Đăng ký Đăng nhập
Trang chủ Giáo án - Bài giảng Sáng kiến kinh nghiệm Skkn đi tìm nguồn gốc bài toán hình học giải tích trong mặt phẳng, định hướng cá...

Tài liệu Skkn đi tìm nguồn gốc bài toán hình học giải tích trong mặt phẳng, định hướng cách giải và phát triển năng lực tư duy sáng tạo cho học sinh

.DOC
74
1455
82

Mô tả:

SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH HƯNG YÊN TRƯỜNG THPT YÊN MỸ -------------------- SÁNG KIẾN KINH NGHIỆM Đề tài: “ĐI TÌM NGUỒN GỐC BÀI TOÁN HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG, ĐỊNH HƯỚNG CÁCH GIẢI VÀ PHÁT TRIỂN NĂNG LỰC TƯ DUY SÁNG TẠO CHO HỌC SINH” Môn : Toán Nhóm tác giả : 1. Nguyễn Cao Thời - Trường THPT Yên Mỹ 2. Vũ Văn Dũng 3. Nguyễn Văn Phu Chức vụ - Trường THPT Triệu Quang Phục - Trường THPT Minh Châu : Giáo viên 1 SÁNG KIẾN KINH NGHIỆM ĐỀ TÀI: “ĐI TÌM NGUỒN GỐC BÀI TOÁN HÌNH HỌC GIẢI TÍCH TRONG MẶT PHẲNG, ĐỊNH HƯỚNG CÁCH GIẢI VÀ PHÁT TRIỂN NĂNG LỰC TƯ DUY SÁNG TẠO CHO HỌC SINH” A. ĐẶT VẤN ĐỀ I – Lý do chọn đề tài Bài toán hình học giải tích trong mặt phẳng là bài toán thường xuất hiện trong các kỳ thi, nhất là kỳ thi Đại học, THPT Quốc Gia. Nó có thể coi như là điểm thứ 8 của đề thi, là câu khó với nhiều đối tượng học sinh, nhất là học sinh có năng lực trung bình và là câu có tính phân loại học sinh. Học sinh muốn đạt điểm tốt môn Toán cần phải biết cách vượt qua bài toán dạng này. Vì vậy nó luôn là sự quan tâm đặc biệt đối với học sinh và các thầy, cô dạy toán. Các bài toán hình học giải tích phẳng thường gắn liền với một số tính chất nào đó của hình học phẳng thuần túy. Việc khó khăn nhất là trong mỗi bài toán, cần phải sử dụng tính chất hình học nào, tính chất đó có ngay khi phát biểu bài toán hay phải phán đoán tính chất có lợi cho bài toán và chứng minh nó. Một việc nữa là phải chuyển từ ngôn ngữ hình học phẳng sang ngôn ngữ hình giải tích phẳng sao cho thuận tiện và dễ hiểu. Để giúp các thầy, cô có cái nhìn rõ hơn về đề thi đại học những năm gần đây, dạy học ôn thi hiệu quả; cũng là để giúp các em học sinh tiếp thu dạng toán này dễ dàng hơn. Chúng tôi mạnh dạn chọn đề tài: “Đi tìm nguồn gốc bài toán hình học giải tích trong mặt phẳng, định hướng cách giải và phát triển năng lực tư duy sáng tạo cho học sinh” II – Mục đích nghiên cứu Tìm hiểu những khó khăn và thuận lợi khi học sinh giải toán hình học giải tích phẳng, thông qua chuyên đề, trao đổi kinh nghiệm với đồng nghiệp và sự tìm tòi của bản thân. 2 Đưa ra một số tính chất hình học thường dùng, hệ thống các bài tập áp dụng; khái quát hóa, đặc biệt hóa, tương tự hóa từ một số bài toán cơ bản của hình học phẳng sang bài toán hình học giải tích phẳng. III – Đối tượng và phạm vi nghiên cứu - Giáo viên giảng dạy môn toán THPT. - Học sinh khối 10 THPT. - Học sinh khối 12 ôn thi kỳ thi THPT Quốc gia - Đội tuyển thi học sinh giỏi tỉnh khối 12. IV – Phương pháp nghiên cứu - Trao đổi với đồng nghiệp để đề xuất biện pháp thực hiện - Tìm kiếm tài liệu liên quan đến hình học phẳng, hình học giải tích phẳng; những sáng kiến kinh nghiệm của các đồng nghiệp thuộc bộ môn toán. - Giảng dạy các tiết bài tập, chuyên đề tại các lớp 10A6, 10A1, 12A1 tại các trường THPT Yên Mỹ, Minh Châu, Triệu Quang Phục để thu thập thông tin. - Họp nhóm biên soạn để tìm phương án hợp lý nhất. B. NỘI DUNG I - Thực trạng vấn đề trước khi làm đề tài Huyện Yên Mỹ tỉnh Hưng Yên có ba trường THPT công lập là THPT Yên Mỹ, THPT Minh Châu và THPT Triệu Quang Phục. Quá trình dạy học môn Toán của các trường trong huyện chỉ dừng lại ở mức độ hội học, hội giảng và trao đổi kinh nghiệm trong nội bộ mỗi trường mà chưa có những hoạt động mang tính liên trường với nhau. Vì đó mà những kinh nghiệm giảng dạy chưa có cái nhìn toàn diện và sâu sắc. Nhiều thầy cô còn lúng túng trong việc lựa chọn phương pháp giảng dạy và hệ thống bài tập chưa được phù hợp chính vì vậy học sinh càng gặp nhiều khó khăn hơn. Đề tài này tạo sân chơi và cơ hội để các thầy cô dạy môn Toán ba trường giao lưu, học hỏi, trao đổi sáng kiến, kinh nghiệm và biện pháp giảng dạy đề tài hình học giải tích phẳng sao cho có hiệu quả, giúp học sinh dễ tiếp thu kiến thức. 3 II – Kết quả đạt được khi áp dụng đề tài Sau khi áp dụng kết quả nghiên cứu trong đề tài và qua khảo sát cho thấy đa phần các thầy cô thấy có hiệu quả thực sự khi áp dụng dạy trên lớp. Trong hai đề thi thử Đại học thì có 85% học sinh lớp 10 và 90% học sinh lớp 12 giải được bài toán hình học giải tích phẳng. III – Khả năng ứng dụng và triển khai kết quả - Đề tài có thể làm tài liệu tham khảo giảng dạy cho các thầy cô dạy môn Toán tại trường THPT. - Đề tài là tài liệu tham khảo bổ ích cho các em thi học sinh giỏi, khối 10 và các em học sinh thi THPT Quốc gia. IV – Cơ sở lí luận 1. Phương pháp phát hiện và giải quyết vấn đề 2. Phương pháp tương tự hóa, khái quát hóa, đặc biệt hóa. 3. Một số kết quả hình học phẳng thường dùng Tính chất 1. Cho tứ giác ABCD nội tiếp đường tròn tâm I, tiếp tuyến Cx tại C. �  BDC �  BCx �  1 BIC � . Khi đó BAC 2 Tính chất 2. Cho hình vuông ABCD, gọi M, N lần lượt là trung điểm của BC và CD. Khi đó AM  BN . Tính chất 3. Cho tam giác ABC nội tiếp trong đường tròn tâm I. Có trực tâm H, uuuu r uuur M là trung điểm của BC. Khi đó AH  2 IM . Tính chất 4. Cho tam giác ABC nội tiếp trong đường tròn tâm I. Gọi H, K lần lượt là chân đường cao kẻ từ B, C xuống các cạnh AC, BC. Khi đó IA  HK Tính chất 4. Cho tam giác ABC có trực tâm H . Gọi D là giao điểm thứ hai của đường thẳng AH với đường tròn ngoại tiếp ABC và M là giao điểm của AH với BC. Khi đó M là trung điểm của HD. Tính chất 5. Cho tam giác ABC có tâm đường tròn nội tiếp J . Gọi D là giao điểm thứ hai của đường tròn ngoại tiếp tam giác ABC với đường thẳng AJ và I là tâm đường tròn ngoại tiếp tam giác ABC. Khi đó D là tâm đường tròn ngoại tiếp tam giác JBC và ID  BC . 4 Tính chất 6. Cho ABC có trực tâm H; E, D lần lượt là hình chiếu vuông góc của C, B lên các cạnh AB và AC. Gọi P là trung điểm của AH, M là trung điểm của BC. Khi đó PM  ED Tính chất 7. Cho tam giác ABC có trực tâm H. Gọi D, E, F lần lượt là chân đường cao kẻ từ A, B, C xuống các cạnh BC, CA, AB. Khi đó H là tâm đường tròn nội tiếp DEF . Chú ý: 1. Cần đặc biệt chú ý quan hệ vuông góc, sự bằng nhau, quan hệ về góc của hình vuông, hình thoi và các tam giác đặc biệt. 2. Các công thức diện tích, khoảng cách, công thức tính góc, các định lý sin, cosin trong tam giác… 4. Một số bài toán cơ bản Bài toán 1. Lập phương trình đường thẳng 1. Qua hai điểm phân biệt 2. Qua một điểm và vuông góc với một đường thẳng cho trước 3. Qua một điểm và song song với một đường thẳng cho trước 4. Qua một điểm và tạo với một đường thẳng cho trước một góc không đổi 5. Qua một điểm và cách một điểm một khoảng không đổi 6. Là phân giác tạo bởi hai đường thẳng cắt nhau 7. Là phân giác của một góc của một tam giác cho trước. Bài toán 2. Tìm điểm M thỏa mãn một tính chất cho trước 1. Đối xứng với một điểm qua một đường thẳng 2. Thuộc một đường đã cho và cách một điểm cố định một khoảng không đổi 3. Thuộc hai đường mà ta cần xác định hai phương trình hai đường 5 4. Điểm M thuộc đường thẳng (∆) và M cùng với điểm I cho trước tạo với (∆) một góc không đổi. Bài toán 3. Lập phương trình đường tròn. 1. Qua ba điểm A, B, C không thẳng hàng 2. Biết tâm và bán kính 3. Biết tâm thuộc một đường và thỏa mãn một tính chất cho trước. Một số chú ý 1. Về bài toán tìm điểm +) Điểm cần tìm có yếu tố gì thuận lợi +) Điểm cần tìm có thuộc một đường nào đã biết không +) Có thể tính được khoảng cách từ điểm đó đến một điểm cố định được không +) Cần đặc biệt chú ý khi điểm cần tìm là trọng tâm, trực tâm, tâm của đường tròn ngoại tiếp… +) Để tìm điểm A, có thể tìm điểm B thuận lợi hơn mà từ đó xác định được tọa độ điểm A. 2. Về mối liên hệ ba điểm Cho ba điểm A, B, C trong đó đã biết hai trong ba điểm. Khi đó các điểm có thể có các mối quan hệ sau: +) Tạo thành mối quan hệ vuông góc +) Tạo thành tam giác cân, đều. +) Tạo thành một góc xác định +) Ba điểm thẳng hàng 3. Về mối liên hệ giữa hai điểm và đường thẳng 6 Cho hai điểm A, B và đường thẳng d. Khi đó chúng có thể có các mối quan hệ sau: +) AB tạo với d một góc xác định (B thuộc d). +) Đường thẳng AB vuông góc với đường thẳng d Các bước tìm lời giải một bài toán hình giải tích phẳng Bước 1. Từ giả thiết bài toán phát hiện tính chất hình học và các mối liên hệ ràng buộc. Bước 2. Đại số hóa các điểm, các đường từ mối liên hệ hình học giữa các điểm, các đường trong bài toán để có các phương trình, hệ phương trình. Bước 3. Giải các phương trình, hệ phương trình trên tìm tọa độ điểm hay phương trình đường. Bước 4. Kết luận; đánh giá, tìm hướng phát triển. 7 PHẦN I TỪ MỘT BÀI TOÁN CƠ BẢN ĐẾN BÀI TOÁN TRONG ĐỀ THI ĐẠI HỌC (Nguyễn Cao Thời) Hình học Euclid (hình học phẳng) là hình học được xây dựng bằng hệ các tiên đề, hình học giải tích phẳng là một cách biểu hiện của hình học Euclid bằng ngôn ngữ đại số. Từ một bài toán hình học phẳng bằng cách tọa độ hóa các điểm, các đường thẳng khác nhau ta sẽ có cách phát biểu mỗi bài toán khác nhau mà không làm thay đổi tính chất của bài toán ban đầu (bài toán gốc). Từ một bài toán gốc ta có thể sáng tác ra nhiều bài toán hình giải tích phẳng khác nhau. Vậy nên, muốn nghiên cứu một bài toán hình giải tích phẳng một cách triệt để và có tính phát triển thì việc đi tìm bài toán cội nguồn là vô cùng cần thiết. Xuất phát từ bài toán: “Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của BC và CD. Khi đó AN  DM ”. Bằng cách tọa độ hóa điểm M và cho phương trình đường thẳng AN. Ta có bài toán sau: “Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của BC và DC. Biết điểm M(2; 3) và đường thẳng AN có phương trình x - 2y + 6 =0. Tìm tọa độ điểm A” 8 Trong bài toán trên xét điểm N ở vị trí N’, thay DM thành PM và giữ cố định AM; vẽ đường tròn đường kính AM. Bằng trực giác ta thấy AN '  PM và giao điểm H của AN’ và PM nằm trên BD. Bằng công cụ vectơ hay tọa độ ta có thể chứng minh nhận định trên. Ta có kết quả sau: “Cho hình vuông ABCD. Gọi N là điểm trên cạnh DC sao NC = 2DN, P là điểm trên cạnh AD sao cho PA = 5PD, H là giao điểm của AN và PM. Khi đó tam giác AHM vuông cân và H thuộc BD thỏa mãn HB = 3HD” Đến đây bằng cách cho biết tọa độ một số điểm và cho một số đường thẳng có phương trình hợp lý, ta có nhiều bài toán của cùng một vấn đề, nhất là hai bài toán trong hai đề thi Đại học năm 2012 và năm 2014. Bài toán 1 (ĐH_A_2012). Cho hình vuông ABCD. Gọi M là trung điểm của cạnh   BC, N là điểm trên cạnh CD sao cho CN = 2ND. Giả sử M  ;  và AN có  2 2 11 1 phương trình 2x - y - 3 = 0. Tìm tọa độ điểm A. Có 4 hướng để tìm tọa độ điểm A. Hướng 1. “Tìm đô ô lớn góc MAH” (cách 1). Hướng 2. “Tìm đô ô lớn góc MAH” (cách 2). Hướng 3. “Tính AM không sử dụng yếu tố góc” (cách 1). Hướng 4. “Tính AM không sử dụng yếu tố góc” (cách 2). Nhận xét: Nếu bài toán thay vì cho tọa độ điểm M, mà thay bằng cho tọa độ trung điểm I của đoạn thẳng AM. Thì bài toán ở mức độ sâu hơn. Thay vì cho phương trình đường thẳng AN ta có thể cho tọa độ của điểm H, từ đó ta có đề thi Đại học khối A năm 2014. Bài toán 2 (ĐH_A_2014). Trong mă ăt phẳng với hê ă trục tọa đô ă Oxy, cho hình vuông ABCD có điểm M là trung điểm của đoạn BC và H là điểm thuô ăc đoạn DB sao cho HB = 3DH. Viết phương trình đường thẳng AD, biết rằng M(1; 2) và H(2; -1). 9 Hướng 1. “Tìm trung điểm I của đoạn thẳng AD” Hướng 2. “Tìm hai điểm phân biêtô trên đường AD” Hướng 3. “Tìm môtô điểm trên AD và góc giữa AD với mô ôt đường thẳng cố định (HM) là không đổi” Để ý góc � AMP  45o là góc khá đặc biệt, nên khai thác theo hướng “số đo góc ở tâm bằng hai lần số đo góc nội tiếp cùng chắn một cung” ta có bài toán sau: Bài toán 3. Cho hình vuông ABCD. Gọi M là trung điểm của BC, H là điểm thuộc đường chéo BD sao cho BH = 3HD, MH cắt cạnh AD tại P. Giả sử điểm I(-1; 2) là tâm của đường tròn ngoại tiếp tam giác AMP, đường thẳng AD có phương trình 2x - y - 6 = 0. Tìm tọa độ điểm A. ĐS: A(1; -4) Xét bài toán gốc dưới một góc nhìn khác 10 Ta có bài toán sau: Bài toán. Trong mă ăt phẳng với hê ă trục tọa đô ă Oxy, cho hình vuông ABEM có G là trung điểm của EM. H và D là hình chiếu vuông góc của A và E lên BG. Gọi C là điểm đối xứng của A qua M; K là hình chiếu vuông góc của C lên đường thẳng AD. Giả sử H(-5; -5), K(9; -3) và trung điểm của đoạn thẳng AC thuô că đường thẳng có phương trình d: x – y + 10 = 0. Tìm tọa đô ă điểm A. Trong khi đó đề thi THPT Quốc gia năm 2015 như sau: Bài toán 4 (THPT QG_2015). Trong mă ăt phẳng với hê ă trục tọa đô ă Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A lên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu vuông góc của C lên đường thẳng AD. Giả sử H(-5; -5), K(9; -3) và trung điểm của cạnh AC thuô ăc đường thẳng có phương trình d: x – y + 10 = 0. Tìm tọa đô ă điểm A. Chú ý: Trong cách khai thác trên, thì tam giác vuông ABC có AC = 2AB. Trong khi đó đề thi THPT Quốc gia năm 2015 thì chỉ cần tam giác ABC vuông là đủ. Hướng 1. “Sử dụng góc nô ôi tiếp” Hướng 2. “Lâpô phương trình AK” 11 Hướng 3. “Chứng minh H là trung điểm AE” Với cách làm từ hướng 3 ta có thể phát biểu bài toán theo cách khác như sau Bài toán có thể phát biểu theo cách khác: “Cho tam giác AEC, gọi H, K lần lượt là chân đường cao hạ từ C và A lên các cạnh AE và CE. Gọi D là trực tâm của tam giác AEC, B là điểm đối xứng của D qua cạnh AE và góc BAC = 90o. Giả sử H(-5; -5), K(9; -3) và M(0; 10) là trung điểm của AC. Tìm tọa độ điểm A”. Với đề thi đại học khối B năm 2013 Bài toán 5 (ĐH_B_2013). Trong mp tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình: x + 2y - 6 = 0 và tam giác ABD có trực tâm là H(-3; 2). Tìm tọa độ các đỉnh C và D. Từ giả thiết của bài toán ta có thể vẽ thêm hình để được hình vuông AMND. Khi đó bài toán sẽ có nhiều hướng giải và nhiều cách phát biểu khác của bài toán. Nếu khai thác bài toán gốc theo hướng sau đây 12 Ta có bài toán trong đề thi HSG tỉnh Hưng Yên Năm 2015. Bài toán 6 (HSG tỉnh Hưng Yên 2015). Trong mă ăt phẳng tọa đô ă Oxy, cho hình vuông ABCD. Gọi I, K lần lượt là trung điểm của AD và BC; điểm M thuô ăc cạnh 3 5 CD sao cho MD  MC ; G là trọng tâm của tam giác BKD. Biết phương trình đường   thẳng IM: 3x - y - 11 = 0 và tọa đô ă điểm G  1;  10   . Viết phương trình đường chéo BD 3 của hình vuông ABCD. Tóm lại: Đối với một bài toán hình giải tích phẳng, ta có được bài toán gốc ban đầu là ta đã biết được cội nguồn của vấn đề, để từ đó đưa ra các hướng giải cho bài toán và có thể phát triển bài toán thành các bài toán khác đa dạng và phong phú hơn; nắm được bản chất cốt lõi của vấn đề một cách sâu sắc. Sau đây là lời giải chi tiết theo nhiều cách của một số đề thi Đại học 13 Bài toán 1 (ĐH_A_2012). Trong mă ăt phẳng tọa đô ă Oxy. Cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh CD sao cho CN =   2ND. Giả sử M  ;  và AN có phương trình 2x - y - 3 = 0. Tìm tọa độ điểm A.  2 2 11 1 Phân tích  ) A  AN : 2 x  y  3  0 +) Điểm M đã biết tọa độ nên nếu tính được đoạn AM thì coi như điểm A sẽ Biết được tọa độ nhờ bài toán tìm điểm!. Lúc này ta sẽ gắn AM vào tam giác vuông AMH với cạnh MH = d(M, AN) ta dễ dàng tính được. Như vậy nếu biết thêm một yếu tố về cạnh hoặc về góc trong tam giác vuông này thì ta sẽ tính được độ dài AM. Do các cạnh của tam giác AMH đều có thể biểu diễn thông qua các bội số của độ dài cạnh hình vuông nên ta sẽ nghĩ ngay tới việc tính góc A nhờ định lý cosin trong tam giác hay một số tính chất khác. Nên ta sẽ có một số lời giải cụ thể sau: Hướng 1. “Tìm đô ô lớn góc MAH” (cách 1). Gọi H là hình chiếu của M lên AN 3 5 2  ND  2a; NC  4a Đặt AB  6a    MB  MC  3a  MH  d  M , AN   Khi đó áp dụng định lý Pitago ta được: AM  3 5a; MN  5a; AN  2 10a AM 2  AN 2  MN 2 2  Trong AMN ta có: cos MAN= 2. AM .AN   MAN  450  MAH cân tại H  AM  2MH  +) Gọi A  t; 2t  3  AN và AM 2  2 3 10 2 (*) 45 theo (*) 2 2 2  A  1; 1 t  1 7  45  11     t     2t     t 2  5t  4  0     2 2  2  t  4  A  4;5  14 Vậy A(1; -1) hoặc A(4; 5). Hướng 2. “Tìm đô ô lớn góc MAH cách 2”. +) MH  d  M , AN   3 5 2 � ;   DAN � . +) Gọi a là đô ă dài cạnh hình vuông. Đă ăt  BAM Do ABCD là hình vuông có M, N là cố định nên tính được 1 1 tan   ; tan   . 3 2 Khi đó tan       tan   tan   1      45o 1  tan  . tan  � Vâ ăy nên MAH  45o . Tam giác AMH vuông cân tại H nên AM  MH 2  3 10 2 từ đó tìm được A. Nhận xét: Khi tính được góc A ta có thể lập phương trình đường thẳng AM qua M và tạo với AN một góc 45o. Hướng 3. “Tính AM không sử dụng yếu tố góc” (cách 1). Chứng minh được hai tam giác APH và HQM là bằng nhau. Từ đó suy ra được AH = MH và góc AHM vuông. Nên tam giác AHM vuông cân tại H do đó AM  HM 2  3 10 2 Hướng 4. “Tính AM không sử dụng yếu tố góc” (cách 2). +) MH  d  M , AN   3 5 . Đă ăt AB = a. 2 Ta có S AMN  S ABCD   S ADN  SCNM  S BAM   1 2 5a 2 a 10 ; AN  12 3 Lại có S AMN  AN .d  M ; AN   a  3 2  AM  a 5 3 10  2 2 15 Nhận thấy tam giác AMH vuông cân tại H nên bài toán có thể phát biểu theo cách khác “Cho hình vuông ABCD. Gọi M là trung điểm của cạnh BC, N là điểm trên cạnh   CD sao cho CN = 2ND. Gọi H là giao điểm của AN và BD. Giả sử M  ;  và  2 2 11 1 5  H  ; 2  . Tìm tọa độ điểm A”. 2  Bài toán 2 (ĐH_A_2014). Trong mă ăt phẳng với hê ă trục tọa đô ă Oxy, cho hình vuông ABCD có điểm M là trung điểm của đoạn AB và N là điểm thuô ăc đoạn AC sao cho AN = 3NC. Viết phương trình đường thẳng CD, biết rằng M(1; 2) và N(2; -1). Phân tích +) Yêu cầu toàn toán là lập phương trình CD. Gắn kết các dữ kiện của bài toán khi biết tọa độ hai điểm M(1; 2), N(2; -1) và AN = 3NC hướng ta đến tìm tọa độ điểm P uuuu r uuur Từ đẳng thức MN  3NP . +) Lúc này tư duy tự nhiên hướng ta tới việc tìm tọa độ một điểm khác thuộc CD hoặc một vectơ pháp tuyến hay một vectơ chỉ phương . Hướng 1. “Tìm trung điểm I của đoạn thẳng CD” +) Ta có MN  10 không đổi, gọi a (a>0) là đô ă dài cạnh của hình vuông ABCD. a 2 Tính được AM  ; AN  3 AC 3a 2  4 4 Áp dụng định lý cosin trong tam giác AMN, suy ra MN 2  5a 2 8 Do đó a = 4. Từ đây ta tính được IN  BD  2 , IM  a  4 . 4  IN  2  I . Đường thẳng CD qua I vuông góc với IM.  IM  4 Từ hê ă  Hướng 2. “Tìm hai điểm phân biêtô trên đường CD” +) Chứng minh được hai tam giác DJN và NIM bằng 16 nhau, từ đó suy ra DN  MN và DN  MN  10 . Lâ pă phương trình đường thẳng DN, đến đây tìm được D.(Có thể tính trực tiếp DN, MN, DM theo a sau đó áp dụng định lí Pitago đảo) +) Mă ăt khác uuur 1 uuuur PN PC CN 1 7      PN  NM  P  ; 2  . 3 MN MA AN 3 3  Từ hướng trình bày trên ta có kết quả sau: “Cho hình vuông ABCD, M là trung điểm của AB và N là điểm thuộc AC sao cho AN = 3NC. Khi đó tam giác DNM vuông cân tại N”. Hướng 3. “Tìm môtô điểm trên CD và góc giữa CD với mô ôt đường thẳng cố định (MN) là không đổi” +) Tìm điểm P như hướng 2. +) Đă ăt cạnh hình vuông là a, ta tính được a a a 10 , CP  ; PI  ; IM  a; PM  IP 2  IM 2  6 3 3 Do đó tính được cos   1 10 � . , với   MPI Vâ ây đường thẳng CD qua P và tạo với MP mô ât góc  . Bài toán có thể phát biểu theo cách khác: “Trong mă ât phẳng với hê â trục tọa đô â Oxy, cho hình vuông ABCD có điểm M là trung điểm của đoạn AB và N là điểm thuô âc đoạn AC sao cho AN = 3NC. Viết phương trình đường thẳng CD, biết rằng M(1; 2) và đường thẳng DN có phương trình x - 3y - 5 = 0”. Bài toán 3 (THPT QG_2015). Trong mă ăt phẳng với hê ă trục tọa đô ă Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A lên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu vuông góc của C lên đường thẳng AD. Giả sử H(-5; -5), K(9; -3) và trung điểm của cạnh AC thuô ăc đường thẳng có phương trình d: x – y + 10 = 0. Tìm tọa đô ă điểm A. Hướng 1. “Sử dụng góc nô ôi tiếp” +) Tứ giác AHKC nô iă tiếp đường tròn tâm M 17 M  d  M  0;10  .  MH  MK đường kính AC. Do vâ ăy, từ hê ă �  HAB �  HAD �  HAK � +) Lại có HKA nên tam giác AHK cân tại H  AH  HK  10 2 Từ đay suy ra hê ă   AM  MH  5 10  A  15;5  Hướng 2. “Lâpô phương trình AK” +) Tứ giác AHKC nô iă tiếp đường tròn tâm M M  d  M  0;10  .  MH  MK đường kính AC. Do vâ ăy, từ hê ă �D � B 1 1  � C � � D �  90o  H +) Ta có  H 2 2 2 1 � � o  B1  C2  90 Mà MA = MK nên HM là đường trung trực của AK, suy ra A là điểm đối xứng của K qua HM.  A  AK  AM  MH  5 10 (Hoă ăc Tọa đọ A là nghiê ăm hê ă phương trình Hướng 3. “Chứng minh H là trung điểm AE” +) Tứ giác AHKC nô iă tiếp đường tròn tâm M M  d  M  0;10  .  MH  MK đường kính AC. Do vâ ăy, từ hê ă +) Gọi E là giao điểm của AH và CK kéo dài. Từ giả thiết của bài toán, có ED là đường cao và D là trực tâm của tam giác AEC. Nên ta có ED//BA, do HB  HD  BHA  DHE Do đó H là trung điểm của AE và A thuô ăc đường tròn tâm H bán kính HK. Bài toán có thể phát biểu theo cách khác: “Cho tam giác AEC, H, K lần lượt là chân đường cao hạ từ C và A lên các cạnh AE và CE. Gọi D là trực tâm của tam giác AEC, B là điểm đối xứng của D 18 qua cạnh AE và góc BAC = 90 o. Giả sử H(-5; -5), K(9; -3) và M(0; 10) là trung điểm của AC. Tìm tọa độ điểm A”. Bài toán 4 (ĐH_B_2013). Trong mp tọa độ Oxy, cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC. Đường thẳng BD có phương trình: x + 2y - 6 = 0 và tam giác ABD có trực tâm là H(-3; 2). Tìm tọa độ các đỉnh C và D. Phân tích +) Ta viết được phương trình AC đi qua H và vuông góc với BD. Gọi BD  AC  {I } , khi đó với dữ kiện bài toán sẽ chứng minh được tam giác BHC cân tại B hay I là trung điểm của HC. Lúc này ta dễ dàng tìm được tọa độ điểm I và suy ra được tọa độ điểm C.  AD / / BC  DI  3BI  3IH  AD  3BC +) Do  Lúc này việc tìm tọa độ điểm D chuyển giải hệ: +) D  BD : x  2 y  6  0 +) DI = 3IH Hướng 1. “Điểm D cách mô ôt điểm cố định mô ôt khoảng không đổi” +) Ta viết được phương trình AC đi qua H và vuông góc với BD. +) Gọi BD  AC  I , ta sẽ chứng minh được I là trung điểm HC vì chứng minh được tam giác BHC cân tại B. +) Lúc này ta tìm được tọa độ điểm I(-2; 4) và suy ra được tọa độ điểm C(-1; 6).  AD // BC  DI  3BI  3IH  AD  3BC +) Do   D  BD : x  2 y  6  0 +) Tọa đô ă điểm D là nghiê ăm của hê ă: DI  3IH  3 5  I 2; 4     C  1;6   C  1;6  hay  .  D  4;1  D  8;7  Vậy  Hướng 2. “Lâpô phương trình đường thẳng AD” +) Nhâ ăn thấy H là trung điểm của AC nên A(-5; -2). 19 +) Góc giữa đường thẳng DA và DB bằng 45o, nên lâ pă được hai phương trình DA là 3x + y + 17 = 0 và x - 3y - 1 = 0. +) Tọa đô ă D là giao của AD và BD nên tìm được D(-8; 7) hoă ăc D(4; 1) uur uur Nhâ ăn xét: Có thể đi tìm tọa đô ă điểm B. và sử dung kết quả ID  3IB Bài toán 5 (ĐH_A_2011). Trong mp tọa độ Oxy, cho đường thẳng :x y20 2 2 và đường tròn  C  : x  y  4 x  2 y  0 . Gọi I là tâm của (C), M là điểm thuộc  . Qua M kẻ các tiếp tuyến MA, MB đến (C) (A, B là các tiếp điểm). Tìm tọa độ điểm M biết tứ giác MAIB có diện tích bằng 10. Phân tích: ) M  d : x  y  3  0  ) S MAIB  2S MBI  BI .MB  5.MB  10  MB  2 5  MI  5 Giải  I  2;1  2 2 Ta có:  C  : x  y  4 x  2 y  0    R  IB  5 Vì MA và MB là các tiếp tuyến (A, B là các tiếp điểm).  S MAIB  2S MBI  BI .MB  5.MB  10  MB  2 5  MI  MB 2  IB 2  5 Gọi M  t ; t  2    , khi đó  t  2 MI  5  MI 2  25  2 M  2; 4  t  2 2   t  3   25  t 2  t  6  0     t  3 M  3;1 Bài toán 6 (HSG tỉnh Hưng Yên 2015). Trong mă ăt phẳng tọa đô ă Oxy, cho hình vuông ABCD. Gọi I, K lần lượt là trung điểm của AD và BC; điểm M thuô ăc cạnh 3 5 CD sao cho MD  MC ; G là trọng tâm của tam giác BKD. Biết phương trình đường   thẳng IM: 3x - y - 11 = 0 và tọa đô ă điểm G  1;  10   . Viết phương trình đường chéo BD 3 của hình vuông ABCD. 20
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng