụ 2 : Tính 98. 97 . 100 - 98 = 2 98 97 100 - 97 = 3 2 . 3 98 - 3 = 95 ( hoặc 97 - 2 = 95 ) ; 2.3=6 Vậy 98 . 97 = 9506 . c) Nếu tích của phần bù là một số có ba chữ số thì ta cần cộng chữ số hàng trăm lên chữ số hàng thấp nhất ở hiệu trên . Ví dụ 3 : Tính 75 . 77 100 - 75 = 25 100 - 77 = 23 75 77 25 . 23 75 - 23 = 52 2+5=7 25 . 23 = 575 Vậy 75 . 77 = 5775 . Dạng 6 : Nhân nhẩm tích của hai số lớn hơn 100 . Xuất phát từ hằng đẳng thức : ( 100 + a ) ( 100 + b ) = ( 100 + a + b ) 100 + ab ta xây dựng quy tắc nhân nhẩm hai số lớn hơn 100 một chút như sau: Gọi độ lệch của mỗi số với 100 là phần hơn. Muốn nhân hai số lớn hơn 100 một chút ta lấy số này cộng với phần hơn của số kia rồi viết tiếp vào sau tích của hai phần hơn ( bằng hai chữ số ) . a) Ví dụ 1 : Tính 112 . 103 . 10 Lê Văn Lộc 112 - 100 = 12 112 103 103 - 100 = 3 12 . 3 112 + 3 = 115 12 . 3 = 36 Vậy 112 . 103 = 11536 . b) Nếu tích của hai phần hơn là số có một chữ số thì ta phải viết số 0 đứng trước nó vào kết quả . Ví dụ 2 : Tính 102 . 104 102 - 100 = 2 102 104 104 - 100 = 4 2 . 4 102 + 4 = 106 2.4=8 Vậy 102 . 104 = 10608 . c) Nếu tích của hai phần hơn là số có 3 chữ số thì ta cần cộng chữ số hàng trăm lên chữ số hàng thấp nhất ở tổng trên . Ví dụ 3 : Tính 113 . 115 . 113 - 100 = 13 115 - 100 = 15 113 115 13 . 15 ; 113 + 15 = 128 13 . 15 = 195 ; 8+1=9 Vậy 113 . 115 = 12995 . Dạng 7 : Nhẩm tích của hai số có bốn chữ số mà chữ số hàng nghìn , hàng trăm giống nhau . Tổng chữ số hàng chục và hàng đơn vị của hai thừa số là 100 . Ví dụ : Tính nhẩm 2976 . 2924 . Xét xem hai thừa số có liên quan đến nhau hay không ? - Cả hai thừa số đều có hai chữ số hàng nghìn , hàng trăm là 29 . - Hai chữ số hàng chục và hàng đơn vị của mỗi thừa số có tổng là 100. Vậy nếu đặt a = 29 , b = 76 , c = 24 thì tích trên có dạng như thế nào? Hãy nêu cách giải ? Phép nhân trên có dạng : (100a + b ) (100a + c ) = 10 000 a ( a + 1 ) + bc 10 000 a ( a + 1 ) = 10 000 . 29 . 30 = 10 000 . 870 = 8 700 000 . 11 Lê Văn Lộc bc = 76 . 24 = ( 50 + 26 ) ( 50 -26 ) = 502 - 26 2 = 1824 => 10 000 a ( a + 1 ) + bc = 8 700 000 + 1824 = 8 701 824 Vậy 2976 . 2924 = 8 701 824 . * Như vậy chỉ qua một phép nhân cụ thể các em có thể rút ra cách làm tổng quát với phép nhân hai số bất kỳ có bốn chữ số , hai chữ số hàng nghìn , hàng trăm giống nhau , hai chữ số hàng chục , hàng đơn vị của hai thừa số có tổng là 100 và các trưòng hợp tương tự . Tất nhiên việc tính tiếp cần sự sáng tạo của các em . Nhưng đây cũng tạo ra hứng thú cho các em tìm hiểu về các con số , về mối liên quan giữa chúng . Ví dụ 2 : Tính 5962 . 5938 . 10000 a(a+ 1) = 10 000 . 59 . 60 . = 10 000 . 3540 = 35 400 000 . 62 . 38 = ( 50 + 12 ) ( 50 - 12 ) = 2356 . Vậy 5962 . 5938 = 35 402 356 Dạng 8 : Tính nhanh kết quả các biểu thức . Cần chú ý một số nhận xét : 1. Thông thường gặp tổng nhiều số hạng để tính nhanh tổng này ta ghép thành những cặp thích hợp để chia tổng thành những cặp số có giá trị bằng nhau hoặc có quan hệ với nhau . 2 . Nếu gặp những tổng gồm nhiều số chẵn liên tiếp hoặc lẻ liên tiếp thì lưu ý hiệu hai số liên tiếp nhau luôn bằng 2 . Ngoài ra muốn tínhxem có bao nhiêu số lẻ ( hay chẵn ) chẳng hạn 99  1 từ 1 đến 99 có bao nhiêu số lẻ ta làm như sau : 2 + 1 = 50 số lẻ . 3. Nếu gặp tích của nhiều thừa số, muốn tính nhanh ta áp dụng các tính chất cơ bản của phép nhân . 4. Khi gặp một biểu thức có nhiều phép tính ta cần nhận xét các thành phần tham gia trong phép tính có gì chung , có gì đặc biệt … rồi áp dụng ba nhận xét trên vào tính toán cho hợp lý . Ví dụ 1 : Tính nhanh kết quả các biểu thức : a) 1272 + 146 . 127 + 732 b) 98 . 28 - ( 184 + 1 ) ( 184 - 1 ) . c) 1002 - 992 + 982 - 972 + … + 22 - 12 . d) (202 + 182 + 162 +… +42 + 22 ) - (192 + 172 + 152 +… +32 + 12 ). e) 12 780 2  220 2 125 2  150.125  75 2 Lê Văn Lộc Ta làm như sau : a) Nhận xét 146 = 2 . 73 => Biểu thức chính là dạng khai triển của hằng đẳng thức : (a  b)2 = a2 + 2ab + b2 1272 + 146 . 127 + 732 = 1272 + 2 . 127 .73 + 732 = (127 + 73 )2 = 2002 = 40 000 b) 98 . 28 - ( 184 + 1 ) ( 184 - 1 ) = (9 . 2 )8 - ( 188 - 1 ) = 188 - 188 + 1 = 1 . c) (1002 - 992)+ (982 - 972)+ … + (22 - 12) =( 100 - 99 )( 100 + 99 ) + ( 98 - 97 )( 98 + 97) +...+ (2 - 1 )( 2 + 1 ) = 100 + 99 + 98 + 97 + 96 + 95 + … + 2 + 1 = 5050 . d) (202 + 182 + 162 +… +42 + 22 ) - (192 + 172 + 152 +… +32 + 12 ). = (202 - 192 ) + ( 182 - 172 ) + ( 162 - 152 ) + … + ( 22 -12 ) = 20 + 19 + 18 + 17 + … + 2 + 1 = 210 . e) 125 780 2  220 2 2  150.125  75 2 = (780 - 220)(780  220) 125 2  2.125.75  75 2 = 560.1000 ( 125 + 75 ) 2 = 14 Ví dụ 2 : Tính nhanh a) 99 + 98 + 97 + 96 + … + 91 . b) 315 + 16 + 385 + 54 . c) 15768 - 13992 . d) 1 + 3 + 5 + … + 997 + 999 . e) 99 - 97 + 95 - 93 + … + 7 -5 + 3 - 1 Ta làm như sau : a) Cộng từng cặp số : 99 + 91 = 97 + 93 = 96 + 94 = 190 được 4 cặp. Vậy 99 + 98 + 97 + 96 + … + 91 = 4 . 190 + 95 = 855. b) 315 + 385 = 700 ; 16 + 54 = 70 . Vậy 315 + 16 + 385 + 54 = 770 . c) Áp dụng tính chất " hiệu của hai số không đổi khi ta cộng cùng một số vào số bị trừ và số trừ " . => 15768 - 13992 = ( 15768 + 8 ) - (13992 + 8 ) = = 15776 - 14000 = 1776 . d) Các số hạng của tổng đều là số lẻ 999 + 1 = 997 + 3 = … = 499 + 501 = 1000 . Từ 1 đến 999 có 500 số lẻ tức là có tất cả 250 cặp số lẻ . Vậy 1 + 3 + 5 + … + 997 + 999 = 1000 . 250 = 250 000 . 13 Lê Văn Lộc e) Ta nhận thấy rằng hiệu của hai số lẻ liên tiếp bằng nhau và bằng 2 . Nghĩa là : 99 - 97 = 95 - 93 = … = 7 - 5 = 3 - 1 . Từ 1 đến 99 có 50 số lẻ chia làm 25 cặp . Vậy 99 - 97 + 95 - 93 + … + 7 -5 + 3 - 1 = 25 . 2 = 50 . Ví dụ 3 : Tính giá trị của các biẻu thức sau đây bằng phương pháp nhanh nhất . a) 36 ( 143 + 57 ) + 64 ( 143 + 57 ) . b) 28 . 101 . c) 491 ( 263 + 57 ) - 491 ( 153 + 67 ) . d) 12345 . 678910 ( 234234 . 233 - 233233 . 234 ) . 2004.75 + 1928 e) 2003 1.3.6 + 2.6.12 + 4.12.24 + 7.21.42 1.2.3 + 2.4.6 + 4.8.12 + 7.14.21 1.2.3 + 2.4.6 + 4.8.12 + 7.14.21 h) 1.3.5 + 2.6.10 + 4.12.20 + 7.21.35 g) Tìm tòi lời giải : a) Áp dụng tính chất phân phối của phép nhân với phép cộng ta có thể viết : 36 ( 143 + 57 ) + 64 ( 143 + 57 ) = ( 143 + 57 ) ( 36 +64 ) . = 200 . 100 = 20 000 . b) Áp dụng tương tự a có 28 .101 = 28 ( 100 +1 ) = 2800 + 28 = 2828 c) 491 ( 263 + 57 ) - 491 ( 153 + 67 ) = 491 ( 263 + 57 - 153 - 67 ) . = 49 100 . d) Nhận xét các số hạng trong dấu ngoặc : 234234 . 233 - 233233 . 234 = 234 . 101 . 233 - 233 . 101. 234 = 0 . Vậy 12345 . 678910 ( 234234 . 233 - 233233 . 234 ) = 0 . 2004.75 + 1928 e) So sánh các hạng tử ở tử và mẫu : 2003 = ( 2003 + 1 ).75 + 1928 2003.75 + +75 + 1928 = 2003 2003 2003.75 + 2003 2003.76 = = = 2003 2003 76 . g) Nhận xét mỗi số hạng của tử đều gấp 3 lần số hạng tương ứng ở 1.3.6 + 2.6.12 + 4.12.24 + 7.21.42 mẫu: 1.2.3 + 2.4.6 + 4.8.12 + 7.14.21 = = 14 1.2.3.3  2.4.6.3  4.8.12.3  7.14.21.3 1.2.3  2.4.6  4.8.12  7.14.21 3(1.2.3  2.4.6  4.8.12  7.14.21) =3 1.2.3  2.4.6  4.8.12  7.14.21 Lê Văn Lộc h) Các số hạng ở tử , ở mẫu là bội của nhau : 1.2.3 + 2.4.6 + 4.8.12 + 7.14.21 1.3.5 + 2.6.10 + 4.12.20 + 7.21.35 1.2.3 + 1.2.3.8 + 1.2.3.64 + 1.2.3.7 3 = 1.3.5 + 1.3.5.8 + 1.3.5.64 + 1.3.5.7 3 = 1.2.3( 1 + 8 + 64 + 7 3 ) 1.3.5( 1 + 8 + 64 + 7 3 ) 1.2.3 2 = 1.3.5 = 5 . Dạng 9 : Dãy các phân thức viết theo quy luật . Đây là dạng bài khó với các dãy phân thức có thể rút gọn phân thức , cũng có khi chứng minh hằng đẳng thức . Với dạng này tôi yêu cầu các em nhận xét để tìm mối liên quan giữa các thành phần tham gia phép tính để tìm ra quy luật chung giữa chúng . Qua đó có cách giải cho phù hợp . Ví dụ 1 : Rút gọn các biểu thức sau đây : A= 22  1 22 1 . 32  1 32 1 . 42  1 42 n2  1 n2 .… . (n 2). 1 1 B = 1.2 + 2.3 + 3.4 + … + n( n + 1 ) Tôi đã hưóng dẫn các em làm như sau : A 2 2  1 32  1 4 2  1 n2  1 = 2 . 2 . 2 .…. 2 3 4 n2 (2  1)(2  1) (3  1)(3  1) (4  1)(4  1) = . . 22 42 32 1.3 2.4 3.5 (n  1)(n  1) = 2 2 . 3 2 . 4 2 …. n2 1.2.3.4....(n  1) 3.4.5...(n  1) = 2.3.4....n . 2.3.4....n 1 n +1 n +1 = n . 2 = 2n . B= = 1 1 + 1. 2 2 .3 1 1 1 + 1 2 2 + - 1 3.4 1 + 3 +…+ …. (n  1)(n  1) n2 1 n( n + 1 ) 1 1 … + n - n +1 = 1 - 1 n +1 Ví dụ 2 : Chứng minh các đẳng thức sau : 1 1 1 a) 1.3 + 3.5 + … + ( 2n - 1)(2n + 1) = b) 1 1.2.3 . Nhận xét 15 1 2.3.4 1 2n - 1 +…+ - 1 2n  1 = n n +1 . n Với n 2n + 1 1 (n  1)(n  2) = ( n - 1)n(n + 1) 4n(n  1) = 2 ( 2n - 1)(2n + 1) . 1. . Lê Văn Lộc 1 1 1 1 + + + … + ( 2n - 1)(2n + 1) 1.3 3.5 5.7 2 2 2 2 2A = 1.3 + 3.5 + 5.7 + … + ( 2n - 1)(2n + 1) . 1 1 1 1 1 1 1 = 1 - 3 + 3 - 5 + 5 - 7 + … + 2n - 1 1 2n n = 1 - 2n + 1 = 2n + 1 => A = 2n + 1 (n  1) Đặt A = => . Vế trái bằng vế phải . Vậy đẳng thức đã được chứng minh . b) Nhận xét : 2 1 1 = ( n - 1)n n( n + 1) ( n - 1)n(n + 1) . 1 1 1 + + … + ( n - 1)n(n + 1) 1.2.3 2.3.4 2 2 2 2 = 1.2.3 + 2.3.4 + 3.4.5 + … + ( n - 1)n(n + 1) Đặt B = => 2B 1 1 1 1 1 + + … + ( n - 1)n 1.2 2 .3 2 .3 3.4 2 1 ( n  1)( n  2) n n 2 1 = 2 - n( n + 1) = 2n(n  1) = 2 n(n  1) . (n  1)( n  2) B = 4n(n  1) =  - . 1 n( n + 1) . Vế trái bằng vế phải . Vậy đẳng thức được chứng minh . Dạng 10 : Nhận xét , đề xuất cách giải quyết một số dạng khác ; Ví dụ 1 : Giải các phương trình sau : x +1 x +3 x +5 x+7 a) 2004 + 2002 = 2000 + 1998 b) x  1945 59 1902  x 101 + x  1944 59 1900  x 103 = x  1943 61 1898  x 105 + x - 1942 62 1896 - x 107 . c) + + + +4=0 Với các phương trình dạng này ta nhân hai vế của phương trình với mẫu số chung theo đúng thứ tự các bước giải phương trình thì rất phức tạp. Nên với các phương trình dạng nầy nếu cộng hoặc trừ số1 vào mỗi phân thức thì các phân thức đó đều có tử số bằng nhau . x +1 x +3 x +5 x +7 a) ( 2004 + 1 ) + ( 2002 + 1 ) = ( 2000 + 1) + ( 1998 + 1 ) . x + 2005 2004 (x+ Vì 1 2004 + x + 2005 x + 2005 x + 2005 = + 2002 2000 1998 1 1 1 1 2005 ) ( 2004 + 2002 - 2000 - 1998 ) = 0 . 1 1 1  0 => x+ 2005 = 0 2002 2000 1998 + Vậy x = - 2005 16 Lê Văn Lộc x  1945 x - 1944 x - 1943 x - 1942 1 ) + ( -1) = ( -1 ) + ( 59 60 61 62 x  2004 x  2004 x  2004 x  2004 => 59 + 60 = 61 + 62 1 1 1 1 => ( x - 2004 ) ( 59 + 60 - 61 - 62 ) = 0 . 1 1 1 1 Vì 59 + 60 - 61 - 62  0 => x - 2004 = 0 . b) (  -1) x = 2004 . 1902  x 1900  x 1898  x 1896  x c)( 101 +1)+( 103 + 1 ) +( 105 +1) +( 107 +1) 2003  x 2003  x 2003  x 2003  x => + + + 101 103 105 107 1 1 1 => (2003 - x ) ( 101 + 103 + 105 1 1 1 1 Vì 101 + 103 + 105 + 107  0 =0 =0 1 + 107 ) = 0 . => 2003 - x = 0 . => x = 2003 Ví dụ 2 : Tính giá trị của các biểu thức sau : A = 2004 ( 1.9.4.6 ).( 1.9.4.7 )( 1.9.4.8 )...( 1.9.9.9 ) B = ( 100 - 12) ( 100 - 22) … ( 100 - 252) . Ta đi nhận xét : Vì trong các số mũ của A có tích 1.9.5.0 = 0 nên A = 20040 = 1 . B = 0 vì trong các tích có thừa số 100 - 102 = 0 . Ví dụ 3 : a) Các tích sâu đây có tận cùng bằng bao nhiêu chữ số 0 . A = 1 . 2 . 3 . 4 . … . 9.10 . B = 1.3.5.7.9.11 . b) Tích tất cả các số tự nhiên từ 7 đến 71 có tận cùng bằng chữ số nào . Nhận xét : Đặt C = 1 . 2. 3 . 4 . 6 .7 .8 .9 không thể có tận cùng là chữ số 0 . Tích của C . 5 có tận cùng là 1 chữ số 0 . C . 5 . 10 có tận cùng là 2 chữ số 0 . Vậy A = 1 . 2 . 3 . 4 . … . 9.10 có tận cùng là 2 chữ số 0 . B = 1.3.5.7.9.11 gồm toàn các số lẻ nên không thể có tận cùng là chữ số 0 . b) Trong tích 7.8.9…..71 có thừa số có tận cùng là 0 như 10 , 20 , 30 … nên tích này có chữ số hàng đơn vị là 0 . 17 Lê Văn Lộc Ví dụ 4 : Tìm hai chữ số tận cùng của biểu thức : A = 75 ( 42003 + 42002 + …+ 42 + 4 + 1 ) + 25 . Giải : Để tìm hai chữ số tận cùng của A ta lấy A là tích của bội 5 và các luỹ thừa của 4 . Mà 25 . 4 = 100, nên ta làm thế nào để xuất hiện 25.10 . Ta phân tích như sau : A = 25 . 3 ( 42003 + 42002 + …+ 42 + 4 + 1 ) + 25 . = 25( 4 - 1 ) ( 42003 + 42002 + …+ 42 + 4 + 1 ) + 25 . = 25( 42004 + 42003 + …+ 42 + 4 - 42003 - 42002 - …- 42 - 4 - 1 ) + 25 . = 25 (42004 - 1 ) + 25 . = 25 (42004 - 1 + 1) = 100 . 42003 chia hết cho 100 . Vậy 2 chữ số tận cùng của biểu thức A là hai chữ số 0 Ví dụ 5 : Chứng tỏ các số sau là số nguyên : 10 94 + 2 3 và 10 94 + 8 9 10....0 10....0      Giải : Vì 1094 + 2 = 94 chữ + 2 = 93 2 3 . số 0 chữ số 0 ( Vì tổng các chữ số chia hết cho 3 ) . Vậy 0....0 10 94 + 2 3 là số nguyên .  Tương tự ta cũng có 1094 + 8 =931chữ 8 9 . số 0 ( Vì tổng các chữ số chia hết cho 9 ) Nên 10 94 + 8 9 là số nguyên . Ví dụ 6 : So sánh các số : a) A = 2003 . 2005 Và B = 20042 . x y xy b) A = và B = x2 - y2 x2  y2 Với x > y > 0 . c) A = ( 3 + 1 ) ( 3 2 + 1 ) ( 3 4 + 1 ) ( 38 + 1 )( 316 + 1) Và B = Giải : a) Đặt x = 2004 , => B = x 2 A = ( x - 1) ( x + 1 ) = Vậy A < B . b) A = x y xy = ( x  y )( x  y ) ( x  y) 2 Vì x > y > 0 . 18 = x2 -1 x2 - y2 x 2  2 xy  y 2 < x2 - y2 x2  y2 =B. 332 - 1. Lê Văn Lộc Vậy A< B c) ( 3 - 1 ) A = ( 3 - 1 ) ( 3 + 1 ) ( 3 2 + 1 ) ( 3 4 + 1 ) ( 38 + 1 )( 2A = 332 - 1 = B. => A = 332  1 2 = B 2 316 + 1) ; Vậy B = 2A hay B lớn gấp đôi A C. KẾT QUẢ THỰC HIỆN VÀ BÀI HỌC KINH NGHIỆM Để giúp các em có hứng thú học bộ môn Toán, xây dựng ý thức tự giác trong học tập, củng cố đào sâu suy nghĩ, rèn luyện tư duy toán học tôi đã sử dụng và kết hợp nhiều phương pháp khác nhau trong giảng dạy. Với việc sử dụng phép tính nhẩm, phân dạng bài tập, tôi đã giúp các em thấy được các bài toán tưởng chừng phức tạp nhưng nếu biết quan sát, nhận xét sử dụng linh hoạt các kiến thức cơ bản thì sẽ trở nên dễ dàng hơn. Nội dung trong bài viết tôi đã sử dụng trong nhiều năm với nhiều lớp được phân công giảng dạy: Qua thực nghiệm đều thấy rằng chất lượng học tập của các em được nâng lên rõ rệt. Không những các em vận dụng tính nhẩm trong Toán mà còn ở cả các môn : Lý, Hoá,… Do vậy thi học sinh giỏi của các khối, lớp trường Kim Nỗ trong nhiều năm gần đây đạt được kết quả tương đối khả quan tỷ lệ học sinh giỏi Toán được nâng lên, ý thức học tập được nâng cao, không khí lớp học sôi nổi, các em không còn thụ động nghe giảng mà đã chủ động học tập nghiên cứu dưới sự dẫn dắt của thầy. Sau đây là kết quả cụ thể bộ môn Toán trong một số năm gần đây : N¨m häc SÜ sè 2000 - 2001 2001 - 2002 2002 - 2003 42 43 38 G 1 2 4 KÕt qu¶ ®Çu n¨m Kh¸ TB Y KÐm G 13 23 3 1 14 11 18 8 4 27 12 18 3 1 14 KÕt qu¶ cuèi n¨m Kh¸ TB Y KÐm 22 6 0 0 14 2 0 0 20 4 0 0 Nội dung bài viết chỉ là một số thủ pháp áp dụng cho một số dạng bài tập. Để áp dụng nội dung bài viết vào bài học, các em cần nắm vững nội dung kiến thức toán học cơ bản, có ý thức tự giác học tập, linh hoạt, tư duy tốt. Đôi khi có những bài toán không theo quy luật nào cả nên không thể áp dụng nội dung bài viết. Song với nội dung đề tài tôi đã nghiên cứu và thực nghiệm đặc biệt là sử dụng phép tính nhẩm tôi thấy có tác dụng rất nhiều đến việc phát huy trí lực cho các em, là nền tảng giúp các em trở thành nhân tài cho đất nước . 19 Lê Văn Lộc Mỗi phép tính nhẩm đều tạo cho các em một điều mới lạ, giúp các em có hứng thứ đi sâu tìm hiểu môn toán và dần dần thấy toán học là thú vị không khô khan. Toán học là sáng tạo, mới lạ và hấp dẫn. Mỗi dạng nhẩm khác nhau đều kích thích các em đi sâu tìm hiểu xem còn dạng nào nữa không, rồi các em đố nhau, cùng nhau sưu tầm, tự tìm ra các giải độc đáo khác. Như vậy chỉ với phép tính nhẩm giáo viên đã thúc đẩy ý thức tự giác học tập trong các em, giúp các em đào sâu suy nghĩ sau mỗi bài học, mỗi môn học . Trên đây là một số nội dung được tích luỹ và kiểm nghiệm thông qua giảng dạy của bản thân tôi và anh, chị em trong trường THCS Kim Nỗ . Những điều nêu trong bài viết chưa thể gọi là tổng quát, là duy nhất khi rèn luyện tư duy toán học cho các em cấp II. Và trong nội dung bài viết không thể tránh khỏi những điểm khiếm khuyết. Mong được sự chỉ giáo của các anh, chị em đồng nghiệp. Xin chân thành cảm ơn ! Kim Nỗ , ngày 2.4.2004 NGƯỜI VIẾT Lê Văn Lộc 20
- Xem thêm -