Skkn một số biện pháp giúp học sinh giải toán lớp 3

  • Số trang: 22 |
  • Loại file: DOC |
  • Lượt xem: 36 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 24000 tài liệu

Mô tả:

SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI: "MỘT SỐ BIỆN PHÁP GIÚP HỌC SINH GIẢI TOÁN LỚP 3" 1 PHẦN MỞ ĐẦU I. LÍ DO CHỌN ĐỀ TÀI: Bước vào thế kỷ XXI cả loài người đang sẵn sàng cho một tương lai mới, một nền văn minh tin học, một xã hội xây dựng trên nền tảng tri thức, quyền lợi thuộc về trí tuệ. Nói tới tương lai của chúng ta không thể không nói đến giáo dục, vì Giáo dục và Đào tạo là chìa khoá để mở cửa tiến vào tương lai. Đất nước ta đã và đang bước vào thời kỳ đổi mới, chất lượng giáo dục là vấn đề hàng đầu trong nội dung công tác của ngành giáo dục, là vấn đề sống còn của một đất nước, một dân tộc. Ở nhà trường Tiểu học, mỗi môn học đều góp phần vào việc hình thành, vào việc phát triển những cơ sở ban đầu rất quan trọng của nhân cách con người Việt Nam. Trong các môn học ở Tiểu học, Môn Toán có vị trí cực kỳ quan trọng vì những lí do sau: - Các kiến thức và kĩ năng của môn Toán, có nhiều ứng dụng trong đời sống sinh hoạt của mọi người dân lao động. - Môn Toán giúp học sinh nhận biết những mối quan hệ về số lượng, hình dạng không gian của thế giới hiện thực. Nhờ đó mà học sinh có phương pháp nhận thức một số mặt của thế giới xung quanh và biết cách hoạt động có hiệu quả trong đời sống. - Môn Toán góp phần quan trọng trong việc rèn luyện phương pháp tư duy, phương pháp suy luận, phương pháp giải quyết vấn đề góp phần phát triển trí thông minh, độc lập, sáng tạo, góp phần vào việc hình thành các phẩm chất của người lao động mới. Việc dạy giải toán ở Tiểu học là một trong những nội dung trong chương trình môn Toán ở Tiểu học nhằm giúp học sinh tiếp thu và vận dụng những kiến thức về Toán, được rèn luyện kĩ năng thực hành với những yêu cầu được thể hiện một cách đa dạng phong phú. Dạy học Toán giúp học sinh có điều kiện rèn luyện và phát triển năng lực tư duy, và có đủ tư cách phẩm chất của con người mới. Trong thực tế chất lượng của bộ môn Toán nói chung và đặc biệt môn Toán lớp 3 nói riêng đã có nhiều kết quả khả quan song chưa thực sự đáp ứng được với nhiệm vụ và yêu cầu môn học đề ra. Cụ thể là chất lượng môn Toán lớp 3 - Trường Tiểu học chưa thực sự tương xứng với vị trí của môn Toán lớp 3 trong chương trình học. Đặc biệt là kỹ năng giải toán của học sinh lớp 3 chính là vấn đề cần quan tâm. Trước thực tế như vậy tôi luôn suy nghĩ: Làm thế nào để giúp học sinh nắm vững kiến thức và vận dụng vào trong giải toán, góp phần nâng cao chất lượng học môn Toán của học sinh lớp 3, giúp các em có kỹ 2 năng giải toán với tinh thần tự giác và hứng thú học tập. Đặc biệt là đối tượng học sinh dân tộc tại xã . Tôi đã mạnh dạn đặt vấn đề tìm tòi, nghiên cứu và vận dụng vào các giờ dạy trên lớp để làm sáng tỏ những yếu tố bản chất, loại bỏ những hiểu biết phiến diện, đi đến nhất trí cao trong nhận thức và hành động để nâng cao chất lượng học tập môn Toán của học sinh lớp 3 ở trường Tiểu học, góp phần đạt được mục tiêu đào tạo của nhà trường Việt Nam. Với những lí do trên tôi chọn vấn đề:" Một số biện pháp giúp học sinh giải Toán lớp 3" là vấn đề cần thiết để giáo viên dạy môn Toán ở lớp 3. II. MỤC TIÊU VÀ NHIỆM VỤ CỦA ĐỀ TÀI: 1. Mục đích: Đề tài nghiên cứu nhằm góp phần nâng cao chất lượng học môn Toán lớp 3. Giúp học sinh tích cực, hứng thú học tập, biết vận dụng những kiến thức về toán, được rèn luyện những kỹ năng thực hành, năng lực sáng tạo theo đúng mục tiêu của môn Toán lớp 3. 2. Nhiệm vụ: - Tìm hiểu vị trí, mục đích yêu cầu của việc dạy học giải toán lớp 3 ở trường Tiểu học, đặc điểm nhận thức của học sinh lớp 3. - Tìm hiểu các cơ sở khoa học của việc giúp học sinh giải toán ở lớp 3. - Tìm hiểu thực trạng việc dạy học giải toán lớp 3 ở trường Tiểu học. - Đề xuất một số giải pháp giúp học sinh giải toán lớp 3. III. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU: - Học sinh lớp 3 trường Tiểu học. - Giáo viên chủ nhiệm giảng dạy môn toán lớp 3 ở trường Tiểu học - Các giải pháp giúp học sinh giải toán lớp 3. IV. PHƯƠNG PHÁP NGHIÊN CỨU: Để thực hiện nhiệm vụ và mục đích nghiên cứu của đề tài, tôi đã sử dụng các phương pháp nghiên cứu sau đây: - Phương pháp nghiên cứu lí thuyết: Các tài liệu, giáo trình phương pháp dạy học toán, sách tham khảo. 3 - Phương pháp nghiên cứu thực tiễn: Điều tra thực trạng nghiên cứu thực tế, thực nghiệm một số giờ dạy Toán ở lớp 3. V. THỜI GIAN NGHIÊN CỨU ĐỀ TÀI Đề tài được nghiên cứu và thực hiện trong năm học 2007 - 2008 4 PHẦN NỘI DUNG CHƯƠNG I: CƠ SỞ LÍ LUẬN CỦA VIỆC GIÚP HỌC SINH GIẢI TOÁN Ở LỚP 3. I. VỊ TRÍ VÀ MỤC ĐÍCH CỦA VIỆC DẠY HỌC TOÁN: Trong dạy học toán ở Tiểu học, giải toán có vị trí quan trọng, có thể coi dạy học giải Toán là "Hòn đá thử vàng" của dạy học toán. Trong giải toán học sinh phải tư duy một cách tích cực linh hoạt, huy động thích hợp các kiến thức và khả năng đã có vào tình huống khác nhau, trong nhiều trường hợp phải biết phát hiện những dữ kiện hay điều kiện chưa được nêu một cách tường minh và trong chừng mực nào đó, phải biết suy nghĩ năng động sáng tạo. Vì vậy có thể coi giải toán là một trong những biểu hiện năng động nhất của hoạt động trí tuệ của học sinh. Dạy học giải toán ở Tiểu học nhằm mục đích chủ yếu sau đây: + Trước hết nó giúp học sinh luyện tập, củng cố, vận dụng các kiến thức và thao tác thực hành các kiến thức đã học, rèn luyện kĩ năng tính toán, bước tập dượt vận dụng kiến thức và rèn luyện kĩ năng thực hành vào thực tiễn (học tập, đời sống). Qua các biểu hiện trên giáo viên phát hiện được rõ hơn những gì học sinh đã lĩnh hội và nắm chắc, những gì học sinh chưa nắm chắc, để có biện pháp giúp học sinh phát huy hoặc khắc phục. + Qua việc dạy học giải Toán, giáo viên giúp học sinh từng bước phát triển năng lực tư duy, rèn luyện phương pháp và kĩ năng suy luận, khêu gợi và tập dượt quan sát, phỏng đoán tìm tòi. + Qua giải toán, học sinh rèn luyện những đặc tính và phong cách làm việc của người lao động như: ý trí khắc phục khó khăn, thói quen sét đoán có căn cứ, tính cẩn thận, chu đáo, cụ thể, làm việc có kế hoạch, có kiểm tra kết quả cuối cùng: Từng bước hình thành và rèn luyện thói quen và khả năng suy nghĩ độc lập, linh hoạt, khắc phục cách suy nghĩ máy móc, dập khuôn, xây dựng lòng ham thích tìm tòi, sáng tạo ở mức độ khác nhau, từ đơn giản nhất mà nâng cao từng bước. Việc giải toán vừa đòi hỏi tính tích cực, độc lập sáng tạo trong suy nghĩ vừa đòi hỏi một khả năng thực hành. Để giúp học sinh có khả năng thực hành đó, lúc đầu học sinh cần được giáo viên dẫn dắt, hướng dẫn giải các bài toán theo mẫu, tái hiện cách giải điển hình, có thể giúp ích cho học sinh trong chừng mực nhất định. Song do tích chất đặc 5 trưng của giải toán đã nói ở trên, riêng các biện pháp đó không thể giúp học sinh đạt được các mục tiêu cần thiết. II. Nội dung của toán lớp 3: Môn toán lớp 3 theo chương trình Tiểu học mới có nhiều điểm được điều chỉnh, kĩ năng giải toán đã được hình thành và rèn luyện từ lớp 1, nâng cao dần ở lớp 2. Đến lớp 3 học sinh làm quen với nhiều bài toán có lời văn dựa trên cơ sở làm quen với các phép tính nhân chia trong bảng và ngoài bảng. Cụ thể nội dung môn toán 3 như sau: 1. Số học: - Phép nhân và phép chia trong phạm vi 1000. - Các số đến 1000. - Phép nhân và phép chia. Giải các bài tập dạng: - "Tìm x biết: a: x = b (với a, b là số trong phạm vi đã học)". - Giới thiệu các số trong phạm vi 100 000. Giới thiệu hàng nghìn, hàng vạn, hàng chục vạn. - Phép cộng và phép trừ có nhớ không liên tiếp và không quá 2 lần, trong phạm vi 100 000. Phép nhân có đến 4 chữ số với số có 1 chữ số có nhớ không liên tiếp và không quá 2 lần, tích không quá 100 000. Phép chia số có đến 5 chữ số cho số có 1 chữ số (chia hết và chia có dư). - Tính giá trị các biểu thức số có đến 3 dấu phép tính, có hoặc không có dấu ngoặc. - Giới thiệu các phần bằng nhau của đơn vị. Thực hành so sánh các phần bằng nhau của đơn vị trên hình vẽ và trong trường hợp đơn giản. - Giới thiệu bước đầu về chữ số La Mã. 2. Đại lượng và đo đại lượng: - Bổ xung và lập bảng các đơn vị đo độ dài từ milimet đến kilômet. Nêu mối quan hệ giữa hai đơn vị nối tiếp liền nhau, giữa mét và kilômet, giữa mét và xăngtimet, milimet. Thực hành đo và ước lượng độ dài. - Giới thiệu đơn vị đo diện tích: Xăngtimet vuông. - Giới thiệu gam. Đọc, viết, làm tính với các số đo theo đơn vị gam. Giới thiệu 1 kg = 1000 g. - Ngày, tháng, năm, thực hành xem lịch. 6 - Phút, giờ, thực hành xem đồng hồ, chính xác đến phút. Tập ước lượng khoảng thời gian trong phạm vi một số phút. - Giới thiệu về tiền Việt Nam. Tập đổi tiền với các trường hợp đơn giản. 3. Yếu tố hình học: - Giới thiệu góc vuông và góc không vuông. Giới thiệu êke. Vẽ góc bằng thước thẳng và êke. - Giới thiệu đỉnh, góc, cạnh của hình đã học. - Tính chu vi hình chữ nhật, hình vuông. - Giới thiệu compa. Giới thiệu tâm và bán kính, đường kính của hình tròn. Vẽ đường tròn bằng compa. - Thực hành vẽ trang trí hình tròn. - Giới thiệu diện tích của một hình. Tính diện tích hình chữ nhật và diện tích hình vuông. 4. Yếu tố thống kê: - Giới thiệu bảng số liệu đơn giản. - Tập sắp sếp lại số liệu của bảng theo mục đích, yêu cầu cho trước. 5. giải bài toán: - Giải các bài toán có đến hai bước tính với các mối quan hệ trực tiếp và đơn giản. - Giải bài toán quy về đơn vị và các bài toán có nội dung hình học. CHƯƠNG II: CƠ SỞ THỰC TIỄN. 1.Đặc điểm chung: - Trường Tiểu học …, là một xã chiếm trên 98 % là dân tộc Đời sống nhân dân còn rất nhiều khó khăn, chủ yếu là làm nương trồng ngô, khoai, sắn, cấy lúa nước, trình độ dân trí thấp, địa bàn xã rất rộng, xa trung tâm xã, các bậc phụ huynh chưa có sự quan tâm đúng mức cho việc học tập của con em mình. Trường Tiểu học … là một trong những đơn vị trường Tiểu học còn gặp rất nhiều khó khăn, trong việc nâng cao chất lượng dạy và học. Đảng, chính quyền và nhân dân địa phương đã có sự quan tâm đến sự nghiệp giáo dục, có biện pháp chỉ đạo, tạo điều kiện hỗ trợ về công tác tuyên truyền, động viên tinh thần cán bộ giáo viên, học sinh trong nhà 7 trường, đưa chỉ tiêu phấn đấu của nhà trường về chất lượng giáo dục vào nội dung kế hoạch hoạt động của xã trong các năm vừa qua, song chưa thật hiệu quả. 2. Thực trạng việc dạy học môn toán lớp 3: Qua tham khảo, trao đổi với các giáo viên dạy ở trường cùng với kinh nghiệm bản thân, qua quá trình công tác và giảng dạy, tôi nhận thấy: + Giáo viên dạy lớp 3 là những giáo viên nhiệt tình yêu nghề, có trách nhiệm trong công việc, mạnh dạn chân thành có ý thức vươn lên, có tinh thần tập thể cao. Giáo viên dạy lớp 3 ở trường Tiểu học …là những giáo viên có trình độ đào tạo trung học sư phạm và Cao đẳng su phạm, chất lượng giảng dạy của giáo viên mỗi năm có sự tiến bộ rõ rệt. Trong giảng dạy, đảm bảo việc truyền đạt đúng đủ lượng kiến thức theo yêu cầu của chương trình. Từng bài giải giáo viên biết rõ cách tổ chức, biết động viên khích lệ học sinh trong học tập, thu hút sự chú ý của học sinh. + Về phía học sinh: Năm học 2007 - 2008, khối lớp 3 gồm có 94 học sinh. Đa số học sinh đều đi học đúng độ tuổi, có sức khoẻ tốt, các em đều có nề nếp, ý thức học tập. Các em biết vâng lời kính trọng thầy cô giáo, yêu lao động, tham gia đầy đủ các hoạt động ngoài giờ lên lớp và các phong trào thi đua. Các em đều là những học sinh được tiếp cận với chương trình Tiểu học mới nên có nhiều thuận lợi cho giáo viên trong quá trình giảng dạy. + Kết quả học tập môn Toán của học sinh ngày một nâng cao, nhưng thực tế chất lượng học tập môn Toán của học sinh vẫn còn nhiều điều cần quan tâm. Tuy môn Toán đạt gần 100 % từ trung bình trở lên, song số điểm giỏi chưa nhiều, điểm đạt yêu cầu chủ yếu ở phần giải toán đơn, học sinh mắc lỗi nhiều ở phần giải toán trong luyện tập và kiểm tra, từ đó ảnh hưởng đến chất lượng môn Toán. Kết quả khảo sát chất lượng đầu năm ở môn toán: Tổng số học sinh: 11 em. G : 0 em K : 2 em TB : 6 em Y : 3em 3. Nguyên nhân: Qua thực tế khảo sát tôi nhận thấy: 8 - Nhiều học sinh chưa nghiên cứu kĩ đề toán, nhiều học sinh vốn tiếng Việt còn hạn chế, nên việc xác lập mối quan hệ giữa các dữ kiện của bài toán còn gặp nhiều khó khăn. - Một số học sinh chưa nắm chắc hệ thống các bài toán đơn đã được học, dẫn đến còn lúng túng trong việc phát hiện mối quan hệ logic giữa các bài toán này. - Học sinh còn thiếu tự tin trong việc tìm cách giải, còn bị hạn chế trong việc lựa chọn các phép giải. - Các em chưa chú ý đến khâu kiểm tra, thường coi rằng bài toán đã giải xong khi tính đáp số hay tìm được câu trả lời câu hỏi. - Trong quá trình giảng dạy môn toán giáo viên còn coi nhẹ một số bước trong quá trình giải toán như: Tìm hiểu đề toán, kiểm tra cách giải toán, nên nhiều học sinh mắc những lỗi không đáng có. Giáo viên chưa quan tâm đến việc rèn kĩ năng giải toán cho học sinh. Đây là những nguyên nhân cơ bản ảnh hưởng trực tiếp đến chất lượng giải toán của học sinh. Khắc phục được những nguyên nhân trên có ý nghĩa hết sức quan trọng trong việc nâng cao chất lượng giáo dục Tiểu học, nhằm thực hiện mục tiêu đào tạo con người mới, năng động, tự chủ, sáng tạo. ở phạm vi đề tài này tôi xin trình bày một số giải pháp giúp học sinh giải toán ở lớp 3 tôi được phân công chủ nhiệm và giảng dạy, trên cơ sở những gì đã có và khắc phục những thiếu sót, chưa hợp lí nhằm giúp học sinh giải toán thật tốt, thật hiệu quả ở lớp 3. CHƯƠNG III: MỘT SỐ GIẢI PHÁP GIÚP HỌC SINH GIẢI TOÁN Ở LỚP 3. 1. Để giúp học sinh lớp 3 nắm vững quá trình giải toán và có kĩ năng trong giải toán, trước hết giáo viên cần nắm được: + Giúp học sinh giải toán chính là quá trình dạy học giải toán, giáo viên cần chú ý 2 vấn đề then chốt: - Làm cho học sinh nắm được các bước cần thiết của quá trình giải toán và rèn luyện kĩ năng, thực hiện các bước đó một cách thành thạo. - Làm cho học sinh nắm được và có kĩ năng các phương pháp chung cũng như các thủ thật (Phép) thích hợp với từng loại toán thường gặp ở Tiểu học để đi đến kết quả mong muốn. Để giải quyết được hai vấn đề then chốt đó, giáo viên phải nắm vững vị trí, nhiệm vụ, yêu cầu dạy học giải toán ở lớp 3. 9 Giáo viên phải hiểu rõ khả năng nhận thức cũng như các đặc điểm của quá trình nhận thức của trẻ em. Bởi vì khả năng nhận thức của học sinh Tiểu học đang hình thành và phát triển theo từng giai đoạn có quy luật riêng, người giáo viên Tiểu học cần phải hiểu trẻ em với đầy đủ nghĩa của nó, mới có thể tiến hành dạy học giải toán thành công. * Các ví dụ: Ví dụ: Người giáo viên cần nắm khả năng phát hiện quan hệ logic giữa các bài toán đơn của học sinh, các em gặp khó khăn gì khi lựa chọn các phép giải toán. - Để giúp học sinh giải toán tốt, trong cụ thể mỗi tiết dạy giáo viên phải lựa chọn và vận dụng phương pháp dạy học thích hợp. Phương pháp dạy học toán rất cần thiết, có đóng góp quan trọng trong dạy học giải toán, song phải sử dụng đúng lúc, đúng chỗ, đúng mức độ. Giáo viên phải biết lựa chọn, phối hợp sử dụng hài hoà các phương pháp dạy học. Ví dụ: Dạy đến: Tìm một trong các phần bằng nhau của một số. Bài toán: (Trang 26 sách giáo khoa Toán 3): Chị có 12 cái kẹo, chị cho em 1/3 số kẹo đó. Hỏi chị cho em mấy cái kẹo ? Để hình thành phép chia và có câu lời giải, giáo viên cần sử dụng phương pháp trực quan: Dùng hình vẽ nhóm những cái kẹo, bông hoa ... để minh hoạ. * Khi dạy đến dạng toán hợp giải bằng hai phép nhân chia có liên quan đến việc rút về đơn vị. Bài toán: (Trang 128 sách giáo khoa Toán 3) Có 35 lít mật ong chia đều vào 7 can. Hỏi 2 can có mấy lít mật ong. Giáo viên cần lưu ý: - Để giúp học sinh giải toán, giáo viên có thể sử dụng phương pháp vấn đáp, gợi mở để giúp học sinh chủ động thực hiện bài giải. - Để giúp học sinh giải toán, giáo viên phải khêu gợi hứng thú, động lực học tập của học sinh, giáo viên là người tổ chức hướng dẫn học sinh, mọi học sinh đều tham gia, phát triển năng lực cá nhân, có kĩ năng thực hành tốt. Có thể tuỳ vào từng dạng bài, với thực tế số lượng học sinh, thực tế của nhà trường, giáo viên có thể sử dụng một số hình thức tổ chức. hướng dẫn hoạt động dạy học toán theo định hướng đổi mới phương pháp dạy học toán ở Tiểu học. 2. Chuẩn bị cho việc giải toán: Hai loại toán ở lớp 3 nói riêng và ở Tiểu học nói chung là: Toán đơn và toán hợp. Mỗi loại toán này có vai trò quan trọng của nó. Việc giải các bài toán hợp thực chất là giải 10 một hệ thống các bài toán đơn. Có kĩ năng giải các bài toán đơn, học sinh mới có cơ sở giải các bài toán hợp. ở lớp 3, cùng với việc học phép nhân, chia, học sinh sẽ giải các bài toán đơn dùng phép nhân hoặc chia. Trong các đầu bài toán bằng lời văn, học sinh thường gặp những từ chìa khoá như: "Gấp lên, giảm đi bao nhiêu lần", "So sánh hơn, kém bao nhiêu lần". Các từ này thường được gợi ra phép nhân, chia tương ứng. Giáo viên cần chú ý học sinh tránh lẫn lộn "Bao nhiêu lần", với "Bao nhiêu đơn vị", và hiểu đúng khái niệm này. Củng cố thói quen đọc và hiểu đúng đề bài để ngăn ngừa tác dụng "Cảm ứng" của các từ "Chìa khoá". Nắm vững ý nghĩa của phép nhân và phép chia trong mối quan hệ giữa hai phép tính này, điều này rất quan trọng vì 100% học sinh là học sinh dân tộc, nên giáo viên luôn luôn lưu ý giúp học sinh hiểu đúng các từ quan trọng trong đề toán. Ở lớp 3, các bài toán đơn "Tìm một phần n của một số" gắn với phép chia. Đối với học sinh lớp 3, tư duy còn thiên về cụ thể nên hai loại bài toán "chia thành phần bằng nhau" và "chia theo nhóm" tuy đồng nhất về mặt ý nghĩa toán học và đều giải bằng phép tính chia, nhưng lại là hai bài toán khác nhau về mặt ý nghĩa cụ thể. Tuy nhiên khi giải, giáo viên cần hướng dẫn học sinh vượt qua sự khác biệt về mặt tâm lí để tập trung chú ý vào việc tìm ra và thực hiện đúng phép tính thích hợp, còn việc tìm ra từ thích hợp (phép chia), còn việc tìm ra từ thích hợp để "danh số" hoá số thương thì chủ yếu dựa vào kinh nghiệm sống. Mặt khác, đối với lớp 3, do tư duy của học sinh đã có những tiến bộ, song vốn ngôn ngữ vẫn còn hạn chế, nên việc nâng cao dần dần các yêu cầu về kiến thức và kĩ năng một cách vừa sức học sinh, các yêu cầu về trừu tượng hoá cần được chú ý, nhất là diễn tả các điều kiện, việc sử dụng sơ đồ đoạn thẳng và tia số, thay dần các hình vẽ tượng trưng, cần được coi như một công cụ phổ biến, tinh lược hoá những từ ngữ của đề toán, giúp các em tiếp cận tốt hơn với nội dung đề bài toán. Từ đó dẫn đến định hướng cách giải toán. Khi học sinh nắm vững cách giải các bài toán đơn, có thể gợi cho học sinh khá, giỏi dùng chữ thay dữ kiện (ở các bài có cấu trúc giống nhau), diễn đạt các cấu trúc toán học, từ đó củng cố ý thức về việc sử dụng các công cụ, thủ thuật toán học giống nhau khi giải chúng. Việc sắp sếp các bài toán đơn mà khi giải học sinh phải vận dụng các phép tính ngược sẽ giúp các em nâng cao và củng cố nhận thức về mối quan hệ giữa các phép tính ngược. Việc sử dụng hình vẽ hay sơ đồ để minh hoạ các điều kiện của bài toán là có ích với học sinh lớp 3 nói riêng, với học sinh Tiểu học nói chung. Tuy nhiên cần phải hiểu rõ tác dụng của chúng (là chỗ dựa cho suy luận) trong việc giải toán. Đối với các bài toán dễ hay đã nắm vững cách giải cần chú ý đến phát huy trí tưởng tượng của học sinh, từng 11 bước thay đổi chỗ dựa trực quan bằng hình ảnh trong óc suy luận, vừa giúp học sinh mở rộng vốn từ vừa thúc đẩy quá trình tư duy của học sinh. 3. Giúp học sinh nắm được quá trình giải toán: Quá trình này thường được tiến hành theo 3 bước: - Tìm hiểu nội dung bài toán. - Tìm cách giải bài toán. - Thực hiện cách giải bài toán. Thực tiễn việc học giải toán đã khẳng định, sự đúng đắn của các bước trong việc giải toán nói trên. Để làm cho học sinh có thói quen và kĩ năng áp dụng sơ đồ đó, cần làm cho học sinh từng bước nắm được và thực hiện tốt trong quá trình giải toán. 3.1. Dạy học sinh tìm hiểu kĩ năng nội dung bài toán: - Trước hết muốn tìm hiểu đầu bài, cần hiểu rõ cách diễn đạt bằng lời văn của bài toán, các bài toán dưới dạng một bài văn viết, thường xen trộn 3 thứ ngôn ngữ: Ngôn ngữ tự nhiên, thuật ngữ toán học và ngôn ngữ kí hiệu (chữ số, các dấu phép tính, các dấu quan hệ và dấu ngoặc), nên việc hướng dẫn đọc và hiểu đầu bài toán rất quan trọng giúp các em sử dụng được ngôn ngữ kí hiệu đặc biệt, làm các em hiểu được nghĩa của các thuật ngữ và kí hiệu sử dụng đúng. Để kiểm tra học sinh đọc và hiểu đầu bài toán, giáo viên nên yêu cầu học sinh nhắc lại nội dung đầu bài, không phải học thuộc lòng mà bằng cách diễn tả của mình, tiến tới trước khi tìm cách giải cho học sinh, học sinh đã nhập tâm đầu bài toán để tập trung suy nghĩ về nó. Mỗi bài toán đều có 3 yếu tố cơ bản: Dữ kiện là những cái đã cho đã biết trong đầu bài, những ẩn số là những cái chưa biết và cần tìm (các ẩn số được diễn đạt dưới dạng câu hỏi của bài toán) và những điều kiện là quan hệ giữa các dữ kiện và ẩn số. Hiểu rõ đầu bài là chỉ ra và phân biệt rành mạch 3 yếu tố đó, từng bước thấy được chức năng của mỗi yếu tố trong việc giải bài toán. Ví dụ: * Bài toán 4 trang 56 sách giáo khoa Toán 3: " Có ba thùng dầu, mỗi thùng chứa 125 lít, người ta đã lấy ra 185 lít dầu từ các thùng đó. Hỏi còn lại bao nhiêu lít dầu ?" Với bài toán trên đọc và hiểu kĩ đầu bài rất quan trọng, giúp học sinh chỉ ra và phân biệt rành mạch "Số lít dầu ở ba thùng, học sinh xác định được: 12 Cái đã cho (dữ kiện) là số lít dầu ở mỗi thùng: 125 lít. Điều kiện: đã lấy ra từ các thùng dầu đó 185 lít dầu. Cái cần tìm (ẩn số): còn lại bao nhiêu lít dầu? Trên cơ sở phân biệt rõ cái gì đã cho (dữ kiện), cái gì là điều kiện, cái cần tìm (ẩn số) để tập trung suy nghĩ vào các yếu tố cơ bản này, cần giúp học sinh biết tóm tắt đầu bài bằng cách ghi dữ kiện, điều kiện và câu hỏi của bài toán dưới dạng ngắn gọn cô đọng nhất. Tuyệt đại bộ phận các bài toán ở Tiểu học nói chung, ở lớp 3 nói riêng, đều có những điều kiện để minh hoạ bằng sơ đồ (đoạn thẳng, hình vẽ tượng trưng). Vì vậy học sinh phải từng bước biết minh hoạ phần tóm tắt bằng sơ đồ, nhất là sơ đồ đoạn thẳng hoặc minh hoạ trên trục số. Ví dụ: * Bài toán 3 trang 166 sách giáo khoa Toán 3: "Một hình chữ nhật có chiều dài 12 cm, chiều rộng bằng 1/3 chiều dài. Tính diện tích hình đó ?". Sau khi đọc kĩ đề bài, xác định được dữ kiện, điều kiện và ẩn số của bài toán, học sinh tóm tắt bài toán bằng sơ đồ đoạn thẳng như sau: 12 cm Chiều dài: Chiều rộng: ? Từ sơ đồ trên học sinh đã thể hiện đầu bài toán một cách ngắn gọn và cô đọng nhất, đây là một yếu tố quan trọng giúp học sinh tìm tòi cách giải bài toán. Giáo viên tập cho học sinh có thói quen từng bước có kĩ năng suy nghĩ trên các yếu tố cơ bản của bài toán, phân biệt và xác định được các dữ kiện và điều kiện cần thiết có liên quan đến câu hỏi, phát hiện được các dữ kiện không tường minh, để diễn đạt chúng một cách rõ ràng hơn. Quá trình tìm hiểu đầu bài và tìm tòi lời giải kết hợp với nhau một cách chặt chẽ. Nhiều trường hợp, khi tìm cách giải, học sinh gặp khó khăn phải trở lại tìm hiểu đầu bài, tìm hiểu dữ kiện và điều kiện. 3.2. Hướng dẫn học sinh tìm cách giải bài toán: Từ việc giải một bài toán đơn sang bài toán hợp, học sinh phải giải quyết một nhiệm vụ khó khăn là phân tích bài toán hợp thành các bài toán đơn. Trên tinh thần dạy học phát triển việc làm, cho các em nắm được các phương pháp chung và các thủ thuật cơ bản 13 thường dùng để giải các bài toán đa dạng nhưng thường gặp, và có những mức độ phức tạp khác nhau là rất cần thiết. * Dẫn về một bài toán đã biết cách giải: Khi giải một bài toán mới, học sinh biết dẫn nó về một bài toán mà các em đã biết cách giải, hoặc có thể liên tưởng tới những hành động thực tiễn nào đó mà các em đã thực hiện, để giải quyết một nhiệm vụ nào đó thì các em có thể có một gợi ý về cách giải. Ví dụ: Bài toán 2 phần a trang 38 sách giáo khoa Toán 3: Một cửa hàng buổi sáng bán được 60 lít dầu, số lít dầu bán được trong buổi chiều giảm đi 3 lần so với buổi sáng. Hỏi buổi chiều cửa hàng đó bán được bao nhiêu lít dầu ? Khi giải nếu qua phân tích hai điều kiện của bài toán, và tập trung chú ý vào hai điều kiện: các em dẫn tới những bài toán đã học về: "Tìm một phần mấy của một số" để tìm số lít dầu buổi chiều bán được là: 60 : 3 = 20 lít. * Biến đổi bài toán: Trong sách giáo khoa toán 3, bên cạnh phần lớn các bài toán dành cho học sinh trung bình, còn một số bài toán mà các dữ kiện thường nhiều hơn, phức tạp hơn, nhiều khi không được đưa ra trực tiếp hoặc tường minh. Việc tìm phương pháp giải nhiều khi phụ thuộc vào việc tìm ra "điểm nút" để tập trung tháo gỡ ra, việc lựa chọn con đường đúng đắn để tiếp cận nó. Muốn vậy phải biến đổi bài toán, với một số biến đổi thường được dùng ở Tiểu học. * Quan sát và dự đoán trong quá trình tìm ra lời giải: Quan sát các dữ kiện có vai trò quyết định trong việc tìm ra cách biến đổi, các biểu thức để tính nhẩm, tính nhanh, trong việc tìm lời giải trong bài toán. Ví dụ: Bài toán lớp 3: Nêu cách lập dãy số sau đây và điền thêm số thứ tư của dãy vào ô trống. 96 48 24 Quan sát kĩ học sinh sẽ phát hiện ra một số quan hệ sâu sắc là trong hai số kế cận: Số bên phải bằng số bên trái chia cho 2, từ đó tìm ra số thứ tư trong dãy số là 12. 3.3. Hướng dẫn học sinh trình bày cách giải bài toán và kiểm tra kết quả: Khi thực hiện kế hoạch giải bài toán, học sinh còn dựa vào các thủ thuật (hay phép) giải thích đối với từng khâu trong kế hoạch để đi đến kết quả mong muốn. Đối với một số bài toán có cấu trúc riêng, thường sử dụng các thủ thuật (phép) giải riêng. Với đặc điểm trình 14 độ tư duy của học sinh lớp 3, việc sử dụng phương pháp chung, dưới hình thức các phép thích hợp, với lứa tuổi sẽ mang lại kết quả mong muốn. + Tìm lời giải bằng sơ đồ: ở lớp 3, các bài toán đều mang tính chất đơn giản nên các dữ kiện và điều kiện của nhiều bài toán có thể diễn đạt trực quan bằng sơ đồ đoạn thẳng, loại sơ đồ này được dùng phổ biến làm chỗ dựa cho việc tìm kế hoạch giải bài toán hoặc một phần bài toán. Trong nhiều bài toán liên quan đến việc so sánh, sếp thứ tự việc dùng tóm tắt thay cho sơ đồ đoạn thẳng, để biểu diễn quan hệ giữa các số, tỏ ra thích hợp và mang lại kết quả tốt hơn. Ví dụ: Bài 3 trang 58 sách giáo khoa Toán 3): "Thu hoạch ở thửa ruộng thứ nhất được 127 kg cà chua, ở thửa ruộng thứ hai được nhiều gấp 3 lần số cà chua ở thửa ruộng thứ nhất. Hỏi thu hoạch ở cả hai thửa ruộng được bao nhiêu ki-lô-gam cà chua ? Để giải bài toán này giáo viên hướng dẫn học sinh tóm tắt bài toán bằng sơ đồ. Sau khi đọc kĩ đề bài ta thấy: Nếu coi số cà chua thu hoạch ở thửa ruộng thứ nhất là 1 phần thì số cà chua thu hoạch ở thửa ruộng thứ hai sẽ là ba phần bằng nhau. Ta có sơ đồ: 127 kg Thửa ruộng 1: ? kg Thửa ruộng thứ 2: Từ sơ đồ trên ta dễ nhận thấy mối quan hệ giữa số kg cà chua của hai thửa ruộng, từ đó có thể nêu ra cách giải toán: Bài giải: Thửa ruộng thứ hai thu hoạch được số kg cà chua là: 127 x 3 = 381 (kg). Cả hai thửa ruộng thu hoạch được số kg cà chua là: 127 + 381 = 508 (kg). Đáp số: 508 kg cà chua. + Lựa chọn và kết hợp các phép giải: 15 Khi điều khiển quá trình dạy học sinh giải toán, giáo viên phải khêu gợi được cho học sinh cố gắng tự tin tìm ra cách giải toán, tự tìm ra các thủ thuật thích hợp, biết mò mẫm, quan sát, phỏng đoán, huy động các kinh nghiệm đã có để tìm ra lời giải. Việc hướng dẫn các em giải toán, trước hết là học sinh khá giỏi, biết từng bước dùng chữ thay số cần tìm, diễn đạt quan hệ bài toán bằng phương trình và giải nó bằng thủ thuật thích hợp, vừa sức các em là điều cần chú ý. Thực hiện cách giải bài toán bao gồm việc thực hiện các phép tính đã nêu, trong kế hoạch giải bài toán và trình bày bài giải. Theo chương trình toán hiện hành, thì mô hình trình bày bài giải ở lớp 3 được thể hiện như sau: ở lớp 3, mỗi phép tính, mỗi biểu thức đều phải kèm theo câu lời giải, có ghi đáp số. Ví dụ 1: (Bài tập 3 trang 32 sách giáo khoa Toán 3): Bài giải: Năm lọ hoa như thế có số bông hoa là: 7 x 5 = 35 (bông hoa) Đáp số: 35 bông hoa. Ví dụ 2: (Bài tập 3 trang 106 sách giáo khoa Toán 3): Bài giải: Số cây đội đó trồng thêm là: 948 : 3 = 316 (cây) Đội đó trồng được tất cả số cây là: 948 + 316 = 1 264 (cây). Đáp số: 1 264 cây. + Kiểm tra cách giải bài toán: Học sinh thường coi rằng bài toán đã giải xong, khi tính đáp số hoặc tìm được câu trả lời câu hỏi. Vì vậy yêu cầu sư phạm quan trọng là làm sao gây được và phát huy tinh thần trách nhiệm và lòng tin vào kết quả đạt được. Kiểm tra cách giải và kết quả bài toán là yêu cầu không thể thiếu khi giải toán, và phải trở thành thói quen đối với học sinh ngay từ Tiểu học. ở lớp 3, cần tập cho học sinh biết nhìn lại toàn bộ bài giải, nhìn lại phương pháp và các thủ thuật đã sử dụng (yêu cầu cao hơn ở lớp 1,2) để vừa kiểm tra bài giải vừa nắm vững thêm cách giải. 16 Chú ý từng bước cho học sinh thói quen soát lại và suy nghĩ về tính hợp lí của cách giải đã chọn, tìm ra những chỗ dài dòng, chưa hợp lí để tìm cách cải tiến, đặc biệt gây cho học sinh có thói quen tự hỏi:"Có thể giải bằng cách khác không ?". Tìm được cách giải khác một mặt tạo điều kiện phát triển tư duy linh hoạt, sáng tạo, suy nghĩ độc lập của học sinh. Các hình thức thực hiện kiểm tra cách giải bài toán: - Thiết lập tương ứng các phép tính giữa các số tìm được trong quá trình giải với các số đã cho. Tạo ra bài toán ngược với bài toán đã cho rồi giải bài toán đó. - Giải bài toán bằng cách khác. - Xét tính hợp lí của đáp số. Ví dụ: (Bài tập 1 trang 176 sách giáo khoa Toán 3): Một sợi dây dài 9 135 cm được cắt thành hai đoạn. Đoạn thứ nhất dài bằng 1/7 chiều dài sợi dây. Tính chiều dài mỗi đoạn dây ? Bài giải: Chiều dài của đoạn dây thứ nhất là: 9 135 : 7 = 1 305 (cm). Chiều dài của đoạn dây thứ hai là: 9 135 - 1 305 = 7 830 (cm). Đáp số: Đoạn thứ nhất: 1 305 cm. Đoạn thứ hai: 7 830 cm. Để kiểm tra cách giải bài toán trên, giáo viên hướng dẫn học sinh thiết lập tương ứng giữa chiều dài đoạn dây thứ nhất, chiều dài đoạn dây thứ hai với chiều dài của cả sợi dây. Ta thấy: 1 305 + 7 830 = 9 135 (cm). Dựa vào phép tính tương ứng trên, ta khẳng định bài toán có cách giải và kết quả đúng. + Để kiểm tra cách giải bài toán, học sinh có thể giải bài toán bằng cách khác: Theo đầu bài ra ta có sơ đồ sau: Đoạn 1 Đoạn 2 9 135 cm 17 Ta thấy đoạn dây 1 là một phần, đoạn dây hai là sáu phần bằng nhau vậy có thể giải theo hai cách: Bài giải: Chiều dài đoạn dây thứ nhất là: 9 135 : 7 = 1 305 (cm). Chiều dài đoạn dây thứ hai là: 1 305 x 6 = 7 830 (cm). Đáp số: Đoạn thứ nhất: 1 305 cm. Đoạn thứ hai: 7 830 cm. Xét tính hợp lý của đáp số, ta thấy chiều dài của cả sợi dây, trừ đi chiều dài của đoạn dây thứ hai, thì còn lại chiều dài của đoạn dây thứ nhất: 9 135 - 7 830 = 1 305 (cm). *Ta thấy đáp số trên là kết quả đúng. 4. Rèn kĩ năng giải toán cho học sinh: Hoạt động có mục tiêu: hình thành năng lực khái quát hoá và kĩ năng giải toán, rèn luyện năng lực sáng tạo trong giờ học tập cho học sinh. Có thể tiến hành một vài phép giải sau: a. Giải các bài toán nâng dần mức độ phức tạp trong mối quan hệ giữa các số đã cho và số phải tìm, hoặc điều kiện của bài toán. b. Giải bài toán có nhiều cách giải khác nhau. c. Tiếp xúc với các bài toán thiếu và thừa dữ kiện hoặc điều kiện của bài toán. e. Lập và biến đổi bài toán, hoạt động này có thể tiến hành dưới những hình thức sau: - Đặt câu hỏi cho bài toán mới chỉ biết số liệu hoặc điều kiện. - Đặt điều kiện cho bài toán. - Chọn số hoặc số đo đại lượng cho bài toán còn thiếu số liệu. - Lập bài toán tương tự với bài toán đã giải. - Lập bài toán ngược với bài toán đã giải. - Lập bài toán theo bảng tóm tắt hoặc sơ đồ minh hoạ. - Lập bài toán theo cách giải cho sẵn. 18 Ví dụ: Túi gạo thứ nhất bằng 1/3 túi gạo thứ hai. Hỏi túi gạo thứ hai đựng nhiều hơn túi gạo thứ nhất bao nhiêu kilôgam gạo ? ở bài toán này cần hướng dẫn học sinh phân biệt rõ ẩn số của bài toán, tránh trường hợp nhầm lẫn giữa tìm "nhiều hơn số kilôgam" và "nhiều hơn số phần". Từ đó học sinh thấy được bài toán này thiếu dữ kiện, túi gạo thứ nhất dựng bao nhiêu kilôgam chưa cụ thể, học sinh có thể thêm dữ kiện vào và giải bài toán. Bài toán: Túi gạo thứ nhất đựng 8 kg gạo bằng 1/3 túi thứ hai. Hỏi túi thứ hai đựng nhiều hơn túi thứ nhất bao nhiêu kilôgam gạo ? Bài giải: Túi gạo thứ hai đựng số gạo là: 8 x 3 = 24 (kg). Túi gạo thứ hai đựng nhiều hơn túi gạo thứ nhất là: 24 - 8 = 16 (kg). Đáp số: 16 kg gạo. Ví dụ: (bài tập 3 trang 129 sách giáo khoa Toán 3): Lập bài toán theo tóm tắt sau rồi giải bài toán đó: Tóm tắt: 4 xe: 8 520 viên gạch. 3 xe: ......... viên gạch. Nhìn vào bài giải học sinh phát hiện ngay được bài giải thuộc dạng toán "Toán hợp giải bằng hai phép nhân chia, có liên quan đến việc rút về đơn vị" và từ đó dễ dàng đặt được đề toán: " Bốn xe ô tô chở được 8 520 viên gạch. Hỏi 3 xe ô tô như thế chở được bao nhiêu viên gạch ? Bài giải: Mỗi xe ô tô chở được số viên gạch là: 8 520 : 4 = 2 130 (viên gạch). Ba xe ô tô chở được số viên gạch là: 2 130 x 3 = 6 390 (viên gạch). Đáp số: 6 390 viên gạch. 19 CHƯƠNG IV: THỰC NGHIỆM SƯ PHẠM Tôi đã tiến hành dạy thực nghiệm 2 tiết tại lớp 3H trường Tiểu học Hua La: Tiết 1: Bài 55: Giải bài toán bằng hai phép tính ( Dạy ngày 9/11/2007) Tiết 2: Bài 57 Luyện tập ( Dạy ngày 13/11/2007) KẾT QUẢ THỰC NGHIỆM. Trong quá trình dạy thực nghiệm, học sinh hiểu bài, tích cực học tập, thực hiện nghiêm túc các bài kiểm tra, kết quả kiểm tra sau tiết dạy thực nghiệm như sau: TS học sinh Giỏi Khá TB SL TL SL TL 11 4 36,4 % 3 27,25% 3 SL Yếu TL SL 27,25% 1 TL 9,1% Năm học 2007 - 2008 là năm học tiếp tục thực hiện chương trình Tiểu học mới. Các em học sinh lớp 3 đã đều được học từ lớp 1, lớp 2 chương trình thay sách. Đến lớp 3, các em được tiếp tục kế thừa, phát triển kiến thức và kĩ năng ở hai lớp dưới. Những vấn đề tôi băn khăn về việc dạy học sinh giải toán được xuất phát từ những khó khăn của học sinh khi giải toán ở lớp 2. Sau một năm học, thực hiện những giải pháp đã nêu trên, kết quả thực hiện cụ thể như sau: * Kết quả giải toán: Tổng số học sinh: 11 em. Mức độ đạt được Khảo sát Cuối kỳ I Cuối kì II Chưa nắm được cách 6 giải 4 1 Nắm được cách giải 4 5 4 Giải hoàn chỉnh 1 2 6 * Chất lượng môn Toán: Tổng số học sinh: 11 em. xếp loại Giỏi Khảo sát Cuối kỳ I Cuối kỳ II 4 4 20
- Xem thêm -