Đăng ký Đăng nhập
Trang chủ Khoa học tự nhiên Hóa học - Dầu khi Seymour carrahers polymer chemistry, seventh edition...

Tài liệu Seymour carrahers polymer chemistry, seventh edition

.PDF
729
275
106

Mô tả:

Seymour/Carraher’s Polymer Chemistry Seventh Edition ß 2006 by Taylor & Francis Group, LLC. ß 2006 by Taylor & Francis Group, LLC. Seymour/Carraher’s Polymer Chemistry Seventh Edition Charles E. Carraher, Jr. Florida Atlantic University Boca Raton, Florida, U.S.A. ß 2006 by Taylor & Francis Group, LLC. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 1-4200-5102-4 (Hardcover) International Standard Book Number-13: 978-1-4200-5102-5 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Carraher, Charles E. Seymour/Carraher’s polymer chemistry. -- Seventh edition / by Charles E. Carraher, Jr. p. cm. Includes bibliographical references and index. ISBN-13: 978-1-4200-5102-5 ISBN-10: 1-4200-5102-4 1. Polymers. 2. Polymerization. I. Seymour, Raymond Benedict, 1912- II. Title. III. Title: Polymer chemistry. QD381.S483 2007 547’.7--dc22 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com ß 2006 by Taylor & Francis Group, LLC. 2007002479 Foreword Polymer science and technology have developed tremendously over the last few decades, and the production of polymers and plastics products has increased at a remarkable pace. By the end of 2000, nearly 200 million tons per year of plastic materials were produced worldwide (about 2% of the wood used, and nearly 5% of the oil harvested) to fulfill the ever-growing needs of the plastic age; in the industrialized world plastic materials are used at a rate of nearly 100 kg per person per year. Plastic materials with over $250 billion per year contribute about 4% to the gross domestic product in the United States. Plastics have no counterpart in other materials in terms of weight, ease of fabrication, efficient utilization, and economics. It is no wonder that the demand and the need for teaching in polymer science and technology have increased rapidly. To teach polymer science, a readable and up-to-date introductory textbook is required that covers the entire field of polymer science, engineering, technology, and the commercial aspect of the field. This goal has been achieved in Carraher’s textbook. It is eminently useful for teaching polymer science in departments of chemistry, chemical engineering, and material science, and also for teaching polymer science and technology in polymer science institutes, which concentrate entirely on the science and technologies of polymers. This seventh edition addresses the important subject of polymer science and technology, with emphasis on making it understandable to students. The book is ideally suited not only for graduate courses but also for an undergraduate curriculum. It has not become more voluminous simply by the addition of information—in each edition less important subjects have been removed and more important issues introduced. Polymer science and technology is not only a fundamental science but also important from the industrial and commercial point of view. The author has interwoven discussion of these subjects with the basics in polymer science and technology. Testimony to the high acceptance of this book is that early demand required reprinting and updating of each of the previous editions. We see the result in this new significantly changed and improved edition. Otto Vogl Herman F. Mark Professor Emeritus Department of Polymer Science and Engineering University of Massachusetts Amherst, Massachusetts ß 2006 by Taylor & Francis Group, LLC. ß 2006 by Taylor & Francis Group, LLC. Preface As with most science, and chemistry in particular, there is an explosive broadening and importance of the application of foundational principles of polymers. This broadening is seen in ever-increasing vistas allowing the promotion of our increasingly technologically dependent society and solutions to society’s most important problems in areas such as the environment and medicine. Some of this broadening is the result of extended understanding and application of already known principles but also includes the development of basic principles and materials known to us hardly a decade ago. Most of the advancements in communication, computers, medicine, air and water purity are linked to macromolecules and a fundamental understanding of the principles that govern their behavior. Much of this revolution is of a fundamental nature and is explored in this seventh edition. The text contains these basic principles and also touches on their application to real-life situations. Technology is the application of scientific principles. In polymers there is little if any division between science and technology. Polymers are found in the organic natural world as the building blocks for life itself. They are also found as inorganic building blocks that allow construction of homes, skyscrapers, and roads. Synthetic polymers serve as basic building blocks of society now and in the future. This text includes all three of these critical segments of polymeric materials. A basic understanding of polymers is essential to the training of today’s science, biomedical, and engineering students. Polymer Chemistry complies with the American Chemical Society’s Committee on Professional Training old and revised guidelines as an advanced or in-depth course. It naturally integrates and interweaves the important core areas since polymers are critical to all of the core areas, which in turn contribute to the growth of polymer science. Most of the fundamental principles of polymers extend and enhance similar principles found throughout the undergraduate and graduate training of students. This allows students to integrate their chemical knowledge illustrating the connection between fundamental and applied chemical information. Thus, along with the theoretical information, application is integrated as an essential part of the information. As in other areas such as business and medicine, short case studies are integrated as historical material. While this text is primarily written as an introductory graduate-level text, it can also be used as an undergraduate text, or as an introductory undergraduate–graduate text. The topics are arranged so that the order and inclusion or exclusion of chapters or parts of chapters will still allow students an adequate understanding of the science of polymers. Most of the chapters begin with the theory followed by application. The most important topics are generally at the beginning of the chapter followed by important, but less critical, sections. Some may choose to study the synthesis-intense chapters first, others the analytical= analysis=properties chapters, and yet others to simply read the chapters as they appear in the book. All of the elements of an introductory text with synthesis, property, application and characterization are present, allowing this to be the only polymer course taken by an individual or the first in a series of polymer-related courses taken by the student. This edition continues in the ‘‘user-friendly’’ mode with special sections in each chapter containing definitions, learning objectives, questions, and further reading. Application and theory are integrated so that they reinforce one another. There is a continued emphasis on pictorializing, reinforcing, interweaving, and integrating basic concepts. The initial chapter is short, allowing students to become acclimated. Other chapters can be covered in about a ß 2006 by Taylor & Francis Group, LLC. week’s time or less. Where possible, difficult topics are distributed and reinforced over several topics. The basic principles that apply to synthetic polymers apply equally to inorganic and biological polymers and are present in each of the chapters covering these important polymer groupings. The updating of analytical, physical, and special characterization techniques continues. The chapter on biological polymers has been expanded so that it is now two chapters. The chapter on organometallic and inorganic polymers has likewise been greatly upgraded. An additional chapter covering the important area of composites has been added. Topics such as blends, multiviscosity oils, cross-linking, microfibers, protein folding, protein site identification, aerogels, carbon nanotubes, breakage of polymer chains, permeability and diffusion, mass spectroscopy, polyethers and epoxies, synthetic rubbers, poly(methyl methacrylate), polyacrylonitrile, and polyurethanes have been added or greatly enhanced. A number of new selected topics have been added including nonlinear optical behavior, photo physics, drug design and activity, flame retardants, textiles, water-soluble polymers, hydrogels, and anaerobic adhesives. The emphasis on the molecular behavior of materials has been expanded as has been the emphasis on nanotechnology and nanomaterials. The practice of including a number of appendices has continued, including an enlargement of the trade names appendix. ß 2006 by Taylor & Francis Group, LLC. Acknowledgments The author gratefully acknowledges the contributions and assistance of the following in preparing this text: John Droske, Charles Pittman, Edward Kresge, Gerry Kirshenbaum, Sukumar Maiti, Alan MacDiarmid, Les Sperling, Eckhard Hellmuth, Mike Jaffe, Otto Vogl, Thomas Miranda, Murry Morello, and Graham Allan; and a number of our children who assisted in giving suggestions for the text: Charles Carraher III, Shawn Carraher, Colleen Carraher-Schwarz, Erin Carraher, and Cara Carraher—to Erin for discussions on materials, Cara for her help with the biomedical material, and Shawn for his help in relating the business and industrial aspects. Special thanks to Gerry Kirshenbaum for his kind permission to utilize portions of my articles that appeared in Polymer News. This book could not have been written except for those who have gone before us, especially Raymond Seymour, Herman Mark, Charles Gebelein, Paul Flory, and Linus Pauling; all of these friends shepherded and helped me. My thanks to them. I thank Girish Barot, Amitabh Battin, and Randy Doucette, for their assistance in proofing. I also thank my wife Mary Carraher for her help in proofing and allowing this edition to be written. ß 2006 by Taylor & Francis Group, LLC. ß 2006 by Taylor & Francis Group, LLC. Table of Contents Chapter 1 Introduction to Polymers 1.1 History of Polymers 1.2 Why Polymers? 1.3 Today’s Marketplace 1.4 Summary Glossary Exercises Further Reading General Encyclopedias and Dictionaries Chapter 2 Polymer Structure (Morphology) 2.1 Stereochemistry of Polymers 2.2 Molecular Interactions 2.3 Polymer Crystals 2.4 Amorphous Bulk State 2.5 Polymer Structure–Property Relationships 2.6 Cross-Linking 2.7 Crystalline and Amorphous Combinations 2.8 Summary Glossary Exercises Additional Reading Chapter 3 Molecular Weight of Polymers 3.1 Introduction 3.2 Solubility 3.3 Average Molecular Weight Values 3.4 Fractionation of Polydisperse Systems 3.5 Chromatography 3.6 Colligative Molecular Weights 3.6.1 Osmometry 3.6.2 End-Group Analysis 3.6.3 Ebulliometry and Cryometry 3.7 Light-Scattering Photometry 3.8 Other Techniques 3.8.1 Ultracentrifugation 3.8.2 Mass Spectrometry 3.9 Viscometry 3.10 Summary ß 2006 by Taylor & Francis Group, LLC. 1 1 8 12 16 17 17 17 18 19 20 27 34 38 38 41 42 45 46 47 48 49 49 51 53 59 59 62 62 64 64 64 70 70 72 72 78 Glossary Exercises Further Reading 79 80 82 Chapter 4 Polycondensation Polymers (Step-Reaction Polymerization) 4.1 Comparison between Polymer Type and Kinetics of Polymerization 4.2 Introduction 4.3 Stepwise Kinetics 4.4 Polycondensation Mechanisms 4.5 Polyesters 4.6 Polycarbonates 4.7 Synthetic Polyamides 4.8 Polyimides 4.9 Polybenzimidazoles and Related Polymers 4.10 Polyurethanes and Polyureas 4.11 Polysulfides 4.12 Polyethers and Epoxys 4.13 Polysulfones 4.14 Poly(ether ketone) and Polyketones 4.15 Phenolic and Amino Plastics 4.16 Furan Resins 4.17 Synthetic Routes 4.18 Liquid Crystals 4.19 Microfibers 4.20 General Stepwise Polymerization 4.21 Summary Glossary Exercises Further Reading 83 83 88 88 92 94 100 103 109 110 110 113 114 117 119 120 122 122 123 127 128 130 131 133 134 Chapter 5 Ionic Chain-Reaction and Complex Coordination Polymerization (Addition Polymerization) 5.1 Chain-Growth Polymerization—General 5.2 Cationic Polymerization 5.3 Anionic Polymerization 5.4 Stereoregularity and Stereogeometry 5.5 Polymerization with Complex Coordination Catalysts 5.6 Soluble Stereoregulating Catalysis 5.7 Polyethylenes 5.8 Polypropylene 5.9 Polymers from 1,4-Dienes 5.10 Polyisobutylene 5.11 Metathesis Reactions 5.12 Zwitterionic Polymerization 5.13 Isomerization Polymerization 5.14 Precipitation Polymerization 5.15 Summary ß 2006 by Taylor & Francis Group, LLC. 135 136 137 143 148 148 150 153 158 162 164 165 165 166 167 167 Glossary Exercises Further Reading 168 169 170 Chapter 6 Free Radical Chain Polymerization (Addition Polymerization) 6.1 Initiators for Free Radical Chain Polymerization 6.2 Mechanism for Free Radical Chain Polymerization 6.3 Chain Transfer 6.4 Polymerization Techniques 6.4.1 Bulk Polymerization 6.4.2 Suspension Polymerization 6.4.3 Solution Polymerization 6.4.4 Emulsion Polymerization 6.5 Fluorine-Containing Polymers 6.6 Polystyrene 6.7 Poly(vinyl chloride) 6.8 Poly(methyl methacrylate) 6.9 Poly(vinyl alcohol) and Poly(vinyl acetals) 6.10 Poly(acrylonitrile) 6.11 Solid State Irradiation Polymerization 6.12 Plasma Polymerizations 6.13 Summary Glossary Exercises Further Reading 173 173 177 183 185 185 187 187 187 190 193 194 197 199 200 201 202 203 203 204 205 Chapter 7 Copolymerization 7.1 Kinetics of Copolymerization 7.2 The Q–e Scheme 7.3 Commercial Copolymers 7.4 Block Copolymers 7.5 Graft Copolymers 7.6 Elastomers 7.7 Thermoplastic Elastomers 7.8 Blends 7.8.1 Immiscible Blends 7.8.2 Miscible Blends 7.9 Networks—General 7.10 Polymer Mixtures 7.11 Dendrites 7.12 Ionomers 7.13 Viscosity Modifiers 7.14 Summary Glossary Exercises Further Reading 207 208 212 213 214 216 216 218 221 221 223 224 225 226 228 229 233 234 235 236 ß 2006 by Taylor & Francis Group, LLC. Chapter 8 Composites and Fillers 8.1 Fillers 8.2 Types of Composites 8.3 Long Fiber Composites—Theory 8.4 Fibers and Resins 8.5 Long Fiber Composites—Applications 8.6 Nanocomposites 8.7 Fabrication 8.7.1 Processing of Fiber-Reinforced Composites 8.7.2 Structural Composites 8.7.3 Laminating 8.7.4 Particulate 8.8 Metal–Matrix Composites 8.9 Summary Glossary Exercises Further Reading 237 237 238 240 242 244 248 251 251 251 252 252 253 256 256 257 257 Chapter 9 Naturally Occurring Polymers: Plants 9.1 Polysaccharides 9.2 Cellulose 9.2.1 Paper 9.3 Cellulose-Regenerating Processes 9.4 Esters and Ethers of Cellulose 9.4.1 Inorganic Esters 9.4.2 Organic Esters 9.4.3 Organic Ethers 9.5 Starch 9.6 Homopolysaccharides 9.6.1 Fructans 9.6.2 Chitin and Chitosan 9.6.3 Others 9.7 Heteropolysaccharides 9.8 Synthetic Rubbers 9.9 Naturally Occurring Polyisoprenes 9.10 Resins 9.11 Balloons 9.12 Lignin 9.13 Melanins 9.14 Summary Glossary Exercises Further Reading 259 260 261 263 265 268 268 269 270 272 275 277 278 279 279 283 289 291 292 293 295 296 297 298 299 Chapter 10 Naturally Occurring Polymers: Animals 10.1 Proteins 10.2 Levels of Protein Structure 301 302 305 ß 2006 by Taylor & Francis Group, LLC. 10.2.1 10.2.2 Primary Structure Secondary Structure 10.2.2.1 Keratins 10.2.2.2 Silk 10.2.2.3 Wool 10.2.2.4 Collagen 10.2.2.5 Elastin 10.2.3 Tertiary Structure 10.2.3.1 Globular Proteins 10.2.4 Quaternary Structure 10.3 Nucleic Acids 10.4 Flow of Biological Information 10.5 RNA Interference 10.6 Polymer Structure 10.7 Protein Folding 10.8 Genetic Engineering 10.9 DNA Profiling 10.10 The Human Genome: General 10.11 Chromosomes 10.12 Proteomics 10.13 Protein Site Activity Identification 10.14 Summary Glossary Exercises Further Reading 305 305 308 309 311 311 312 312 312 314 316 321 323 325 328 330 333 335 341 352 354 354 355 358 358 Chapter 11 Organometallic and Inorganic–Organic Polymers 11.1 Introduction 11.2 Inorganic Reaction Mechanisms 11.3 Condensation Organometallic Polymers 11.3.1 Polysiloxanes 11.3.2 Organotin and Related Condensation Polymers 11.4 Coordination Polymers 11.4.1 Platinum-Containing Polymers 11.5 Addition Polymers 11.5.1 Ferrocene-Containing and Related Polymers 11.5.2 Polyphosphazenes and Related Polymers 11.5.3 Boron-Containing Polymers 11.6 Ion-Exchange Resins 11.7 Summary Glossary Exercises Further Reading 361 361 362 364 365 368 370 372 373 374 375 377 378 380 380 380 381 Chapter 12 Inorganic Polymers 12.1 Introduction 12.2 Portland Cement 12.3 Other Cements 383 383 383 386 ß 2006 by Taylor & Francis Group, LLC. 12.4 Silicates 12.4.1 Network 12.4.2 Layer 12.4.3 Chain 12.5 Silicon Dioxide (Amorphous) 12.6 Kinds of Amorphous Glass 12.7 Safety Glass 12.8 Lenses 12.9 Sol–Gel 12.9.1 Aerogels 12.10 Silicon Dioxide (Crystalline Forms)—Quartz Forms 12.11 Silicon Dioxide in Electronic Chips 12.12 Silicon Dioxide in Optical Fibers 12.13 Asbestos 12.14 Polymeric Carbon—Diamond 12.15 Polymeric Carbon—Graphite 12.16 Internal Cyclization—Carbon Fibers and Related Materials 12.17 Carbon Nanotubes 12.17.1 Structures 12.18 Bitumens 12.19 Carbon Black 12.20 Polysulfur 12.21 Ceramics 12.22 High-Temperature Superconductors 12.22.1 Discovery of the 123-Compound 12.22.2 Structure of the 123-Compound 12.23 Zeolites 12.24 Summary Glossary Exercises Further Reading Chapter 13 Testing and Spectrometric Characterization of Polymers 13.1 Spectronic Characterization of Polymers 13.1.1 Infrared Spectroscopy 13.1.2 Raman Spectroscopy 13.1.3 Nuclear Magnetic Resonance Spectroscopy 13.1.4 Nuclear Magnetic Resonance Applications 13.1.5 Electron Paramagnetic Resonance Spectroscopy 13.1.6 X-Ray Spectroscopy 13.2 Surface Characterization 13.2.1 Auger Electron Spectroscopy and X-Ray Photoelectron Spectroscopy 13.2.2 Near-Field Scanning Optical Microscopy 13.2.3 Electron Microscopy 13.2.4 Scanning Probe Microscopy 13.2.5 Secondary Ion Mass Spectroscopy 13.3 Amorphous Region Determinations 13.4 Mass Spectrometry ß 2006 by Taylor & Francis Group, LLC. 386 389 389 390 390 393 394 396 398 399 401 403 403 404 405 405 407 408 409 414 415 417 417 419 419 419 420 421 422 423 424 425 426 426 427 427 429 429 430 430 431 431 432 432 435 436 436 Thermal Analysis Thermal Property Tests 13.6.1 Softening Range 13.6.2 Heat Deflection Temperature 13.6.3 Glass Transition Temperatures 13.6.4 Thermal Conductivity 13.6.5 Thermal Expansion 13.7 Flammability 13.8 Electrical Properties: Theory 13.9 Electric Measurements 13.9.1 Dielectric Constant 13.9.2 Electrical Resistance 13.9.3 Dissipation Factor and Power Loss 13.9.4 Electrical Conductivity and Dielectric Strength 13.10 Optical Properties Tests 13.10.1 Index of Refraction 13.10.2 Optical Clarity 13.10.3 Absorption and Reflectance 13.11 Weatherability 13.12 Chemical Resistance 13.13 Measurement of Particle Size 13.14 Measurement of Adhesion 13.15 Permeability and Diffusion 13.16 Summary Glossary Exercises Further Reading 437 439 440 440 440 441 442 442 443 445 446 446 446 447 448 449 449 450 450 450 451 452 453 455 456 456 457 Chapter 14 Rheology and Physical Tests 14.1 Rheology 14.1.1 Rheology and Physical Tests 14.1.2 Response Time 14.2 Typical Stress–Strain Behavior 14.3 Stress–Strain Relationships 14.4 Specific Physical Tests 14.4.1 Tensile Strength 14.4.2 Tensile Strength of Inorganic and Metallic Fibers and Whiskers 14.4.3 Compressive Strength 14.4.4 Impact Strength 14.4.5 Hardness 14.4.6 Brinell Hardness 14.4.7 Rockwell Hardness 14.4.8 Shear Strength 14.4.9 Abrasion Resistance 14.4.10 Failure 14.5 Summary Glossary Exercises Further Reading 459 459 462 465 465 469 471 471 473 474 474 475 476 476 478 478 478 479 479 480 481 13.5 13.6 ß 2006 by Taylor & Francis Group, LLC. Chapter 15 Additives 15.1 Plasticizers 15.2 Antioxidants 15.3 Heat Stabilizers 15.4 Ultraviolet Stabilizers 15.5 Flame Retardants 15.6 Colorants 15.7 Curing Agents 15.8 Antistatic Agents—Antistats 15.9 Chemical Blowing Agents 15.10 Compatibilizers 15.11 Impact Modifiers 15.12 Processing Aids 15.13 Lubricants 15.14 Microorganism Inhibitors 15.15 Summary Glossary Exercises Further Reading 483 484 487 489 489 490 491 491 492 492 492 492 492 493 493 493 494 495 495 Chapter 16 Reactions on Polymers 16.1 Reactions with Polyolefines and Polyenes 16.2 Reactions of Aromatic and Aliphatic Pendant Groups 16.3 Degradation 16.4 Cross-Linking 16.5 Reactivities of End Groups 16.6 Supramolecules and Self-Assembly 16.7 Transfer and Retention of Oxygen 16.8 Nature’s Macromolecular Catalysts 16.9 Mechanisms of Energy Absorption 16.10 Breakage of Polymeric Materials 16.11 Summary Glossary Exercises Further Reading 497 497 498 499 501 503 504 511 515 519 521 523 523 524 524 Chapter 17 Synthesis of Reactants and Intermediates for Polymers 17.1 Monomer Synthesis from Basic Feedstocks 17.2 Reactants for Step-Reaction Polymerization 17.3 Synthesis of Vinyl Monomers 17.4 Synthesis of Free Radical Initiators 17.5 Summary Glossary Exercises Further Reading 525 525 530 536 540 542 542 543 543 ß 2006 by Taylor & Francis Group, LLC. Chapter 18 Polymer Technology 18.1 Fibers 18.1.1 Polymer Processing—Spinning and Fiber Production 18.1.1.1 Melt Spinning 18.1.1.2 Dry Spinning 18.1.1.3 Wet Spinning 18.1.1.4 Other Spinning Processes 18.1.2 Nonspinning Fiber Production 18.1.2.1 Natural Fibers 18.2 Elastomers 18.2.1 Elastomer Processing 18.3 Films and Sheets 18.3.1 Calendering 18.4 Polymeric Foams 18.5 Reinforced Plastics (Composites) and Laminates 18.5.1 Composites 18.5.2 Particle-Reinforced Composites—Large-Particle Composites 18.5.3 Fiber-Reinforced Composites 18.5.3.1 Processing of Fiber-Reinforced Composites 18.5.4 Structural Composites 18.5.4.1 Laminating 18.6 Molding 18.6.1 Injection Molding 18.6.2 Blow Molding 18.6.3 Rotational Molding 18.6.4 Compression and Transfer Molding 18.6.5 Thermoforming 18.7 Casting 18.8 Extrusion 18.9 Coatings 18.9.1 Processing 18.10 Adhesives 18.11 Summary Glossary Exercises Further Reading 545 549 549 550 551 552 552 553 553 554 554 557 558 559 559 559 559 560 561 561 562 562 563 565 567 567 569 571 571 572 573 575 578 578 580 581 Chapter 19 Selected Topics 19.1 Conductive Polymeric Materials 19.1.1 Photoconductive and Photonic Polymers 19.1.2 Electrically Conductive Polymers 19.1.3 Nanowires 19.2 Nonlinear Optical Behavior 19.3 Photophysics 19.4 Drug Design and Activity 19.5 Synthetic Biomedical Polymers 19.5.1 Dentistry 583 583 583 585 590 591 591 593 595 599 ß 2006 by Taylor & Francis Group, LLC.
- Xem thêm -

Tài liệu liên quan