Skkn nhận dạng và cách giải nhanh các bài toán về giao thoa ánh sáng với khe young (y-âng)

  • Số trang: 19 |
  • Loại file: DOC |
  • Lượt xem: 26 |
  • Lượt tải: 0
nguyen-thanhbinh

Đã đăng 8358 tài liệu

Mô tả:

Sáng kiến kinh nghiệm CHỦ ĐỀ NHẬN DẠNG VÀ CÁCH GIẢI NHANH CÁC BÀI TOÁN VỀ GIAO THOA ÁNH SÁNG VỚI KHE YOUNG ( Y–ÂNG) A/ LÝ DO CHỌN ĐỀ TÀI Môn vật lý là một trong những bộ môn khoa học cơ bản làm nền tảng cung cấp cơ sở lý thuyết cho một số môn khoa học ứng dụng. Môn Vật lý nghiên cứu những sự vật, hiện tượng xảy ra hàng ngày, có tính ứng dụng thực tiễn. Tuy nhiên phần lớn học sinh còn thấy môn Vật lí là một môn học khó, đặc biệt là việc vận dụng các công thức, định luật vào làm các bài tập vật lý. Lý do dẫn tới những khó khăn này của học sinh là: Thứ nhất:do đặc thù của môn học vật lý, mỗi một đại lượng được biểu diễn bằng một kí hiệu trong các công thức vật lý, từ những giá trị của nó khi giải bài tập, học sinh cần phải tái hiện được các ý nghĩa vật lý của đại lượng tương ứng. Thứ hai: do thời gian học một tiết lý thuyết có hạn,nên học sinh cùng một lúc vừa nghe giáo viên thuyết trình,vừa quan sát hiện tượng,vừa khái quát rồi ghi nhớ và vận dụng những kiến thức tiếp thu được để giải các bài tập. Đa phần các em chỉ tiếp thu được một phần lý thuyết mà không có điều kiện vận dụng,luyện tập ngay tại lớp vì vậy khi gặp những bài tập đòi hỏi phải có suy luận thì các em lúng túng không biết giải thế nào... dần dần trở nên chán và thường có tư tưởng chờ thầy(cô)giải rôi chép. Thứ ba: Trong giai đoạn giáo dục hiện nay môn Vật lý là môn thi trắc nghiệm, do đề thi trắc nghiệm thời lượng ngắn lai nhiều câu hỏi,do vậy yêu cầu đối với học sinh phải giải nhanh và ra đáp án chính xác. Vậy phải làm thế nào để giúp học sinh vượt qua những khó khăn khi học và làm bài tập Vật lý?làm thế nào để học sinh nhận biết được dạng bài toán,yêu cầu của bài toán cần xác định gì để từ đó áp dụng công thức và giải nhanh được các bài toán đó. Có rất nhiều biện pháp được sử dụng phối hợp nhằm tạo ra hứng thú, khắc sâu kiến thức cho học sinh,giúp học sinh học tốt môn Vật lý như: phần lý thuyết được giảng dạy ngắn ngọn, xúc tích, liên hệ nhiều với thực tiễn, ra bài tập và yêu cầu học sinh tự học,... biện pháp không thể thiếu được trong quá trình giảng dạy đó là tổng hợp kiến thức để phân loại các dạng bài tập trong từng chương và từ đó giúp học sinh nhận dạng các bài toán đó để áp dụng công thức thích hợp, Việc nhận dạng các bài tập và hướng dẫn cách áp dụng công thức để giải nhanh các bài toán là hết sức cần thiết đối với học sinh,giúp các em học sinh chủ động tìm ra cách giải nhanh nhất, hiệu quả nhất khi làm bài tập.Đáp ứng được yêu cầu của đề thi. Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa 1- Sáng kiến kinh nghiệm Xuất phát từ thực tế trên, với một số kinh nghiệm trong quá trình giảng dạy và qua tham khảo một số tài liệu, tôi chọn đề tài “ NHẬN DẠNG VÀ CÁCH GIẢI NHANH CÁC BÀI TOÁN VỀ GIAO THOA ÁNH SÁNG VỚI KHE YOUNG (Y-ÂNG)” để giúp các em học sinh có thể giải nhanh được đề thi và đạt được điểm cao nhất trong đề thi môn Vật lý của mình. Cách giải: Áp dụng công thức tính: - Khoảng vân: i = D a 2 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm D = ki, a 1 D 1 xt = (k + 2 ) = (k + 2 )i a - Vị trí vân sáng: xs = k - Vị trí vân tối: - Khoảng cách giữa n vân sáng ( hoặc n vân tối ) liên tiếp: d = (n - 1)i - Khoảng cách từ vân sáng bậc k1 đến vân sáng bậc k2: x  k1  k2 i nếu 2 vân khác phía với vân sáng trung tâm. x  k  k i nếu 2 vân cùng phía với vân sáng trung tâm. 2 1 Ví dụ I.1:Trong thí nghiệm Young về giao thoa ánh sáng, khoảng cách giữa 2 khe sáng a = 1,2mm, màn quan sát cách mặt phẳng chứa 2 khe một khoảng D = 1,8m, ánh sáng có bước sóng  = 0,6m. a.Tính khoảng vân. a. Xác định vị trí vân sáng bậc 3 và vân tối thứ 5. b. Xác định khoảng cách từ vân sáng bậc 2 đến vân sáng bậc 6 ở cùng phía vân sáng trung tâm. Hướng dẫn giải a. Khoảng vân: i =  D 0,6.10 6.1.8 = 1,2.10 3 0,9.10 3  m  = 0,9 (mm) a b. Vị trí vân sáng bậc 3: (học sinh hiểu là k = 3) thay vào: : xs = ki  3i = 2,7.10-3(m)  4,5i = Vị trí vân tối thứ 5: (học sinh hiểu là k = 4) xT5 = (k + ) 4,05.10-3(m). c. Khoảng cách từ vân sáng bậc 2 đến vân sáng bậc 6 ở cùng phía vân sáng trung x (6  2)i = 4i = 3,6.10-3(m) tâm là: Dạng I.2: Xác định loại vân, bậc vân tại vị trí M có tọa độ xM cho trước. Cách giải: Tính xM i - Nếu xM k ( k  Z )  tại điểm M có vân sáng bậc k i - Nếu xM 1 k  ( k  Z )  tại điểm M có vân tối. i 2 Chú ý: nếu thương xM không phải là số nguyên hay bán nguyên thì tại M không có i vân sáng hay vân tối. 3 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Ví dụ I.2 :Người ta thực hiện giao thoa ánh sáng với 2 khe Young F 1, F2 biết hai khe cách nhau a = 1mm. Ánh sáng có bước sóng  = 0,55m, màn quan sát đặt cách 2 khe một khoảng D = 2m. Điểm M và N trên màn quan sát cách vân sáng trung tâm một khoảng 3,85mm và 8,8mm là vân sáng hay vân tối thứ bao nhiêu? Hướng dẫn giải:  D 0,55.106.2 1,1.103 (m) 1,1(mm) + Khoảng vân: i = = 3 a 10 + Nếu xM 3,85  3,5  i 1,1 x tại điểm M có vân tối thứ 4. 8,8 + Nếu iN  1,1 8  tại điểm M có vân sáng thứ 8. Dạng I.3: Tìm số vân sáng, vân tối quan sát được trên vùng giao thoa Cách giải: Trường hợp 1: Tìm số vân sáng, vân tối quan sát được trên trường giao thoa bề rộng L. - Tính L n, b n  0, b 2i ( n là phần nguyên, b là chữ số lẻ thập phân đầu tiên của thương số) - Số vân sáng là NS = 2n + 1 ( kể cả vân sáng trung tâm ) - Số vân tối: NT = 2n nếu b < 5; NS = 2 (n + 1) nếu b ≥ 5. Trường hợp 2: Tìm số vân sáng, vân tối quan sát được trên đoạn MN của trường giao thoa. - Vân sáng bậc k trên đoạn MN có tọa độ xk = k.i thỏa mãn xM  xk  xN . Nên số vân sáng trên đoạn MN bằng số giá trị k thỏa mãn: xM x k  N i i Nếu tính số vân sáng trong khoảng MN thì k thỏa mãn - Vân tối thứ k trên đoạn MN có tọa độ xk = 1   k  i 2  xM x k  N i i thỏa mãn xM  xk  xN số vân tối trên đoạn MN bằng số giá trị k thỏa mãn: xM 1 x 1  k  N  i 2 i 2 Nếu tính số vân tối trong khoảng MN thì k thỏa mãn xM 1 x 1  k  N  i 2 i 2 . Nên 4 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Ví dụ I.3.1:Trong thí nghiệm Young về giao thoa ánh sáng, khoảng cách giữa 2 khe sáng F1, F2 là a = 2mm, khoảng cách từ mặt phẳng chứa 2 khe đến màn D = 3m, ánh sáng có bước sóng  = 0,5m. Bề rộng giao thoa trường là 31cm. a. Tính khoảng vân. b. Tìm số vân sáng, vân tối quan sát được. c. Thay ánh sáng trên bằng ánh sáng có bước sóng ’ = 0,6m thì số vân sáng tăng hay giảm. Hướng dẫn giải  D 0,5.10  3.3.103 0,75 mm  a. Khoảng vân: i = = 2 a L 30  20 2i 2.0,75 b. Số vân sáng, vân tối: + Số vân sáng là: NS = 2.20 + 1 = 41 ( kể cả vân sáng trung tâm) + Số vân tối: NT = 2.20 = 40 c. Thay ánh sáng trên bằng ánh sáng có bước sóng ’ = 0,6m thì: Khoảng vân i’ = Lập tỷ số ' D i'  ' 6 6     i '  i 0,9mm a i  5 5 L 30  16,7 16 2i ' 2.0,9 + Số vân sáng là N’S = 2.16 + 1 = 33 ( kể cả vân sáng trung tâm) + Số vân tối: N’T = 2.(16+1) = 34 Vậy số vân sáng, vân tối giảm. Ví dụ I.3.2: Trong thí nghiệm giao thoa ánh sáng Young, khoảng cách hai khe S1S2 là a = 2mm, khoảng cách từ S1S2 đến màn là D = 3m, bước sóng ánh sáng là 0,5m. Bề rộng giao thoa trường là 2,88cm. a. Tính khoảng vân. b. Tìm số vân sáng và vân tối quan sát được trên giao thoa trường. c. Tìm số vân sáng, số vân tối trên đoạn MN của trường giao thoa (M, N cách vân trung tâm 0.5 cm và 1.25 cm). Hướng dẫn giải : a. Khoảng vân : i  b. Ta có :  .D 0.5.10  6.3  0.75.10  3 m 3 a 2.10 L 2,88.10  2  19,2 2.i 2.0,75.10  3 ;Số vân sáng : Ns = 2.n + 1 = 2.19 + 1 = 39 vân sáng. Số vân tối : Nt = 2.n = 2.19 = 38 vân tối. c. Số vân sáng trên MN: x xM 0,5.10  2 1,25.10  2 k  N   k   6,66 k 16,66 i i 0,75.10  3 0,75.10  3 Có 10 giá trị k thỏa mãn  có 10 vân sáng trên MN. 5 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Số vân tối trên đoạn MN: xM 1 x 1 0,5.10 2 1 1,25.10 2 1  k  N     k    7,17 k 17,17 i 2 i 2 0,75.10 3 2 0,75.10 3 2 Có 10 giá trị k thỏa mãn  có 10 vân tối trên đoạn MN. Dạng I.4: Xác định bước sóng ánh sáng. ai Cách giải: Tính bước sóng theo công thức:   D Như vậy muốn tính  ta phải đi xác định được khoảng vân i trước. Chú ý: Biết vị trí vân hay khoảng cách vân ta có thể tính i: - cho vị trí vân sáng bậc k : x = ki  i = - cho vị trí vân tối thứ k: xt = (k - 1 2 x k x )i  i = k  1 2 - cho L là bề rộng n khoảng vân liên tiếp: L = n.i  thì i = L n - Cho d là khoảng cách giữa n vân sáng ( hoặc n vân tối ) liên tiếp: d = (n - 1)i  i d n 1 - Cho khoảng cách từ vân sáng bậc k1 đến vân sáng bậc k2: x  k1  k 2 i  i  x  k 2  k1 i x k 1k 2  i ( nếu 2 vân khác phía với vân sáng trung tâm ). x k 2 k1 ( nếu 2 vân cùng phía với vân sáng trung tâm ). Ví dụ I.4.1 :Trong thí nghiệm Young về giao thoa ánh sáng, biết khoảng cách từ hai khe sáng đến màn D = 3m; hai khe sáng cách nhau a = 1mm. Tại vị trí M cách vân trung tâm 4,5mm, ta thu được vân tối thứ 3. Tính bước sóng ánh dùng trong thí nghiệm. Hướng dẫn giải xt3 = 2,5i  i 3 3 xt 3 4,5  1,8 mm  1,8.10 3  m  Vây   ai 10 .1,8.10 0,6.10 6  m  2,5 2,5 D 3 Ví dụ I.4.2 ( Bài 25.7/ trang 40 / sách Bài tập Vật lý 12): Trong thí nghiệm với hai khe Young, hai khe sáng F1, F2 cách nhau a = 1,2mm, màn M để hứng vân giao thoa cách mặt phẳng chứa F 1, F2 một khoảng D = 0,9m. Người ta quan sát được 9 vân sáng. Khoảng cách giữa trung điểm hai vân sáng ngoài cùng là 3,6mm. Tính bước sóng  của bức xạ. Hướng dẫn giải 6 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm - Khoảng vân: i 3,6 0,45mm 9 1 Vậy  ia 0,45.1,2  0,6.10 3 m 0,6 m D 0,9.103 Ví dụ I.4.3 :Dùng khe Young với khoảng cách giữa 2 khe là a = 1mm đặt cách màn ảnh một khoảng D = 1m ta thu được hệ vân giao thoa có khoảng cách từ vân sáng bậc 2 đến vân sáng bậc 6 ở khác phía so với vân sáng trung tâm là 5,6mm. Xác định bước sóng và màu của vân sáng. Hướng dẫn giải Từ vân sáng bậc 2 đến vân sáng bậc 6 ở khác phía so với vân sáng trung tâm có 8 khoảng vân. Khoảng vân là:   i x 5,6  0,7 mm  0,7.10 3  m  8 8 ai 10 3.0,7.10 3  0,7.10 6  m  Đây D 1 là  của ánh sáng màu đỏ. Vân có màu đỏ Dạng I.5: Giao thoa ánh sáng trong môi trường đồng nhất có chiết suất n>1. Cách giải: - Bước sóng ánh sáng đơn sắc có tần số f + trong không khí là = c f + trong môi trường chiết suất n là ’ = v c  f n. f - Khoảng vân : Tiến hành thí nghiệm Young với ánh sáng đơn sắc đã cho + trong không khí khoảng vân i D , a + trong môi trường chiết suất n khoảng vân i'  ' D a  i'  i n vì n >1 nên i’< i. Vậy hệ vân mới có khoảng vân giảm, trong trường giao thoa số vân tăng. Ví dụ I.5 :Thực hiện giao thoa ánh sáng với khe Young cách nhau a =2mm, khoảng cách từ 2 khe đến màn là D = 2m. Ánh sáng đơn sắc có tần số f = 5.1014 Hz. Biết vận tốc ánh sáng truyền trong không khí là c = 3.10 8 m. Tính khoảng vân i trong 2 trường hợp: a. Thí nghiệm giao thoa trong không khí ( n = 1) b. Thí nghiệm giao thoa trong nước ( n = 4/3) Hướng dẫn giải c 3.108  0, 6.106 (m) a. Bước sóng ánh sáng trong không khí  = f = 14 5.10 6  Khoảng vân i =  D = 0, 6.10 .2 = 0,6.10-3(m) = 0,6(mm) a 2.103 b. Bước sóng ánh sáng trong nước ’ = v c  f n. f 7 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm  Khoảng vân i'  ' D a i 0,6  i'   0,45 mm  . n 4/3 Dạng I.6: Sự di chuyển của hệ vân giao thoa do nguồn sáng di chuyển Cách giải: Khi nguồn sáng F cách đều 2 khe F1, F2 thì hiệu đường đi của hai sóng ánh sáng đến M là d d 2  d1  FF2  F2 M    FF1  F1M  F2 M  F1M  ax D Trường hợp 1. Di chuyển F theo phương vuông góc với mặt phẳng chứa 2 khe F1, F2 ( lại gần hoặc ra xa mặt phẳng chứa 2 khe F 1, F2 ) thì hiệu đường đi của hai sóng ánh sáng đến O là d d 2  d1 0 và khoảng vân i = D nên hệ vân không di a chuyển và số vân không đổi. d1 F1 M F d2 Trường hợp 2. F2 theo phương D khe F1, F2 một hiệu đường đi của hai sóng ánh sáng đến M là: d d 2  d1  F ' F2  F2 M    F ' F1  F1M   F2 M  F1M    F ' F2  O Di chuyển F song song với 2 đoạn y đến F’ thì F ' F1   ax ay  D D' ( D’ là khoảng cách từ nguồn sáng F đến mặt phẳng chứa 2 khe ). D D M có vân sáng khi d k .  k  Z   vị trí vân sáng bậc k: xsk k a  y D' , vậy: - khoảng vân i  xsk 1  xsk  D a không đổi - vân sáng trung tâm ứng với k = 0  xs 0  D y, D' x trái dấu y chứng tỏ vân trung tâm ( và cả hệ vân ) di chuyển ngược hướng di chuyển của nguồn F, khoảng di chuyển của hệ vân là x0  xs 0  D' F' D y D' D F1 y F O F2 Trường khe sáng F đến khi hệ vân giao thoa biến mất x hợp 3: Mở rộng M 8 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm - Khi mở rộng khe F thì khe này coi như tập hợp nhiều khe F' nằm ở 2 bên của khe hẹp ban đầu. Xét khe F' ở cách F một khoảng b , vân trung tâm của hệ vân tạo bởi F' dịch chuyển ngược chiều một đoạn x theo hệ thức x = b D D' . - Khi vân trung tâm của hệ này chồng lên vân tối thứ nhất của hệ vân do khe F ban i D đầu gây ra thì hệ vân giao thoa biến mất. Khi đó x = 2 b D'  b iD ' 2D . Khe F phải mở rộng về cả hai phía nên có cần có bề rộng là 2b  iD ' D D' D '  .  D a D a . Ví dụ 6.1 (Bài 358/trang 163 / Sách 540 bài tập Vật lý lớp 12): Một nguồn sáng đơn sắc S cách 2 khe Young 0,1m phát ra một bức xạ đơn sắc có bước sóng  = 0,6m, hai khe sáng S1, S2 cách nhau là a = 2mm, màn quan sát cách hai khe D = 2m. a. Tìm số vân sáng quan sát được trên giao thoa trường có bề rộng L = 25,8mm. b. Cho nguồn sáng S di chuyển theo phương S 1S2 về phía S1 một đoạn 2mm thì hệ vân giao thoa trên màn E di chuyển theo chiều nào? một đoạn bao nhiêu? a. Hướng dẫn giải Số vân sáng quan sát được trên giao thoa trường có bề rộng L = 25,8mm. + Khoảng vân: i = + Có  D 0,6.10  3.2.103 0,6 mm  = 2 a L 25,8  21,5  2i 2.0,6 số vân sáng là NS = 2.21+1=43 ( kể cả vân sáng trung tâm) b. Khi nguồn sáng S di chuyển theo phương S1S2 về phía S1 một đoạn 2mm thì hệ vân giao thoa trên màn E di chuyển ngược chiều di chuyển của nguồn sáng một khoảng x0  D 2 y .2 40 mm  D' 0,1 Ví dụ I.6.2 (Bài 359/trang 164 / Sách 540 bài tập Vật lý lớp 12): Hai khe Young cách nhau là a = 1,2mm. Người ta thực hiện giao thoa với ánh sáng đơn sắc bước sóng  = 0,5m a. Khi khe sáng S dời ngang lên phía trên 2mm, hệ vân giao thoa trên màn di chuyển một đoạn bằng 20 khoảng vân. Xác định khoảng cách từ nguồn S đến hai khe . b. Nếu cho nguồn sáng S di chuyển đến gần hai khe ( theo phương vuông góc với S1S2 ) thì hệ vân thay đổi ra sao? c. Giữ S cố định di chuyển hai khe đến gần màn thì hệ vân thay đổi ra sao? Hướng dẫn giải a. Khoảng cách từ nguồn S đến hai khe S1, S2: Khi khe sáng S dời ngang lên phía trên một đoạn y = 2mm thì hệ vân di chuyển xuống dưới ( ngược hướng di chuyển của S ) một đoạn x0  D y D' 9 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Mặt khác theo đề bài:  D'  x0 20i 20 D D D  20  y a a D' ay 1,2.2  0,24 m  20 20.0,5.10  6 b. Khi nguồn sáng S di chuyển đến gần hai khe ( theo phương vuông góc với S1S2) thì hệ vân không di chuyển và khoảng vân không đổi. Vậy hệ vân và số vân quan sát được trong trường hợp này không đổi. c. Giữ S cố định di chuyển hai khe đến gần màn, ta có: + Hiệu đường đi của hai sóng ánh sáng đến O vẫn bằng 0 nên tại O vẫn là vân sáng trung tâm nên hệ vân không di chuyển. + Khoảng vân i = D , D giảm nên khoảng vân giảm dẫn đến số vân quan sát được a tăng lên. Vậy trong trường hợp này hệ vân không di chuyển nhưng số vân quan sát được sẽ tăng lên. Ví dụ I.6.3 Một khe hẹp phát ánh sáng đơn sắc có bước sóng λ= 0,5 μm chiếu sáng 2 khe hẹp F1 và F2 song song và cách đều F một khoảng D’ = 0,5m. Khoảng cách giữa F1 và F2 là a = 0,5mm. Màn ảnh đặt cách 2 khe một khoảng D = 1m. Trên màn ảnh có hệ vân giao thoa. Tính bề rộng khe F để không nhìn thấy hệ vân giao thoa nữa. Hướng dẫn giải - Khi mở rộng khe F thì khe này coi như tập hợp nhiều khe F' nằm ở 2 bên của khe hẹp ban đầu. Xét khe F' ở cách F một khoảng b , vân trung tâm của hệ vân tạo bởi F' dịch chuyển ngược chiều một đoạn x theo hệ thức x = b D D' . - Khi vân trung tâm của hệ này chồng lên vân tối thứ nhất của hệ vân do khe F ban i D đầu gây ra thì hệ vân giao thoa biến mất. Khi đó x = 2 b D'  b iD ' 2D . Khe F phải mở rộng về cả hai phía nên có cần có bề rộng là 2b  iD ' D' 0,5.10  6.0,5   0,5.10  3  m  . 3 D a 0,5.10 Vậy hệ vân giao thoa biến mất khi khe nguồn F có bề rộng tối thiểu 0,5.10-3m Dạng II. Giao thoa với ánh sáng trắng, ánh sáng đa sắc: Ánh sáng trắng là tập hợp của vô số ánh sáng đơn sắc, khi thực hiện thí nghiệm giao thoa với ánh sáng trắng thì trên màn giao thoa tại trung tâm ta có vệt sáng trắng ( do có sự chồng chập của vô số ánh sáng đơn sắc ). Do khoảng vân của các bức xạ đơn sắc không bằng nhau, về hai bên vân trung tâm ta thấy quang phổ liên tục, tím ở trong, đỏ ở ngoài. Đến một vị trí nào đó tất cả các vân sáng của các bức xạ đơn sắc lại trùng nhau, tại đó cho ta vệt sáng trắng; vị trí tất cả các vân tối của các bức xạ lại trùng nhau, tại đó các bức xạ bị tắt. 10 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Dạng II.1 Giao thoa ánh sáng với ánh sáng trắng, xác định bề rộng quang phổ bậc k Cách giải: Bề rộng quang phổ bậc k (khoảng cách từ vân tím bậc k đến vân đỏ bậc k ở cùng phía với vân sáng trung tâm) là: xk k đ  t D k  iđ  it  k .x1 a Ví dụ II.1 Trong thí nghiệm của Young về giao thoa ánh sáng, khoảng cách giữa hai khe là 0,8 mm, khoảng cách từ hai khe đến màn là 2 m. Dùng ánh sáng trắng (0,76 m    0,38 m) để chiếu sáng hai khe. Xác định bề rộng của quang phổ bậc 1 và bậc 5. Hướng dẫn giải Ta có: x1 = D a x5 = 5 (đ - t) = D a 2  0,76  0,38.10 6 0,8.10  3 = 0,95 mm (đ - t) = 5x1 = 5.0,95.10-3 = 4,75mm. Dạng II.2: Giao thoa ánh sáng với ánh sáng trắng, tìm các bức xạ cho vân sáng hoặc vân tối tại M có tọa độ xM Cách giải: Các bức xạ có bước sóng thỏa mãn t  đ , với  t=0,38.10-6m,  đ = 0,76.10-6m + Trường hợp vân sáng: xM = k ax ax ax ax D    M 1 .  t  M đ  M k  M đ D t D a kD kD chọn k  Z và thay các giá trị k tìm được vào (1) tính  , đó là bước sóng các bức xạ cho vân sáng tại M. ax + Trường hợp vân tối: xM = M 1  D     k  1 .    2 a  k  D    t  2 axM đ ax 1 ax 1  M  k  M   2 1  đ D 2 t D 2  k  D 2  chọn k  Z và thay các giá trị k tìm được vào (2) tính  , đó là bước sóng các bức xạ cho vân tối tại M. 11 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Ví dụ II.2 ( Bài 25.16/ trang 42 / sách Bài tập Vật lý 12): Một khe hẹp F phát ánh sáng trắng chiếu sáng hai khe F 1, F2 cách nhau 1,5mm. Màn M quan sát vân giao thoa cách mặt phẳng của hai khe một khoảng D = 1,2 m. a. Tính các khoảng vân i1 và i2 cho bởi hai bức xạ giới hạn 750nm và 400nm của phổ khả kiến. b. Ở điểm A trên màn M cách vân chính giữa 2 mm có vân sáng của những bức xạ nào và vân tối của những bức xạ nào? Hướng dẫn giải. D 0,75.10  6.1,2  0,6.10  3  m  3 a 1,5.10 a. Với λ1 = 750(nm) = 0,75.10-6 (m) thì i1  Với λ2 = 400(nm) = 0,4.10-6 (m) thì D 0,4.10  6.1,2  0,32.10  3  m  3 a 1,5.10 i1  b. Các bức xạ có bước sóng thỏa mãn + Các bức xạ cho vân sáng tại A: với 0,4.10  6  m   0,75.10  6  m   ax A 1,5.10 3.2.10 3 2,5   .10 6  m  . kD k .1,2 k ax A ax 1.5.10  3.2.10 3 1,5.10  3.2.10 3 k  A   k   3,3 k 6,25 đ D t D 0,75.10 6.1,2 0,4.10  6.1,2 Có 3 giá trị k thỏa mãn là k1 = 4, k2 = 5, k3 = 6 nên có 3 bức xạ cho vân sáng tại M 2,5 2,5 6 6 6 6 là 1  k .10 0,625.10  m  , 2  k .10 0,5.10  m  và 1 3  2 2,5 .10  6 0,4167.10  6  m  k3 + Các bức xạ cho vân tối tại A: với t   axM 1,5.10  3.2.10 3 2,5   .10  6  m  1  k  0,5.1,2  k  0,5   .  k  D 2   axM đ ax 1 ax 1  M  k  M   2,8 k 5,75 1  đ D 2 t D 2  k  D 2  Vậy có 3 giá trị k thỏa mãn là k’1 = 3, k’2 = 4, k’3 = 5 nên có 3 bức xạ cho vân tối tại 2,5 2,5 .10 6  m  0,7142.10 6  m  2 '  .10 6  m  0,5556.10 6  m  1 1     M là ,  k1 '   k2 '  2 2   2,5 3 '  .10 6  m  0,4545.10  6  m  1  và  k3 '  2  1 '  Dạng II.3: Giao thoa ánh sáng với hai hay nhiều bức xạ đơn sắc, tìm vị trí trên màn ở đó có sự trùng nhau của các vân sáng đơn sắc? Tính khoảng cách hai vân cùng màu với vân trung tâm 12 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Cách giải: Trường hợp 1: Giao thoa ánh sáng với hai bức xạ đơn sắc - Vị trí các vân sáng trùng nhau có tọa độ: k1 2 k10     xs k1 1 D k 2 2 D  k11 k 2 2  k 2 1 k 2 0 a a k10 2 ( với k là phân số tối giản của phân số  ) 1 20 Suy ra k1= n.k10 và k2 = n.k20 , với n = 0 ; ±1 ; ±2 ; ±3 ; ±4……… Vị trí 2 đơn sắc cùng cho vân sáng trùng nhau x s n.k10 . 1.D  .D n.k 20 2 . a a + Vị trí vân trung tâm O là vị trí 2 đơn sắc cùng cho vân sáng trùng nhau ứng với n = 0 k1 = k2 = 0, do đó ta nói các vân trùng này cùng màu với vân trung tâm. + Khoảng cách giữa hai vân cùng màu với vân trung tâm gần nhau nhất (khoảng vân trùng) là itr k10 1 D D k20 2 . a a Chú ý : Chỉ chọn n đến vị trí sao cho xs  L 2 , ta có n bằng số vân trùng trong nửa trường giao thoa từ đó có thể chỉ ra trong trường giao thoa có bao nhiêu vân cùng màu với vân trung tâm. - Tương tự vị trí các vân tối trùng nhau có tọa độ: 1 1 1 1 1     2  2  k10 xt  k1   1 D  k2   2 D   k1  1  k2  2  1 1 k2 0 2 a 2 a 2 2     k2  2 k1  k10 2 ( với k là phân số tối giản của phân số  ) 1 20 Chọn các giá trị k1vàk2nguyên thỏa mãn rồi suy ra các vị trí các vân tối trùng nhau .Trường hợp 2: Giao thoa ánh sáng với nhiều bức xạ đơn sắc - Vị trí các vân sáng trùng nhau ( vân cùng màu vân trung tâm) có tọa độ: 1   D k2 2 D k3 3 D ... a a a  k11 k2 2 k33 ... xs k1 Chọn các giá trị k1, k2 , k3 ,.. nguyên thỏa mãn rồi suy ra các vị trí các vân sáng trùng nhau. Vị trí vân trung tâm O là vị trí các đơn sắc cùng cho vân sáng trùng nhau ứng với k1 = k2 = k3 = 0 - Tương tự vị trí các vân tối trùng nhau có tọa độ: 1 1 1    xt  k1   1 D  k2   2 D  k   D ... 2 a 2 a 2 a    1 1 1      k1  1  k2  2  k3   3 ... 2 2 2    13 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Chọn các giá trị k1, k2 , k3 ,.. nguyên thỏa mãn rồi suy ra các vị trí các vân tối trùng nhau. Ví dụ II.3.1: Thực hiện thí nghiệm giao thoa ánh sáng với khe Young. Khoảng cách giữa hai khe là a = 1,6mm . Khoảng cách từ hai khe đến màn là D = 2,4m. Người ta chiếu đồng thời hai bức xạ đơn sắc có bước sóng 1 = 0,45m và 2 = 0,75 m. a. Xác định vị trí trùng nhau của các vân sáng của hai bức xạ 1 và 2. b. Xác định vị trí trùng nhau của các vân tối của hai bức xạ 1 và 2. Hướng dẫn giải + Vị trí các vân sáng trùng nhau có tọa độ: xs k1  0,75 5 1  k2  k 2 D k2 2 D...  k11 k22 ...  k1  2 k2  k1  1 0,45 3 a a Để k1, k2 nguyên thì k1 phải là bội của 5, k2 phải là bội của 3  k1 = 5n, k2 = 3n ( n = 0, 1, 2, 3,...) Vậy tọa độ của các vị trí vân sáng trùng nhau (hay tọa độ các vân cùng màu với vân sáng trung tâm) là: xs k1 D 0,45.10  6.2,4 5n 3,375.10  3 n m  3 a 1,6.10 ( n = 0, 1, 2, 3,...) + Vị trí các vân tối trùng nhau có tọa độ: 1 1   xt  k1   1 D  k 2   2 D  2 a 2 a   k1  1 1    k1  1  k 2  2 2 2   1 0,75  1 5 1 k 1   k 2     k 2    3k1 5k2  1  k1 2k2  2 2 0,45  2 3 2 3 Để k1 nguyên thì (k2 – 1) = 3n ( n = 0, 1, 2, 3,...) Vậy tọa độ của các vị trí vân tối trùng nhau  k 2 3n  1, k1 5n  2 1 D  1 D 0,45.10  6.2,4  xt  k1   1  5n  2   1  5n  2,5 0,675 .10  3  5n  2,5 m  2 a 2 a 1,6.10  3   ( n = 0, 1, 2, 3,...) Ví dụ II.3.2 Trong thí nghiệm Young về giao thoa ánh sáng, hai khe hẹp F 1, F2 cách nhau a = 2mm và cách màn quan sát D = 2m. a. Chiếu ánh sáng có bước sóng  1 thì ở cùng một bên của vân trung tâm người ta thấy rằng khoảng cách từ vân sáng thứ 4 đến vân sáng thứ 10 là 2,4mm. Tính λ1? b. Nguồn sáng chứa cả ba bức xạ  1,  2 = 500nm và  3= 600nm. Tính khoảng cách ngắn nhất giữa hai vân cùng màu vân trung tâm. Hướng dẫn giải a. Tính λ1: Từ vân sáng thứ 4 đến vân sáng thứ 10 ở cùng một bên của vân trung tâm có 6 khoảng vân nên khoảng vân : i  2,4 0,4(mm) 0,4.10 3  m  6 14 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm 1  ai 2.10  3.0,4.10 3  0,4.10  6  m  D 2 b. Vị trí ba đơn sắc có vân sáng trùng nhau thì: xtr = x1 = x2 = x3= k1 1 D  D D k 2 2 k 3 3 (1)  k11 k 2 2 k 33  k1.0,4.10 6 k2 .0,5.10 6 k3 .0,6.10 6 a a a 3  k1  k3 2 6 và k 2  5 k 3 vì bậc k1, k2 , k3 đều là số nguyên  nên k3 phải chia hết 2 và 5. Vậy bậc các vân trùng phải thỏa: k3=10n ; k2 =12n ; k1 =15n với n nguyên n = 0 ; ±1; ± 2 ; ±3… Vị trí vân trung tâm ứng với n = 0 ba đơn sắc cùng cho vân sáng bậc 0 có màu là màu trộn của ba bức xạ.  4k1 5k2 6k3 Tọa độ các vân trùng (vị trí ba bức xạ cùng cho vân sáng) là xtr 15 1 D n a Khoảng cách ngắn nhất giữa hai vân cùng màu vân trung tâm bằng khoảng cách từ từ vân trung tâm nhất đến vân trùng gần nó nhất tức là vân trùng ứng với n = ±1 gọi là khoảng vân trùng :  itr  xtr1 15 1 D 0,4.10  6.2 15 6.10  3  m  6 mm  . 3 a 2.10 Phần III. BÀI TẬP LUYỆN TẬP Dạng I.1: Xác định khoảng vân, vị trí vân sáng, vị trí vân tối, khoảng cách giữa hai vân cho trước. Bài 1. Trong thí nghiệm Young về giao thoa ánh sáng các khe S 1,S2 được chiếu bởi ánh sáng có bước sóng   0,54m . Biết khoảng cách giữa hai khe là a = 1,35 mm. Khoảng cách từ hai khe đến màn là D = 1m . a. Tính khoảng vân? b. Xác định vị trí vân sáng bậc 5 và vân tối thứ 5? Đáp số: i = 0,4(mm), xs 5 2 mm , xt 5 1,8 mm  Bài 2: (Đề thi tốt nghiệp THPT năm 2009): Trong thí nghiệm Young về giao thoa ánh sáng, khoảng cách giữa hai khe là 1mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 2m, bước sóng của ánh sáng đơn sắc chiếu đến hai khe là 0,55µm. Hệ vân trên màn có khoảng vân là A. 1,2mm. B. 1,0mm. C. 1,3mm. D. 1,1mm. Đáp án D Bài 3: (Đề thi tốt nghiệp THPT năm 2010) Trong thí nghiệm Young về giao thoa ánh sáng, khoảng cách giữa hai khe hẹp là 1 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 2 m. Ánh sáng chiếu vào hai khe có bước sóng 0,5 µm. Khoảng cách từ vân sáng trung tâm đến vân sáng bậc 4 là A. 2,8 mm. B. 4 mm C. 3,6 mm. D. 2 mm. Đáp án B Dạng I.2: Xác định loại vân, bậc vân tại vị trí M có tọa độ xM cho trước 15 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Bài 4 (Đề thi CĐ năm 2007): Trong thí nghiệm Young về giao thoa ánh sáng, hai khe hẹp cách nhau một khoảng a = 0,5 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là D = 1,5 m. Hai khe được chiếu bằng bức xạ có bước sóng λ = 0,6 μm. Trên màn thu được hình ảnh giao thoa. Tại điểm M trên màn cách vân sáng trung tâm (chính giữa) một khoảng 5,4 mm có vân sáng bậc (thứ) A. 3. B. 6. C. 2. D. 4. Đáp án A Dạng I.3: Tìm số vân sáng, vân tối quan sát được trên vùng giao thoa Bài 5. (Đề thi ĐH – CĐ năm 2010) Trong thí nghiệm Y- âng về giao thoa ánh sáng, hai khe được chiếu bằng ánh sáng đơn sắc có bước sóng   0,6 m . Khoảng cách giữa hai khe là 1mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 2,5m, bề rộng giao thoa là 1,25cm. Tổng số vân sáng, vân tối có trong miền giao thoa là : A. 19 vân. B. 17 vân. C. 15 vân D. 21 vân. Đáp án B Bài 6 (Đề thi ĐH – CĐ năm 2010) Trong thí nghiệm Y-âng về giao thoa ánh sáng, các khe hẹp được chiếu sáng bởi ánh sáng đơn sắc. Khoảng vân trên màn là 1,2mm. Trong khoảng giữa hai điểm M và N trên màn ở cùng một phía so với vân sáng trung tâm, cách vân trung tâm lần lượt 2 mm và 4,5 mm, quan sát được A. 2 vân sáng và 2 vân tối. B. 3 vân sáng và 2 vân tối. C. 2 vân sáng và 3 vân tối. D. 2 vân sáng và 1 vân tối. Đáp án A Dạng I.4: Xác định bước sóng ánh sáng. Bài 7: (Đề thi tốt nghiệp THPT 2008): Trong thí nghiệm giao thoa ánh sáng của Young, khoảng cách giữa hai khe là 1 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 2 m. Chiếu sáng hai khe bằng ánh sáng đơn sắc có bước sóng λ. Trên màn quan sát thu được hình ảnh giao thoa có khoảng vân i = 1,2 mm. Giá trị của λ bằng A. 0,65 μm. B. 0,45 μm. C. 0,60 μm D. 0,75 μm. Đáp án C Bài 8 (Đề thi CĐ - 2009): Trong thí nghiệm Y-âng về giao thoa với ánh sáng đơn sắc, khoảng cách giữa hai khe là 1mm, khoảng cách từ mặt phẳng chứa hai khe đến màn là 2m. Trong hệ vân trên màn, vân sáng bậc 3 cách vân trung tâm 2,4 mm. Bước sóng của ánh sáng đơn sắc dùng trong thí nghiệm là A. 0,5 m. B. 0,7 m. C. 0,4 m. D. 0,6 m. Đáp án C Dạng I.5: Giao thoa ánh sáng trong môi trường đồng nhất có chiết suất n>1. Bài 9. Thực hiện giao thoa ánh sáng đơn sắc với khe Young (hai khe cách nhau a = 1mm, khoảng cách từ 2 khe đến màn là D = 1,2m) trong chất lỏng, đo được khoảng vân là 0,54mm. Tính chiết suất của chất lỏng. Biết ánh sáng đơn sắc có bước sóng trong chân không  0,6 m . Đáp số: n = 4/3 16 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm Dạng I.6: Sự di chuyển của hệ vân giao thoa do nguồn sáng di chuyển Bài 10. Hai khe hẹp F1 và F2 song song cách đều một khe sáng hẹp đơn sắc F một khoảng D’=1m. Khoảng cách giữa 2 khe F1 và F2 là a = 0,2mm. Trên màn ảnh đặt song song cách các khe Young một khoảng D = 0,8m ta đo được khoảng cách giữa 10 vân sáng liên tiếp là 2,7 cm. a. Tính bước sóng ánh sáng đơn sắc dùng trong thí nghiệm. b. Di chuyển khe sáng F một khoảng b =3 mm theo phương song song với mặt phẳng của 2 khe F1, F2 thì hệ vân thay đổi như thế nào ? Đáp số: a. 0,75.10-6 m, b. hệ vân di chuyển ngược chiều với chiều di chuyển của F một đoạn 2,4mm DạngII:Giao thoa ánh sáng với ánhsáng trắng,xác định bề rộng quang phổ bậc k Bài 11: (Đề thi tốt nghiệp THPT 2007) Trong thí nghiệm Young về giao thoa ánh sáng, khoảng cách giữa hai khe a = 0,3mm, khỏang cách từ mặt phẳng chứa hai khe đến màn quan sát D = 2m. Hai khe được chiếu bằng ánh sáng trắng. Khoảng cách từ vân sáng bậc 1 màu đỏ ( λđ= 0,76μm) đến vân sáng bậc 1 màu tím ( λt = 0,4μm ) cùng một phía của vân trung tâm là A. 1,5mm B. 1,8mm C. 2,4mm D. 2,7mm Đáp án C Dạng II.2: Giao thoa ánh sáng với ánh sáng trắng, tìm các bức xạ cho vân sáng hoặc vân tối tại M có tọa độ xM Bài 12. (Đề thi ĐH năm 2009): Trong thí nghiệm Y-âng về giao thoa ánh sáng, hai khe được chiếu bằng ánh sáng trắng có bước sóng từ 0,38 m đến 0,76m. Tại vị trí vân sáng bậc 4 của ánh sáng đơn sắc có bước sóng 0,76 m còn có bao nhiêu vân sáng nữa của các ánh sáng đơn sắc khác? A. 3. B. 8. C. 7. D. 4. Đáp án D Bài 13. (Đề thi ĐH – CĐ năm 2010) Trong thí nghiệm Y-âng về giao thoa ánh sáng, hai khe được chiếu bằng ánh sáng trắng có bước sóng từ 380 nm đến 760 nm. Khoảng cách giữa hai khe là 0,8 mm, khoảng cách từ mặt phẳng chứa hai khe đến màn quan sát là 2 m. Trên màn, tại vị trí cách vân trung tâm 3 mm có vân sáng của các bức xạ với bước sóng A. 0,48 μm và 0,56 μm. B. 0,40 μm và 0,60 μm. C. 0,45 μm và 0,60 μm. D. 0,40 μm và 0,64 μm. Đáp án B Dạng II.3: Giao thoa ánh sáng với hai hay nhiều bức xạ đơn sắc, tìm vị trí trên màn ở đó có sự trùng nhau của các vân sáng đơn sắc? Bài 14. (Bài 25.1/trang 41 Sách Bài tập Vật lý 12): Trong một thí nghiệm Young, khoảng cách a giữa hai khe F1, F2 là 2mm, khoảng cách D từ F1, F2 tới màn quan sát 17 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm là 2m. Nguồn điểm đồng thời phát hai bức xạ đơn sắc bước sóng lần lượt là 1 660nm và 2 550nm a.Tính khoảng vân i1của bức xạ màu đỏ  1  và khoảng vân i2của bức xạ màulục  2  . b. Tính khoảng cách từ vân chính giữa đến vân sáng đầu tiên trên màn cùng màu với nó. Đáp số:a. i1 = 0,396mm, i2 = 0,33mm; b. itr =1,98mm Bài 15 (Đề thi ĐH - năm 2009) Trong thí nghiệm Young về giao thoa ánh sáng, khoảng cách giữa hai khe là 0,5 mm, khoảng cách từ hai khe đến màn quan sát là 2m. Nguồn sáng dùng trong thí nghiệm gồm hai bức xạ có bước sóng 1 = 450 nm và 2 = 600 nm. Trên màn quan sát, gọi M, N là hai điểm ở cùng một phía so với vân trung tâm và cách vân trung tâm lần lượt là 5,5 mm và 22 mm. Trên đoạn MN, số vị trí vân sáng trùng nhau của hai bức xạ là A. 4. B. 2. C. 5. D. 3. Đáp án D C / HIỆU QUẢ CỦA ĐỀ TÀI 1. Kết quả: Chuyên đề này rất hiệu quả khi triển khai trên các lớp luyện thi tốt nghiệp và luyện thi đại học, cao đẳng. Khi dạy chuyên đề này cho học sinh các lớp thì thấy học sinh nắm bắt, vận dụng phương pháp rất nhanh và hiệu quả vào giải bài tập, các em tự tin, chủ động tìm ra kết quả và vấn đề còn lại chỉ là kỹ năng toán học; vì vậy giờ Bài tập trở nên sôi nổi từ đó phát huy được khả năng phân tích, tổng hợp và tư duy sáng tạo của các em. Kết quả khảo sát và thống kê cho thấy: 2. Bài học kinh nghiệm: Để việc truyền đạt kiến thức cho học sinh có hiệu quả, cụ thể là kỹ năng giải bài tập khắc sâu kiến thức, người giáo viên cần có cách nhìn tổng quát đồng thời phải biết chọn lọc trong quá trình giảng dạy. Như vậy từ những kiến thức đã có trong sách giáo khoa người thầy cần phải nghiên cứu,tham khảo rồi phân tích,tổng hợp để tích luỹ thêm nhiều kiến thức, nhiều dạng bài tập để định hướng tư duy cho học sinh, hướng dẫn các em biết phân loại và tìm ra cách giải tối ưu. D. ĐỀ XUẤT, KIẾN NGHỊ KHẢ NĂNG ÁP DỤNG 1. Phạm vi áp dụng : - Chuyên đề áp dụng cho chương trình Vật lý lớp 12 (cả chương trình chuẩn và nâng cao), một phần của chương SÓNG ÁNH SÁNG.Cụ thể, chuyên đề đã giúp các em học sinh khắc sâu một số kiến thức cơ bản về giao thoa ánh sáng với khe Young, đồng thời đưa ra một hệ thống những bài tập minh họa đa dạng vừa cơ bản,vừa hay và vừa có loại khó,cũng phong phú về hình thức có cả bài tập tự luận để nghiền nghẫm sâu sắc và có cả bài tập trắc nghiệm theo yêu cầu mới của đánh giá phân loại học sinh hiện nay. 18 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa Sáng kiến kinh nghiệm - Chuyên đề này rất có lợi cho học sinh trong thời gian ngắn đã nắm được các dạng bài tập và nắm được phương pháp giải, từ đó có thể phát triển tìm tòi lời giải mới. - Chuyên đề áp dụng tốt cho cả luyện thi tốt nghiệp và luyện thi đại học, cao đẳng. Do kinh nghiệm của bản thân còn hạn chế nên chắc chắn bài viết này vẫn còn có những thiếu sót nhất định, dạng bài tập đưa ra có thể chưa tổng quát kiến thức. Vì vậy, tôi rất mong nhận được nhiều ý kiến đóng góp của quý thầy cô để đề tài được áp dụng một cách hiệu quả, và ngày càng hoàn thiện. 2. Đề xuất kiến nghị:-Để làm tốt công tác giảng dạy, người giáo viên không chỉ nắm vững kiến thức mà còn phải có những kỹ năng dạy học cần thiết kết hợp với thực tế cuộc sống thì mới có thể hướng dẫn học sinh tiếp thu kiến thức có hiệu quả. Vì vậy người giáo viên phải thường xuyên tham khảo các tư liệu cần thiết như: - Sách tham khảo chuyên sâu, tạp chí Vật lý, các đĩa, băng từ về giáo dục, về những thông tin mới trong lĩnh vực Vật lý…. Đầu tư và sử dụng có hiệu quả các trang thiết bị để phục vụ tốt cho công tác giảng dạy. - Giáo viên cần được tham gia các buổi học bồi dưỡng thường xuyên nhiều hơn về chuyên môn nghiệp vụ. XÁC NHẬN CỦA THỦ TRƯỞNG ĐƠN VỊ Thanh Hóa,Ngày tháng năm 2013 Tôi xin cam đoan đây là SKKN của mình viết,không sao chép nội dung của người khác' Người viết sáng kiến 19 Lý THPT - Bui Thi Phuong - THPT Câm Ba Thuoc -Thuong Xuan - Thanh Hoa
- Xem thêm -