Skkn một số biện pháp bồi dưỡng học sinh giỏi toán lớp 5

  • Số trang: 26 |
  • Loại file: DOC |
  • Lượt xem: 34 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 24000 tài liệu

Mô tả:

MỘT SỐ BIỆN PHÁP BỒI DƯỠNG HỌC SINH GIỎI TOÁN 5 Ngöôøi vieát : Ñaøm Leâ Duõng Giaùo vieân Tröôøng Tieåu hoïc 2 xaõ Tam Giang. A - ÑAËT VAÁN ÑEÀ T röôøng Tieåu hoïc 2 Tam Giang laø moät tröôøng thuoäc vuøng noâng thoân coøn nhieàu khoù khaên, trình ñoä daân trí chöa cao neân ña soá phuï huynh hoïc sinh cuûa tröôøng coøn lô laø, thieáu quan taâm ñeán vieäc hoïc taäp cuûa con em mình. Töø ñoù chaát löôïng hoïc taäp cuûa hoïc sinh thöôøng ôû möùc ñoä yeáu, trung bình hoaëc khaù, ñeå ñaït ñöôïc loaïi gioûi thaät söï laø raát hieám. Ñöôïc Ban giaùm hieäu nhaø tröôøng phaân coâng boài döôõng hoïc sinh gioûi nhieàu nhaêm lieàn, toâi nhaän thaáy caùc em chæ ñaït ñöôïc thaønh tích cao hôn so vôùi caùc hoïc sinh khaùc ôû lôùp hoïc moät chuùt. Caùc em chöa thaät söï naém ñöôïc vaán ñeà moät caùch vöõng chaéc, thieáu saùng taïo, linh hoaït trong moät soá tình huoáng nhaát ñònh, chæ bieát vaän duïng theo loái moøn saün coù, cho neân seõ khoù ñaït ñöôïc thaønh tích toát trong hoïc taäp. Töø nhöõng vaán ñeà neâu treân, toâi nghó raèng phaûi ñaàu tö nhieàu hôn cho vieäc boài döôõng cho caùc em veà bieän phaùp hoïc taäp moân Toaùn, giuùp caùc em coù ñuû khaû naêng hieåu ñöôïc vaán ñeà moät caùch chaéc chaén, bieát phaân tích ñeà baøi moät caùch roõ raøng chính xaùc (phaân tích), giaûi quyeát vaán ñeà hôïp lí ñeå ñi ñeán vieäc giaûi baøi toaùn (toång hôïp) ñaït keát quaû nhö mong muoán. Ñeå giaûi quyeát nhöõng vaán ñeà neâu treân, toâi xin trình baøy moät soá biện pháp cuûa mình trong coâng taùc boài döôõng hoïc gioûi moân Toaùn 5, nhö sau : B - NOÄI DUNG, BIEÄN PHAÙP GIAÛI QUYEÁT Saùng kieán kinh nghieäm Trang 1 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng I - EM LAØ AI ? Vôùi caâu hoûi: “Em laø ai ?”, toâi muoán tìm hieåu hoïc sinh mình noù coù khaû naêng hoïc taäp côõ naøo, möùc ñoä tieáp thu, tính saùng taïo, linh hoaït noù ra sao ? ñeå töø ñoù toâi môùi tìm ra caùch höôùng daãn phuø hôïp vôùi khaû naêng cuûa caùc em. Vieäc tìm hieåu veà caùc em khoâng chæ veà maët kieán thöùc maø phaûi coøn tìm hieåu theâm khaû naêng tieáp thu cuûa caùc em ôû möùc ñoä naøo ? Caùc em coù nhöõng thoùi quen toát, thoùi quen chöa toát naøo ? Keå caû caùch trình baøy baøi laøm ra sao ? Böôùc ñaàu, toâi cho caùc em laøm nhöõng baøi taäp ñôn giaûn nhö caùc em ñaõ ñöôïc tieáp xuùc trong naêm hoïc lôùp 4. Qua ñoù, coù theå ñaùnh giaù ñöôïc khaû naêng cuûa caùc em. Bieát ñöôïc hoïc sinh cuûa mình, tuyø theo töøng em, toâi coù caùch nhaéc nhôû rieâng vôùi nhöõng ñieåm yeáu caàn khaéc phuïc. II - QUAÙ TRÌNH BOÀI DÖÔÕNG : 1- Xaây döïng neà neáp hoïc taäp : Ñieàu tröôùc tieân toâi quan taâm ñoù laø neà neáp hoïc taäp treân lôùp. Khoâng phaûi chæ nghieâng veà traät töï lôùp hoïc maø toâi coøn chuù yù ôû caùc em caùch duøng saùch, vôû, thöôùc, buùt,… noùi chung laø duïng cuï hoïc taäp. Khi naøo söû duïng vở ñeå laøm baøi, khi naøo duøng nhaùp, khi naøo phaûi laøm baøi moät caùch ñoäc laäp, khi naøo thì thaûo luaän nhoùm. Ñieàu naøy, trong khoaûng 2 ñeán 3 tuaàn ñaàu caùc em seõ quen vaø hieåu ñöôïc yù toâi muoán caùc em luùc naøo phaûi laøm gì. Saùng kieán kinh nghieäm. Trang 2 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Coù nhö theá, caùc em seõ bieát taäp trung nghe giaûng luùc naøo ; bieát khi naøo phaûi laøm baøi ; khi naøo caàn phaûi thaûo luaän vaø phaùt bieåu yù kieán ñoùng goùp cuøng caùc baïn hay cuøng vôùi thaày ñeå xaây döïng baøi môùi. 2 - Nghieân cöùu chöông trình moân TOAÙN ôû caùc khoái lôùp ( chương trình mới) : Ñeå höôùng daãn cho caùc em ñöôïc toát thì tröôùc tieân, ta phaûi bieát ñöôïc caùc em ñaõ hoïc nhöõng gì vaø nhöõng gì chöa hoïc. Trong quaù trình boài döôõng mình môùi höôùng caùc em ñeán nhöõng kieán thöùc coù lieân quan ñeán nhöõng ñieàu ñaõ hoïc. Traùnh vieäc baét caùc em phaûi laøm nhöõng vieäc maø caùc em chöa bieát ñeán bao giôø. Cho neân vieäc nghieân cöùu chöông trình ôû caùc lớp dưới giuùp giaùo vieân boài döôõng hieåu ñöôïc caùc em ñaõ hoïc ñöôïc nhöõng gì, vaø nhöõng gì chöa hoïc. Töø ñoù, coù keá hoaïch boài döôõng moät caùch hôïp lyù. 3 - Nghieân cöùu Saùch giaùo khoa vaø nhieàu taøi lieäu khaùc ñeå soaïn rieâng taøi lieäu boài döôõng thích hôïp : Ñeå soaïn taøi lieäu boài döôõng cho caùc em, tröôùc tieân toâi nghieân cöùu ôû Saùch giaùo khoa (lôùp 4 - lôùp 5) veà caùc daïng baøi taäp vaø cuõng töï suy nghó veà yeâu caàu heä thoáng caùc mảng kieán thöùc trong töøng chöông, töøng nhoùm baøi ñöôïc trình baøy qua caùc daïng baøi luyeän taäp trong saùch giaùo khoa. Ngoaøi ra, baûn thaân coøn tham khaûo theâm nhieàu taøi lieäu khaùc, cuõng nhö nhöõng ñeà thi hoïc sinh Gioûi cuûa nhöõng naêm tröôùc ñaây. Vôùi nhöõng taøi lieäu tham khaûo naøy, toâi phaûi choïn loïc nhöõng baøi taäp thích hôïp vôùi caùc em. Khoâng phaûi choïn nhöõng baøi taäp quaù khoù, vì vôùi nhöõng baøi taäp quaù khoù khoâng giuùp ích gì ñöôïc cho caùc em, maø traùi laïi laøm cho caùc em ngaùn ngaïi theâm hôn. Toâi soaïn taøi lieäu ñeå boài döôõng cho caùc em, theo phöông chaâm : “Bieát ñeán Saùng kieán kinh nghieäm. Trang 3 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng ñaâu hoïc ñeán ñaáy. Hoïc ñeán ñaâu hieåu ñeán ñaáy”, khoâng theå baét eùp caùc em doàn vaøo ñaàu oùc mình nhöõng ñieàu maø mình khoâng hieåu ñöôïc gì caû. Thaø raèng chaäm, töøng böôùc taïo cho caùc em coù ñöôïc nhöõng haønh trang kieán thöùc thaät söï cuûa mình vaø bieát ñöôïc trong goùi haønh trang ñoù coù ñöôïc nhöõng gì, naém ñöôïc taùc duïng cuûa töøng loaïi haønh trang coù ñöôïc. Toâi nghó nhö theá nên nhöõng kieán thöùc caùc em coù ñöôïc seõ luoân ôû beân mình trong suoát cuoäc haønh trình vöôn tôùi töông lai. 4 – Nghiên cứu tập đề thi học sinh giỏi vòng tỉnh qua các năm học : Thông qua các bạn đồng nghiệp, tôi sưu tầm tất cả các đề thi học sinh giỏi tỉnh Cà Mau từ năm học 1996 – 1997 cho đến nay để nghiên cứu về cấu trúc đề thi, các kiến thức trọng tâm thường có, … lấy đó làm cơ sở ôn luyện cho các em. Tuy nhiên, trong quá trình bồi dưỡng, tôi chú ý nhiều đến các dạng toán cơ bản và lược bớt những bài toán quá khó hoặc không phù hợp với đối tượng học sinh của mình. 5 - Xaây döïng cho caùc em caùc böôùc ñeå giaûi moät baøi toaùn : Tröôùc khi ñi vaøo giaûi baøi taäp toaùn, toâi taäp cho caùc em coù ñöôïc thoùi quen thöïc hieän theo töøng böôùc cuï theå ñeå tìm hieåu ñeà baøi thaät chính xaùc roài giaûi baøi taäp moät caùch coù hieäu quaû. Toâi yeâu caàu caùc em phaûi thöïc hieän qua caùc böôùc nhö sau :  Ñoïc kó ñeà baøi (2 – 3 laàn)  Phaân tích ñeà baøi tìm caùch giaûi.  Toùm taét ñeà toaùn (neáu caàn).  Giaûi baøi toaùn (nhaùp).  Trình baøy baøi giaûi.  Kieåm tra keát quaû.  Ñoïc kó ñeà baøi (2 – 3 laàn) Saùng kieán kinh nghieäm. Trang 4 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng - Tìm xem ñeà baøi cho bieát gì ? Chuùng coù quan heä vôùi nhau nhö theá naøo ? - Baøi toaùn hoûi gì ? (Quan troïng)  Phaân tích ñeà baøi để tìm caùch giaûi. - Döïa vaøo caâu hoûi của baøi toaùn, ñi tìm nhöõng ñieàu caàn thieát ñeå tính. - Caên cöù vaøo nhöõng ñieàu ñaõ cho ñeå tìm caùch giaûi. - Döï ñoaùn baøi toaùn thuoäc daïng baøi toaùn gì đã học ?  Toùm taét ñeà toaùn (neáu caàn). ÔÛ böôùc naøy, neáu thuoäc nhöõng daïng toaùn ñieån hình (tìm 2 soá khi bieát : Toång vaø Tæ, Hieäu vaø Tæ, Toång vaø Hieäu) khi xaùc ñònh ñöôïc ñaày ñuû 2 yeáu toá thì baét buoäc caùc em phaûi bieát toùm taét ñeà baøi baèng sô ñoà ñoaïn thaúng. Coøn thuoäc nhöõng daïng khaùc, tuøy töøng baøi, neáu coù thaáy caàn thieát phaûi toùm taét thì toùm taét hoaëc nhöõng baøi hình hoïc, khi caàn thieát phaûi bieát veõ hình cho roõ raøng chính xaùc ñeå nhöõng döõ kieän coù lieân quan ñöôïc theå hieän moät caùch roõ hôn thì phaûi veõ hình.  Giaûi baøi toaùn (nhaùp). Böôùc naøy taäp cho caùc em reøn tính caån thaän khi laøm baøi. Sau khi tìm hieåu ñeà baøi vaø ñaõ thaáy ñöôïc höôùng giaûi baøi taäp, caùc em lieàn ghi suy nghó cuûa mình ra nhaùp, keå caû vieäc thöïc hieän caùc pheùp tính (coäng, tröø, nhaân, chia) vaø xem laïi thaät chính xaùc tröôùc khi ghi vaøo baøi giaûi chính thöùc.  Trình baøy baøi giaûi. Vieäc trình baøy baøi laøm tuy caùc em ñaõ ñöôïc caùc thaày coâ chuû nhieäm ñaõ höôùng daãn ôû töøng naêm moät trong quaù trình hoïc taäp nhöng moãi em coù moät tính neát rieâng. Coù em kó löôõng, coù em caåu thaû, coù em thì quaù tieát kieäm giaáy,… neân moãi em coù theå coù moät bieåu hieän rieâng trong caùch trình baøy baøi laøm cuûa mình. Saùng kieán kinh nghieäm. Trang 5 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Qua quaù trình boài döôõng, toâi thöôøng theo doõi caùch trình baøy cuûa caùc em ñeå coù höôùng nhaéc nhôû, giuùp caùc em khaéc phuïc ñöôïc nhöõng haïn cheá maø theå hieän baøi laøm moät caùch roõ raøng, saïch seõ, ñuùng quy ñònh. Tuy laø moân Toaùn nhöng toâi vaãn luoân ñeå yù vaø söûa chöõa caùc em veà nhöõng loãi chính taû thöôøng gaëp khi trình baøy baøi giaûi moät baøi toaùn.  Kieåm tra keát quaû. Toâi nghó, ñaây laø moät böôùc raát caàn thieát ñeå caùc em töï kieåm tra vaø ñaùnh giaù laïi keát quaû baøi laøm cuûa mình. Vôùi caùc em, böôùc kieåm tra keát quaû baøi laøm, thöôøng thì caùc em ít quan taâm ñeán. Cho neân vieäc laøm baøi sai maø khoâng hay, khoâng bieát laø chuyeän thöôøng gaëp ôû caùc em. Qua nhaän ñònh naøy, toâi luoân xaây döïng cho caùc em moät thoùi quen khoâng theå thieáu laø bieát kieåm tra laïi keát quaû khi ñaõ giaûi xong baøi taäp ; đặc biệt là đối với các phép tính cộng, trừ, nhân, chia ; các bài toán về tìm thành phần chưa biết của phép tính,… giuùp caùc em xaùc ñònh ñöôïc böôùc ñaàu keát quaû baøi giaûi cuûa mình coù ñuùng hay chöa ? Khi caàn thieát, caùc em bieát kieåm tra laïi quaù trình giaûi baøi cuûa mình, ñeå chænh söûa laïi cho chính xaùc, phuø hôïp vôùi yeâu caàu baøi toaùn. 6 - OÂn taäp caùc kieán thöùc cô baûn : Nhö toâi ñaõ noùi ôû phaàn treân (soaïn taøi tieäu ñeå daïy), ñeå boài döôõng naâng cao kieán thöùc cho caùc em, ñieàu tröôùc tieân toâi cho raèng : Caùc em phaûi naém ñöôïc nhöõng kieán thöùc cô baûn ñaõ hoïc. Thaät ra, coù moät soá em vaøo hoïc boài döôõng maø kieán thöùc cô baûn, thaäm chí toâi cho laø sô ñaúng caùc em coøn khoâng nhôù ñöôïc. ÔÛ ñaây toâi noùi laø khoâng nhôù, chöù khoâng phaûi laø khoâng bieát. Ví duï nhö : Tìm thaønh phaàn chöa bieát cuûa pheùp tính (tìm X), neâu quy taéc tìm soá Trung bình coäng cuûa nhieàu soá, … caùc em cuõng khoâng phaùt bieåu ñöôïc. Coù em hieåu ñöôïc vaán ñeà nhöng noùi chaúng thaønh caâu !! Saùng kieán kinh nghieäm. Trang 6 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Cho neân, trong thôøi gian caùc em hoïc ôû nhöõng tuaàn ñaàu, toâi coá gaéng taùi hieän laïi cho caùc em nhöõng ñieàu gì ñaõ hoïc ñöôïc ôû lôùp 4. Coù theå noùi gioáng nhö daïy laïi nhöõng baøi luyeän taäp ôû lôùp 4, cho ñeán khi caùc em nhôù laïi chính xaùc vaán ñeà, toâi laïi coù moät soá baøi taäp naâng daàn moät caùch nheï nhaøng, ñuû söùc ñeå caùc em hieåu ñöôïc vaán đeà moät caùch maïch laïc, vöõng chaéc. Ví dụ : OÂn taäp veà pheùp nhaân. Caùc em coù hieåu pheùp nhaân chính laø pheùp coäng caùc soá haïng baèng nhau khoâng ? Treân cô sôû naøy, toâi cho caùc em thöïc hieän pheùp so saùnh giaù trò 3 bieåu thöùc nhö : * (6 +6+6+6+6) + (6+6+6) + (6+6) * 6 5 + 6 3 + 6 2 * 6  (5 + 3 + 2) Töø ñoù, caùc em seõ hieåu pheùp coäng caùc soá haïng baèng nhau chính laø pheùp nhaân vaø höôùng caùc em ñeán daïng baøi taäp moät soá nhaân vôùi moät toång (hieäu). Veà ño löôøng cuõng theá, caùc em chæ bieát cô baûn moái quan heä giöõa caùc ñôn vò ño moät caùch maùy moùc, chöa hieåu ñöôïc moät caùch töôøng taän veà baûn chaát cuûa töøng ñôn vò ño cuï theå, tröôøng hôïp naøy toâi thöôøng cho caùc em tham gia thöïc teá qua nhöõng giaùo cuï tröïc quan hay qua nhöõng tieát thöïc haønh ôû lôùp, ôû ngoaøi trôøi, … 7 - Cung caáp cho caùc em nhieàu daïng baøi taäp : Ngoaøi vieäc taùi hieän cho caùc em caùc kieán thöùc cô baûn ñaõ ñöôïc hoïc ôû lôùp 4 vaø ñoàng haønh cuøng caùc em vôùi chöông trình lôùp 5 ñang hoïc ôû lôùp. Toâi môû roäng theâm nhieàu daïng baøi taäp khaùc ñeå caùc em ñöôïc laøm quen. Ngoaøi nhöõng daïng toaùn ñieån hình, toâi coøn tham khaûo, nghieân cöùu vaø suy nghó theâm nhieàu daïng ñeà baøi khaùc vaø töøng loaïi baøi toâi naâng daàn vöøa söùc vôùi caùc em. Saùng kieán kinh nghieäm. Trang 7 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Chaúng haïn, veà soá töï nhieân, toâi höôùng daãn caùc em roõ theâm veà caáu taïo thaäp phaân cuûa soá (phaân tích soá thaønh toång troøn traêm, troøn chuïc vaø ñôn vò), bieát thaønh laäp soá baèng nhöõng chöõ soá cho tröôùc (Vieát soá coù 3 chöõ soá khaùc nhau vôùi caùc chöõ soá 1 ; 2 ; 3 hay Vôùi 3 chöõ soá 0 ; 1 ; 2 em haõy vieát caùc soá coù 3 chöõ soá khaùc nhau …v…v…). Daïng khaùc, khi ta theâm vaøo beân phaûi moät soá töï nhieân, 1 - 2 chöõ soá naøo ñoù thì soá töï nhieân ñoù noù seõ thay ñoåi nhö theá naøo ? Hay khi theâm vaøo beân traùi soá töï nhieân coù 2 chöõ soá moät chöõ soá naøo ñoù thì soá töï nhieân ñoù bieán ñoåi ra sao ? Hoặc dạng bài tìm số tự nhiên cho trước khi biết một số dữ kiện của nó … Ví dụ 1 : Tích của hai số là 5037. Nếu giảm thừa số thứ hai đi 7 đơn vị thì tích giảm đi 483. Tìm hai số đó. (Đề thi HS giỏi tỉnh Cà Mau, ngày 18/3/2000). Với bài toán này, tôi hướng dẫn học sinh suy luận như sau : Khi giảm thừa số thứ hai đi 7 đơn vị thì tích của chúng sẽ giảm đi 7 lần thừa số thứ nhất. Theo bài ra, tích giảm đi 483 đơn vị ; do đó thừa số thứ nhất sẽ là : 483 : 7 = 69. Vậy, thừa số thứ hai là : 5037 : 69 = 73. Đáp số : Hai số cần tìm là 69 và 73. Ví dụ 2 : Tích của hai số là 945. Nếu thêm 5 đơn vị vào thừa số thứ hai thì tích mới là 1170. Tìm hai số đó. (Đề thi HS giỏi tỉnh Cà Mau, ngày 31/3/2007). Bài giải Khi thêm vào thừa số thứ hai 5 đơn vị thì tích mới sẽ tăng lên 5 lần thừa số thứ nhất. Theo bài ra, tích mới lớn hơn tích cũ là : 1170 - 945 = 225. Vậy, thừa số thứ nhất sẽ là : 225 : 5 = 45. Thừa số thứ hai là : 945 : 45 = 21. Đáp số : Hai số cần tìm là 45 và 21. Ví dụ 3 : Saùng kieán kinh nghieäm. Trang 8 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Tìm số tự nhiên có hai chữ số, biết rằng khi bỏ đi chữ số hàng đơn vị thì số đó giảm đi 14 lần. (Đề thi HS giỏi tỉnh Cà Mau, ngày 17/01/1998). Bài giải Giả sử số tự nhiên có hai chữ số cần tìm là ab . (a, b là số tự nhiên và 0< a <10 ; 0 ≤ b <10). Phân tích cấu tạo số ta được : ab = a x 10 + b Theo bài ra, khi xóa bỏ chữ số hàng đơn vị thì số đó giảm đi 14 lần, nghĩa là số đó sẽ gấp chữ số hàng chục 14 lần. Tức là ta có : ab = a x 14 Do vậy, ta sẽ có : a x 10 + b = a x 14 (Vì đều bằng ab). Hay : b = a x 4 (Hai tổng bằng nhau đều bớt đi a × 10 đơn vị). Nhận xét rằng : a chỉ có thể là 1 hoặc 2 ; vì a > 0 và nếu a = 3 thì 3 x 4 = 12 >10. Không được. Ta xét hai trường hợp sau : - Với a = 1 thì b = 1 x 4 = 4. Số cần tìm là 14. Thử lại : 14 = 1 x 14. Đúng. - Với a = 2 thì b = 2 x 4 = 8. Số cần tìm là 28. Thử lại : 28 = 2 x 14. Đúng. Vậy, bài toán có hai đáp số : Số cần tìm là 14 hoặc 28. Ñeå naâng daàn möùc ñoä töø deã ñeán khoù, toâi xin ñieån hình veà daïng baøi tính nhanh, nhö sau : * Ñoái vôùi bieåu thöùc coù nhieàu pheùp coäng, caùc em chuù yù ñeán toång caùc caëp soá troøn chuïc, troøn traêm : 24 + 47 + 76 + 53 = (24 + 76) + (47 + 53) = 100 + 100 = 200 * Bieåu thöùc coù caû coäng laãn tröø, ta hieåu theo yù nghóa : coäng laø theâm vaøo, tröø laø bôùt ra, ñeå chuùng ta coù theå saép xeáp moät caùch hôïp lí. 799 + 435 - 299 - 335 = (799 - 299) + (435 - 335) = 500 + 100 = 600 Hoaëc : Saùng kieán kinh nghieäm. Trang 9 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng 11 – 12 + 13 – 14 + 15 = 11 + (15 -14) + (13 - 12) = 11 + 1 + 1 = 13 * Bieåu thöùc toaøn laø pheùp nhaân, chuù yù nhöõng caëp soá coù tích troøn chuïc, troøn traêm, troøn nghìn. Cung caáp cho caùc em nhöõng caëp soá, nhö : 2  5=10 ; 50  2=100; 20 5=100 ; 25 4=100 ; 125 8=1000. Ngoaøi ra, caùc em caàn chuù yù theâm neáu chæ caàn coù 01 thöøa soá baèng 0 thì tích seõ baèng 0, …. Ví duï: 125  4  8  25 = (125  8)  (25  4) = 1000  100 = 100 000 hay naâng theâm mức ñoä khoù hôn, yeâu caàu caùc em bieát phaân tích moät thöøa soá thaønh 2 thöøa soá thích hôïp, nhö baøi : 25  50  8 = 25  50  4  2 = (25  4)  ( 50  2) = 100  100 = 10000 * Bieåu thöùc laø moät pheùp chia, coù soá bò chia vaø soá chia phöùc taïp. Caùc em löu yù 2 tröôøng hôïp sau : - Neáu soá bò chia baèng 0 thì thöông seõ baèng 0. (218  2 - 436) : (2345  5  103) = (436 - 436) : (2345  5  103) = 0 : (2345  5  103) = 0 - Neáu soá bò chia baèng soá chia thì thöông baèng 1. (18  4 + 6) : (18  5 – 12) = (18  4 + 6) : (18  4 + 18 -12) = (18  4 + 6) : (18  4 + 6) = 1 * Biểu thức gồm tính nhân và tính cộng. Chẳng hạn : Tính giá trị của biểu thức sau : 58 x 36 + 42 x 48 + 25 x 58 + 13 x 42. Với học sinh khá, giỏi thì bài này phải tính theo cách tính thuận tiện nhất chứ không đơn thuần là thứ tự thực hiện phép tính. Để làm được như vậy, các em phải ghi nhớ các tính chất “Một số nhân với một tổng” hay “Một tổng nhân với một số” ; tính chất giao hoán của phép cộng và phép nhân. Bài giải Saùng kieán kinh nghieäm. Trang 10 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Ta thực hiện như sau : 58 x 36 + 42 x 48 + 25 x 58 + 13 x 42 = 58 x 36 + 25 x 58 + 42 x 48 + 13 x 42 (Tính chất giao hoán của phép cộng). = 58 x 36 + 58 x 25 + 42 x 48 + 42 x 13 (Tính chất giao hoán của phép nhân). = 58 x (36 + 25) + 42 x (48 + 13) (Tính chất nhân một số với một tổng). = 58 x 61 + 42 x 61 (Thứ tự thực hiện các phép tính). = (58 + 42) x 61 (Tính chất nhân một tổng với một số). = (Thứ tự thực hiện các phép tính). 100 x 61 = 6100. * Caùch tính toång daõy soá caùch ñeàu. - Tôi hướng dẫn các em thành lập (nhóm) lại các số cho ra cùng kết quả. Chẳng hạn như : 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = (1 + 9) + (2 + 8) + (3 + 7) + (4 + 6) + 5 = 10 + = 45 10 + 10 + 10 + 5 Ngoaøi ra, toâi coøn soaïn theâm cho caùc em moät soá daïng baøi taäp ít gaëp trong chöông trình Saùch giaùo khoa, coù noäi dung yeâu caàu caùc em bieát suy luaän moät caùch logic ñeå giaûi nhaèm phaùt trieån tö duy cho caùc em trong giaûi toaùn. Chaúng haïn nhö : Tìm 3 soá coù tích laø 3600. Bieát tích cuûa soá thöù nhaát vaø soá thöù hai laø 240 vaø tích cuûa soá thöù hai vaø soá thöù ba laø 180. ÔÛ baøi naøy caùc em bieát laáy tích chung chia cho tích cuûa soá thöù nhaát vaø soá thöù hai ñeå tìm ñöôïc soá thöù ba (3600 : 240 = 15), daàn caùc em seõ tìm ñöôïc caùc soá coøn laïi. Baøi naøy coù nhieàu caùch ñeå caùc em thöïc hieän. Hoặc với bài toán : “Tìm tất cả những số có hai chữ số, khi chia cho 2 thì dư 1, chia cho 3 thì dư 2 và chia cho 5 thì dư 4”. (Đề thi HS giỏi vòng tỉnh, ngày 25/12/1996). Saùng kieán kinh nghieäm. Trang 11 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Tôi gợi ý để các em suy luận rằng : số đó khi cộng với 1 thì chia hết cho đồng thời cả 2, 3 và 5 ; tức là chia hết cho 30 (2  3  5 = 30). Từ đó, các em tìm được các số chia hết cho 30 là 30, 60, 90, 120, … Vì số đó có hai chữ số nên khi cộng với 1 cũng cho ra số có hai chữ số (ngoại trừ số 99) ; do đó chỉ có các kết quả 30, 60, 90 là thích hợp. Cuối cùng, các em chỉ việc lấy mỗi kết quả đó trừ cho 1 là được đáp số của bài toán. Vậy bài toán có 3 đáp số là : 29, 59, 89. Hoaëc: Trong loï coù 4 vieân bi maøu xanh vaø 7 vieân bi maøu ñoû. Hoûi phaûi laáy ra ít nhaát bao nhieâu vieân bi ñeå coù ñuû caû hai maøu xanh vaø ñoû ? Baøi naøy hôi khoù, ít gaëp khoâng yeâu caàu caùc em phaûi giaûi baøi troïn veïn chæ cho caùc em trong thaûo luaän nhoùm ñeå neâu ra ñöôïc keát quaû vaø giaûi thích baèng vaên mieäng laø phaûi laáy ít nhaát laø 8 vieân bi. Caùc em coù tranh luaän ñeå ñöa ra ñuùng keát quaû, nhö theá ñaõ kích thích ñeå phaùt trieån tö duy ôû caùc em … 8 - Xaây döïng quy trình giaûi toaùn : Vôùi nhöõng baøi toaùn ñieån hình hay nhöõng baøi toaùn giaûi coù lôøi vaên cuõng vaäy. Toâi thöôøng xaây döïng cho caùc em moät quy trình giaûi toaùn cho töøng loaïi, neáu coù theå ñöôïc. Toâi xin ñieån hình moät vaøi tröôøng hôïp nhö sau : * Baøi toaùn “Tìm hai số khi biết tổng và hiệu của chúng”, toâi ñöa ra cho caùc em quy trình giaûi daïng baøi taäp naøy nhö sau : - Xaùc ñònh toång vaø hieäu cuûa chuùng. - Toùm taét baèng sô ñoà ñoaïn thaúng. - Tìm 2 laàn soá beù. (Toång tröø ñi Hieäu) - Tìm soá beù. (Hai laàn soá beù chia cho 2) - Tìm soá lôùn. (Baèng caùch tieän nhaát) ÔÛ daïng baøi naøy toâi khoâng yeâu caàu caùc em söû duïng quy taéc tính nhö ñaõ hoïc treân lôùp (Số beù = (Toång - Hieäu) : 2), vì neáu daïng baøi toaùn coù theå naâng leân Saùng kieán kinh nghieäm. Trang 12 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng tìm 3 soá khi bieát Toång vaø Hieäu thì caùc em seõ gaëp khoù khaên (Ví duï : Tìm 3 soá lẻ lieân tieáp coù toång laø 93.). Neáu gaëp nhöõng tröôøng hôïp töông töï nhö ví duï naøy, caùc em bieát laáy soá nhoû nhaát laøm chuaån, sau ñoù ñi tìm hieäu cuûa 2 soá lôùn vaø soá beù. Khi coù ñöôïc, caùc em seõ bieát ñi tìm 3 laàn soá beù, nhö theá baøi toaùn seõ ñöôïc giaûi quyeát. Caùc em coù theå giaûi nhö sau : Hai soá leû lieân tieáp nhau chuùng hôn keùm nhau 2 ñôn vò. Ta coù sô ñoà: Soá thöù nhất : 2 Soá thöù hai : 93 2 Soá thöù ba : Soá thöù ba lôùn hôn soá thöù nhất laø : Ba laàn soá thöù nhất laø: 2+2=4 93 - (2 + 4) = 87 Soá thöù nhất laø: 87 : 3 = 29 Soá thöù hai laø: 29 + 2 = 31 Soá thöù ba laø: 31 + 2 = 33 Ñaùp số : 29 ; 31 vaø 33. Hoặc với bài toán : “Một tủ sách có ba ngăn chứa tất cả 200 quyển sách. Ngăn thứ nhất chứa nhiều hơn ngăn thứ hai 12 quyển. Nếu chuyển 4 quyển từ ngăn thứ hai xuống ngăn thứ ba thì ngăn thứ ba sẽ chiếm 2/5 tổng số sách. Tìm số sách trong mỗi ngăn lúc đầu”. (Đề thi HS giỏi tỉnh Cà Mau, ngày 27/3/2004). Bài giải Theo bài ra : Khi chuyển 4 quyển từ ngăn thứ hai xuống ngăn thứ ba thì ngăn thứ ba sẽ chiếm 2/5 tổng số sách. Như vậy, số sách trong ngăn thứ ba sau khi đã chuyển từ ngăn thứ hai xuống là : 200 : 5 × 2 = 80 (quyển). Số sách lúc đầu có trong ngăn thứ ba là : Saùng kieán kinh nghieäm. Trang 13 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng 80 – 4 = 76 (quyển). Tổng số sách trong ngăn thứ nhất và ngăn thứ hai lúc đầu là : 200 – 76 = 124 (quyển). Theo bài ra, ta có sơ đồ sau : Ngăn thứ nhất : 12 quyển 124 quyển Ngăn thứ hai : Theo sơ đồ trên, ta có : Số sách có lúc đầu trong ngăn thứ nhất là : (124 + 12) : 2 = 68 (quyển). Số sách có lúc đầu trong ngăn thứ hai là : (124 – 12) : 2 = 56 (quyển). * Thử lại : Tổng số sách ba ngăn lúc đầu : 68 + 56 + 76 = 200 (quyển). (Đúng). Đáp số : Ngăn thứ nhất : 68 quyển. Ngăn thứ hai : 56 quyển. Ngăn thứ ba : 76 quyển. * Baøi toaùn “Tìm hai soá khi bieát toång vaø tæ soá cuûa chuùng”. - Xaùc ñònh toång vaø tæ cuûa chuùng. Vôùi nhöõng daïng baøi toaùn naøy, thöôøng thì toång, tæ, hieäu ít khi ñöôïc neâu roõ ôû ñeà baøi, cho neân vieäc xaùc ñònh ñöôïc chuùng laø ñieàu caàn thieát ñeå ñi vaøo giaûi baøi toaùn quen thuoäc. - Toùm taét baèng sô ñoà ñoaïn thaúng. - Tìm toång soá phaàn baèng nhau. - Tìm giaù trò moät phaàn baèng nhau, (Neáu tröôøng hôïp soá beù laø 1 phaàn thì böôùc naøy chính laø tìm soá beù) - Tìm soá beù. - Tìm soá lôùn. Ví duï 1 : Saùng kieán kinh nghieäm. Trang 14 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Tìm 2 soá töï nhieân coù toång laø 132. Bieát raèng khi theâm vaøo beân phaûi soá beù moät chöõ soá 0 thì ñöôïc soá lôùn. Nhö baøi naøy, ñeà baøi ñaõ cho bieát toång cuûa chuùng laø 132, yeâu caàu caùc em bieát xaùc ñònh ñöôïc tæ soá cuûa chuùng. Khi ta theâm vaøo beân phaûi cuûa soá töï nhieân một chöõ soá 0 thì ta ñöôïc soá môùi gaáp 10 laàn soá cuõ. Ñeán ñaây caùc em ñaõ xaùc ñònh ñöôïc tæ soá cuûa chuùng ñeå giaûi baøi moät daïng quen thuoäc. * Moät số daïng baøi toaùn khaùc : Ví dụ 1 : Tìm moät soá. Bieát raèng laáy soá ñoù nhaân vôùi 63 roài tröø ñi 11963, ñöôïc bao nhieâu nhaân vôùi 4 roài coäng vôùi 8756 thì ñöôïc 11304. 63 - 11963 4 HD: + 8756 11304 ? + 11963 : 63 :4 - 8756 Ví dụ 2 : Chaùu gaùi hoûi Baø: “Baø ôi, naêm nay, Baø bao nhieâu tuoåi ?”. Baø traû lôøi : “1/6 tuoåi cuûa baø tröø ñi 6 thì seõ ñöôïc 6.” Hoûi Baø bao nhieâu tuoåi ? (Baøi toaùn coå) HD: :6 -6 6 ? 6 +6 Höôùng daãn cho caùc em quy trình giaûi baøi taäp naøy laø: - Laäp sô ñoà. - Tính ngöôïc veà soá caàn tìm. Saùng kieán kinh nghieäm. Trang 15 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Ví dụ 3 : An làm một phép chia, sau đó An đem số bị chia chia cho hai lần số chia thì được thương là 7,25. Nếu đem số bị chia chia cho hai lần số thương thì được 18. Tìm phép chia mà An đã làm. (Đề thi HS giỏi tỉnh Cà Mau, ngày 29/3/2009). Ở bài toán này, tôi gợi ý để các em tự suy luận : Khi đem số bị chia chia cho hai lần số chia thì được thương là 7,25. Vậy nếu không chia cho hai lần số chia thì thương sẽ như thế nào ? Có thể, mới đầu học sinh còn hơi khó hiểu, song khi giáo viên gợi mở thì học sinh sẽ trả lời được là thương đó sẽ tăng lên 2 lần. Từ đó, các em sẽ tìm được thương của phép chia ban đầu là : 7,25 x 2 = 14,5. Tương tự như thế, các em sẽ dựa vào dữ kiện thứ hai trong bài toán để tự tìm được số chia của phép chia ban đầu là : 18 x 2 = 36. Có được điều này rồi, các em sẽ tính được số bị chia của phép chia ban đầu là : 14,5 x 36 = 522. Phép chia mà An đã làm là : 522 : 36 = 14,5. 9 - Ñoäng vieân hoïc sinh giaûi baøi toán baèng nhieàu caùch khaùc nhau : Caùc em giaûi ñöôïc baøi taäp ñoù laø moät yeâu caàu caàn thieát. Nhöng ñeå phaùt trieån theâm tư duy cho caùc em, toâi coøn ñoäng vieân caùc em tìm ra nhieàu caùch giaûi khaùc (neáu coù theå ñöôïc). Khi caùc em bieát giaûi theâm nhöõng caùch khaùc treân cuøng moät baøi taäp, nhö theá caùc em seõ naém vaø hieåu ñöôïc vaán ñeà moät caùch chaéc chaén hôn vaø cuõng ñeå taïo cho caùc em coù ñöôïc tính linh hoaït, saùng taïo vaø bieát choïn loïc ñöôïc caùi hay trong giaûi toaùn. Ví duï 1: Saùng kieán kinh nghieäm. Trang 16 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Moät cöûa haøng coù 324 meùt vaûi. Ngaøy ñaàu baùn ñöôïc baùn ñöôïc theâm 1 3 2 9 soá vaûi, ngaøy thöù hai soá vaûi. Hoûi cöûa haøng ñoù coøn laïi bao nhieâu meùt vaûi ? Caùc em ñaõ bieát tính giaù trò phaân soá cuûa moät soá, caùc em coù theå tính : Caùch 1: Thöôøng gaëp. Bài giải Soá meùt vaûi ngaøy ñaàu baùn ñöôïc laø : 324  2 = 72 (m) 9 Soá meùt vaûi baùn ngaøy thöù hai laø : 324  1 = 108 (m) 3 Toång soá vaûi baùn caû 2 ngaøy laø : 72 + 108 = 180 (m) Soá meùt vaûi cuûa cöûa haøng coøn laïi laø : 324 - 180 = 144 (m) Ñaùp soá : 144 m. Vaø caùc em cuõng ñaõ hoïc caùc pheùp tính veà phaân soá, vaän ñoäng caùc em suy nghó, vaän duïng caùc pheùp tính veà phaân soá tìm caùch giaûi khaùc, chaúng haïn nhö : Caùch 2: Bài giải Phaân soá chæ soá vaûi baùn ñöôïc caû 2 ngaøy laø : 2 1 5   (soá vaûi) 9 3 9 Phaân soá chæ soá vaûi coøn laïi laø : 9 5 4   (soá vaûi) 9 9 9 Soá meùt vaûi cöûa haøng coøn laïi laø : 324  4 = 144 (m) 9 Ñaùp soá : 144 m. Ví duï 2: Sô keát hoïc kì 1, 180 hoïc sinh khoái lôùp naêm ñöôïc xeáp thaønh boán loaïi : gioûi, khaù, trung bình, yeáu. So vôùi hoïc sinh caû khoái, soá hoïc sinh xeáp loaïi gioûi baèng 1 10 , 9 4 loaïi khaù baèng 10 , loaïi trung bình baèng 20 . Saùng kieán kinh nghieäm. Trang 17 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. a- Tính soá hoïc sinh ñöôïc xeáp loaïi gioûi. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng b- Tæ soá phaàn traêm cuûa moãi loaïi so vôùi soá hoïc sinh caû khoái ? Bài giải Soá hoïc sinh ñöôïc xeáp loaïi gioûi laø : 180  1 = 18 (hoïc sinh) 10 Ñeán ñaây thöôøng thì caùc em ñi tìm soá hoïc sinh cuûa moãi loaïi roài môùi tính tæ soá phaàn traêm. Chaúng haïn : Soá hoïc sinh ñöôïc xeáp loaïi khaù là : 180  4 = 72 (hoïc sinh) 10 Töông töï, tính soá hoïc sinh Trung Bình laø 81 hoïc sinh , sau ñoù caùc em tính soá hoïc sinh Yeáu : 180 - (18 + 72 + 81) = 9 (hoïc sinh) . Töø ñoù, caùc em seõ tính ñöôïc tæ soá phaàn traêm baèng caùch laáy soá hoïc sinh moãi loaïi chia cho 180, roài laáy thöông vöøa tìm ñöôïc nhaân nhẩm vôùi 100 vaø ghi kí hieäu %. Ví duï nhö, tæ soá phaàn traêm cuûa hoïc sinh gioûi là : 18 : 180 = 0,1 = 10% (Theo caùch höôùng daãn cuûa SGK TOAÙN 5 18 : 180 = 0,1 0,1 = 10%) Nhöng vôùi ñeà baøi naøy, neáu ta gôïi yù cho hoïc sinh tính tæ soá phaàn traêm baèng caùch khaùc, daãn ñeán caùc em bieát tính tæ soá phaàn traêm moãi loaïi nhö sau : Tæ soá phaàn traêm cuûa loaïi gioûi laø : 1 10  10% 10 100 (nhaân töû, maãu vôùi 10) Tæ soá phaàn traêm cuûa loaïi khaù laø : 4 40  40% 10 100 (töông töï) Tæ soá phaàn traêm cuûa loaïi trung bình laø : Tæ soá phaàn traêm cuûa loaïi yeáu laø : Ñaùp soá: 9 45  45% 20 100 (nhaân töû, maãu vôùi 5) 100% - (10% + 40% + 45%) = 5% a). 18 hoïc sinh b) Gioûi 10% ; Khaù 40% ; TB 45% ; Yeáu 5% Saùng kieán kinh nghieäm. Trang 18 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Qua ví duï 2 naøy, giaùo vieân coù theå giuùp cho hoïc sinh hieåu theâm Tæ soá phaàn traêm chính laø tæ soá cuûa 2 soá nhöng chuùng ñöôïc vieát döôùi daïng tæ soá coù maãu soá baèng 100, baèng caùch bieán ñoåi nhö ta ñaõ daïy. (Thaønh phaân soá thaäp phaân coù maãu soá baèng 100). Qua 2 ví duï treân cho caùc em so saùnh 2 caùch giaûi vaø cho bieát caùch giaûi naøo nhanh vaø goïn hôn. Caùc em seõ thích thuù hôn qua nhieàu caùch giaûi nhö theá. Caùch giaûi khaùc ôû ñaây khoâng caàn phaûi giaûi caû baøi toaùn maø trong töøng böôùc ñeå giaûi baøi toaùn, neáu coù theå, toâi cuõng thöôøng ñaët caâu hoûi cho caùc em, nhö : “Ta coù theå tính baèng caùch naøo khaùc nöõa khoâng ?”. Ví duï : Moät mảnh vöôøn hình chöõ nhaät coù nöûa chu vi laø 22m. Chieàu daøi hôn chieàu roäng laø 8 m. Tính dieän tích mảnh vöôøn. Bài giải Ta coù sô ñoà: 8m Chieàu daøi: 22 m Chieàu roäng: Hai laàn soá ño chieàu roäng : 22 - 8 = 14 (m) Soá ño chieàu roäng : 14 : 2 = 7 (m) Soá ño chieàu daøi : 7 + 8 = 15 (m) ÔÛ böôùc naøy, tuyø theo töøng baøi, ta coù theå hoûi theâm : Ñeå tính soá ño chieàu daøi, ta coøn caùch tính naøo khaùc nöõa khoâng ? Caùc em coù khaû naêng tính ñöôïc, soá ño chieàu daøi seõ baèng nöûa chu vi tröø ñi chieàu roäng (22 - 7 = 15 (m)) , hay caùc em cuõng coù theå hieåu : Bieát toång cuûa 2 soá, muoán tìm soá naøy thì laáy toång tröø ñi soá kia, … Dieän tích mảnh vườn hình chöõ nhaät là : Saùng kieán kinh nghieäm. Trang 19 Moät soá bieän phaùp Boài döôõng hoïc sinh gioûi Toaùn 5. 15  7 = 105 (m2) Giaùo vieân thöïc hieän : Ñaøm Leâ Duõng Ñaùp soá : 105 m2. 10 – Hướng dẫn học sinh cách lý luận bài toán bằng lời trước khi lập sơ đồ : Khi giải một bài toán, trình bày lý luận cũng rất quan trọng. Đây là bước giúp cho việc lập sơ đồ đoạn thẳng hoặc loại bỏ bớt những đáp số không phù hợp, … của bài toán. Xác định được tầm quan trọng của nó, tôi đã hướng dẫn cho các em sử dụng kĩ năng tiếng Việt để lý luận cho phù hợp với từng trường hợp cụ thể. Ví dụ 1 : Trung bình cộng của hai số bằng 14. Biết rằng 1/3 số thứ nhất bằng ¼ số thứ hai. Tìm hai số đó. (Đề thi HS giỏi tỉnh Cà Mau ngày 30/3/2002). Bài giải Tổng của hai số là : 14 x 2 = 28 Theo bài ra : nếu lấy số thứ nhất chia làm 3 phần, lấy số thứ hai chia làm 4 phần thì ta được các kết quả bằng nhau. Ta có sơ đồ sau : Số thứ nhất : Số thứ hai : 28 Theo sơ đồ trên : Tổng số phần bằng nhau là : 3 + 4 = 7 (phần) Số thứ nhất là : 28 : 7 x 3 = 12 Số thứ hai là : 28 : 7 x 4 = 16 Thử lại : (12 + 16) : 2 = 14. (Đúng). Đáp số : Số thứ nhất là 12. Số thứ hai là 16. Ví dụ 2 : Một hình thang có đáy bé dài 1,8m, đáy lớn bằng 4/3 đáy bé. Khi kéo dài đáy lớn thêm 8dm thì diện tích hình thang tăng thêm 48dm 2. Tìm diện tích hình thang lúc đầu. (Đề thi HS giỏi tỉnh Cà Mau ngày 29/3/2003). Bài giải Saùng kieán kinh nghieäm. Trang 20
- Xem thêm -