Rèn kĩ năng giải thành thạo các dạng toán giải phương trình vô tỉ

  • Số trang: 14 |
  • Loại file: DOC |
  • Lượt xem: 13 |
  • Lượt tải: 0
hoanggiang80

Đã đăng 24000 tài liệu

Mô tả:

A. ĐẶT VẤN ĐỀ I. LỜI MỞ ĐẦU: Lớp 9 là lớp cuối cấp của bậc THCS, học hết lớp 9, các em có kĩ năng giải thành thạo các dạng toán đại số và hình học cơ bản như: Tính tỉ lệ, tính diện tích, tính thể tích, giải phương trình bậc nhất một ẩn, phương trình bậc hai một ẩn, thực hành tính toán trong đời sống.... Nhưng học sinh lại rất lúng túng khi giải phương trình vô tỉ. Trong chương trình toán THCS, SGK không đưa ra lí thuyết cụ thể về phương pháp giải phương trình vô tỉ, nhưng trong hệ thống bài tập lại có đề cập đến. Các bài toán dạng này có nhiều trong các loại sách phát triển, nâng cao, đề thi học sinh giỏi, đề thi vào trường chuyên và PTTH.... Do đó cần phải hướng dẫn cho học sinh Lớp 9 biết cách giải các bài tập dạng này. Do vậy trong quá trình giảng dạy, giáo viên cần thông qua hệ thống bài tập để học sinh nắm được khái niệm về phương trình vô tỉ, có kỹ năng thành thạo, vận dụng những kiến thức đã học khi giải chúng, đặc biệt giúp các em tránh được sai lầm trong khi giải toán loại này. Để giúp học sinh có kiến thức, có kĩ năng giải thành thạo các dạng toán giải phương trình vô tỉ, trong quá trình giảng dạy bản thân tôi đã hệ thống lại các phương pháp và bài tập để vận dụng. Rất mong được sự quan tâm, đóng góp ý của đồng nghiệp để đề tài mang lại hiệu quả cao trong việc ứng dụng vào thực tế giảng dạy. II. THỰC TRẠNG CỦA VẤN ĐỀ NGHIÊN CỨU: 1, Thực trạng: - Đa số HS trong lớp là con em gia đình thuần nông, ngoài giờ học trên lớp các em còn phải lao động phụ giúp gia đình. Do đó các em rất ít thời gian tự học ở nhà. - Một số học sinh coi nhẹ việc học, lười học dẫn đến hổng kiến thức ở các lớp dưới và không nắm vững kiến thức trên lớp. 1 - Một số phụ huynh chưa quan tâm đúng mức đến việc học của con em mình. - Một số em gia đình có hoàn cảnh kinh tế khó khăn, không có tài liệu, sách nâng cao để nghiên cứu. Do đó có ảnh hưởng rất nhiều đến việc học của các em. - Đa số học sinh chưa nắm vững khái niệm và kiến thức để giải phương trình vô tỉ. Học sinh vận dụng các kiến thức đã học vào giải phương trình vô tỉ còn hạn chế, chưa nắm vững các phương pháp giải phương trình vô tỉ. - Với mỗi bài toán giải phương trình vô tỉ, nhiều học sinh không xác định được cách làm, không biết áp dụng phương pháp nào. - Một số ít học sinh nắm được phương pháp giải một vài dạng bài tập về phương trình vô tỉ nhưng trong quá trình thực hiện còn hay nhầm dấu, sai điều kiện hoặc không có điều kiện .... Dẫn đến bài giải chưa hoàn chỉnh. 2, Kết quả của thực trạng trên:. Qua khảo sát 34 học sinh lớp 9A trường THCS Phúc Thịnh - Ngọc Lặc về giải phương trình vô tỉ, thu được kết quả như sau: Tổng Giỏi SL Khá SL Trung bình SL % Yếu SL % % % số 34 0 0 2 5,88 11 32,35 21 61,77 Từ những thực trạng trên, để việc giảng dạy đạt kết quả tốt hơn, tôi đã mạnh dạn hệ thống lại các dạng bài tập phương trình vô tỉ và phương pháp giải từng dạng để học sinh tiếp thu dễ dàng hơn. B. GIẢI QUYẾT VẤN ĐỀ I. CÁC GIẢI PHÁP THỰC HIỆN: - Sử dụng từng phương pháp để giải quyết trong từng bài toán cụ thể. - Kết hợp giữa SGK, SBT, SGV và tài liệu tham khảo để giải quyết tiết dạy. 2 - Thông qua các tài liệu giảng dạy, tài liệu tham khảo, phân tích so sánh, vận dụng và thực nghiệm trong các tiết dạy. Từ đó rút ra phương pháp dạy phù hợp với việc đổi mới SGK hiện nay. II. CÁC BIỆN PHÁP ĐỂ TỔ CHỨC THỰC HIỆN: Có nhiều phương pháp giải phương trình vô tỉ, mỗi phương pháp thường phù hợp với một dạng bài nhất định. Tuy nhiên không loại trừ khả năng một phương trình chứa căn thức có thể giải theo nhiều cách khác nhau. Để giúp học sinh nắm vững kiến thức về giải phương trình vô tỉ, trong quá trình giảng dạy, tôi đã cho học sinh nắm được một số phương pháp giải phương trình vô tỉ thông qua nhiều dạng bài tập. Để phù hợp với mọi đối tượng học sinh trong lớp tôi giới thiệu các phương pháp giải thông qua hệ thống bài tập đã được sắp xếp từ dễ đến khó và đặc biệt phải cho học sinh nắm vững các kiến thức cơ bản sau: - A có nghĩa  A  0 - Hằng đẳng thức -  - A A A2 = A  = A với mọi A  2 = A nếu A  0 - A Nếu A < 0 - Các hằng đẳng thức đáng nhớ: (A + B)2 = A2 + 2AB + B2 (1) (A - B)2 = A2 + 2AB + B2 (2) A2 - B2 = (A -B)(A + B) (3) (A + B)3= A3 + 3A2B + 3AB2 + B3 (4) (A - B 3 = A3 - 3A2B + 3AB2 - B3 (5) A3 + B3 = (A + B)(A2 - AB + B2) (6) A3 - B3 = (A - B)(A2 + AB + B2) (7) 1, Phương trình dạng  f (x)  2 = g(x) và  f (x)  2 +  h(x)  2 = g(x): Cách giải: Đưa phương trình về dạng chứa ẩn trong dấu giá trị tuyệt đối. 3 *  f (x)  2 g(x)  *  f (x)  2 + f ( x) = g(x) (Phương trình này đã học ở lớp 8).  h(x)  2 = g(x)  f ( x )  h( x) = g(x) Ví dụ 1: Giải phương trình: Giải:  x  2 2 = 4  x  2 2 = 4  x 2 (1) =4  x  2 4  x 6      x  2  4  x  2 Tập nghiệm của phương trình (1) là: S =   2;6 Hình thành cho học sinh phương pháp giải các phương trình chứa căn thức mà biểu thức dưới dấu căn có dạng của hằng đẳng thức A2 thì đưa về phương trình có ẩn trong giá trị tuyệt đối và giải tiếp như đã làm ở các lớp dưới. Để học sinh giỏi có thể phát huy khả năng của mình, tôi ra thêm các bài tập sau: Ví dụ 2: Giải phương trình: x 2  6x  9 = 3x - 1 (2) Trong bài này đòi hỏi học sinh phải biến đổi biểu thức trong dấu căn thành dạng bình phương của một nhị thức rồi mới tiếp tục giải như các bài tập trước. Giải: x 2  6x  9  x 3 = 3x - 1  ( x  3) 2 = 3x - 1 = 3x - 1 * Nếu x + 3  0  x  - 3, ta được: x + 3 = 3x - 1  x = 2 (TMĐK) * Nếu x + 3 < 0  x < - 3, ta được: - x - 3 = 3x -1  x = - 0,5 không thoã mãn x < - 3 nên không phải là nghiệm. Tập nghiệm của phương trình (2) là: S =  2 Ví dụ 3: Giải phuơng trình : x 2 x 1 =2 x 1 Giải: ĐK x 1 4 . (3) x 2  =2 x 1 x  1 1 * Nếu = 2  x 1 1 2 =2 x 1 (3’) x 1  0  x > 2 thì phương trình (3’) trở thành: x 1 1  -1 = x  1  1 2 x  1 * Nếu 1 x 2 1   x 1 phương trình vô nghiệm. x 1 thì phương trình (3’) trở thành :  x  1 2 x  1 1 9 ta được: x - 1 =  x= x 1 10 9 1 3 . Hai vế đều không âm, bình phương hai vế . Thoã mãn 1 x 2 . Tập nghiệm của phương trình (3) là: S =  10     9 Để giải được phương trình (3) này đòi hỏi học sinh phải sáng tạo trong việc biến đổi biểu thức dưới dấu căn về dạng bình phương một biểu thức đó là thêm bớt cùng một lượng. Cũng qua bài tập lưu ý học sinh việc đặt điều kiện cho các biểu thức có nghĩa. Ví dụ 4: Giải phương trình : x 2 2x  5  x 2 2 x  5 7 2 (4) Yêu cầu học sinh nhận xét về phương trình (4), nó có gì giống và khác với phương trình (3). Có thể áp dụng cách giải phương trình (3) để giải được không ? Việc biến đổi biểu thức dưới dấu căn về dạng bình phương có gì khó khăn ? Nếu học sinh không tự giải được giáo viên giúp đỡ các em bằng gợi ý. Nhân hai vế của phương trình (2 ) với Giải: Với x  *  2x  5 1  5 2 ta có (3)  Nếu x > 3 thì phương trình (3' ) thoả mãn x > 3 * 5 x 3 2 Nếu thì (3' ) . 2x  4  2 2x  5  2 x  5  1 14  x 27 2 2 x  4  2 2 x  5 14 (4' )  2 2 x  5 14  0 2 x  5 12  Vô nghiệm Tập nghiệm của phương trình (4) là: S = {27} 5 Qua ví dụ này lưu ý học sinh cần linh hoạt trong quá trình biến đổi biểu thức dưới dấu căn về dạng bình phương một biểu thức đôi khi phải thêm bớt hoặc nhân cả hai vế với cùng một số khác 0. Ví dụ 5: Giải phương trình: x 2  4x  4   x 2  2 x 2  x 2 2 x 2 * Nếu x 2 thì (5’) 4  4 x  x 2 . ĐK : x 0 (5) (5’)  x 2 x 0 Đến đây học sinh có thể giải phương trình này bằng cách đặt ẩn phụ x  X 0 để đưa về phương trình bậc hai hoặc phân tích vế trái thành tích đưa về phương trình tích và giải được x = 1 ( loại ). * Nếu 0  x < 2 thì (5’ )  2 x x 0  x 4 (loại). Vậy phương trình (5) vô nghiệm. 2, Phương trình dạng f (x ) + g ( x) = h( x ) f ( x) = g(x); f ( x) + g ( x) = h(x) và : Cách giải: Nâng lên luỹ thừa. * f (x )  g ( x) 0 = g(x)   2   f ( x )  g ( x )  * f ( x) + g ( x) = h(x) và f ( x) + g ( x) = h( x) . Tìm điều có nghĩa của  f ( x ) 0  phương trình:  g ( x) 0 .  h( x) 0  Giải phương trình rồi đối chiếu với điều kiện để loại nghiệm không thích hợp. Nghiệm thích hợp là nghiệm của phương trình đã cho. Ví dụ 6: Giải phương trình: 2( x  2) =6 (6) 6 Giải: ĐK: x  - 2. 2( x  2) = 6  2(x + 2) = 62  x = 16 TMĐK Tập nghiệm của phương trình (6) là: S = {16} Đây là phương trình có chứa căn thức dưới dấu căn, không có dạng bình phương một biểu thức nên ta biến đổi chúng bằng cách bình phương hai vế của phương trình. Khi bình phương hai vế cần chú ý đặt điều kiện để căn thức có nghĩa và điều kiện để bình phương hai vế không âm. Có thể khắc sâu điều này bằng ví dụ sau: Ví dụ 7: Giải phương trình: (7) x  3 x  5 Nếu chỉ đặt điều kiện cho căn thức có nghĩa tức x  3. Sau khi bình phương hai vế và giải ta được : x - 3 = ( x - 5 )2  x1 7; x 2 4 .  x 2  11x  28 0 Nhưng x2 = 4 không phải là nghiệm của phương trình (7) Thật vậy : Với x = 4 , vế trái bằng 1 còn vế phải bằng -1. Do vậy để tránh sai lầm trên ta có thể làm theo hai cách. Thử lại các kết quả tìm được hoặc đặt điều kiện để hai vế không âm rồi mới bình phương. Đối với học sinh khá nên cho học sinh tìm hiểu vì sao xuất hiện nghiệm ngoại lai x2 = 4 ? Phương trình nào là phương trình hệ quả ? Bài tập trên nên giải như sau : x  3 x  5 (7) Điều kiện để căn thức có nghĩa với x 5 thì phương trình (7)  ( x  3) ( x  5) 2 giải ra ta được: x1 = 7 thoả mãn ĐK x 5 . ` x2 = 4 không thoả mãn ĐK x 5 nên bị loại. Tập nghiệm của phương trình là: S =  7 Sau khi khắc sâu cho học sinh những vấn đề trên, cho học sinh luyện tập bằng những ví dụ khác ở mức độ khó hơn. Ví dụ 8: 7 Giải phương trình 2x  3  x  1 1 . ĐK x  1 (8) Nếu tiến hành bình phương 2 vế ngay thì học sinh sẽ vấp phải khó khăn đó là đặt điều kiện cho 2 vế không âm tương đối phức tạp để đơn giản nên chuyển  x 1 (8)  sang vế phải, lúc bấy giờ ta có phương trình với hai vế đều không âm: 2 x  3 1  x 1  2 x  3 1  2 x  1  x  1  x  1 2 x  1 đk: x  1  x 2  2 x  1 4( x  1) x2 - 2x - 3 = 0  x  1   1  x 3 . Tập nghiệm của phương trình là: S = {-1; 3} Ví dụ 9: Giải phương trình: 2x 1  . (9) 2x  7  x Giải:  2x 1 0 7  ĐK:  2x  7 0  x   x 0 2  2x 1  2x  7  x  2x  1  2x  7   2x + 1 = 2x - 7 + x + 2 8-x=2 x 2( 2 x  7) (9’) 2( 2 x  7 ) * Nếu 8 - x < 0 hay x > 8 phương trình vô nghiệm. * Nếu 7/2  x  8 thì cả hai vế của (9’) đều không âm, bình phương hai vế ta có: 64 - 16x + x2 = 4x(2x - 7)  7x2 - 12x - 64 = 0 Giải phương trình này ta được: 7 x1 = 4 thoả mãn đk x  2 . 8 x2 = - 16 7 7 không thoả mãn đk x  2 (loại). Vậy phương trình (9) có nghiệm duy nhất: x = 4. Qua hai bài tập trên học sinh thấy, đôi khi nâng lên luỹ thừa hai lần mới khử hết căn. Cần lưu ý nâng luỹ thừa bao giờ cũng phải đặt điều kiện để hai vế phương trình không âm. Cần lưu ý học sinh có những bài đặt điều kiện cho các căn thức có nghĩa tương đối phức tạp, trong những trường hợp đó ta cần giải từng điều kiện rồi kết hợp chúng trên trục số. Ví dụ 10: Giải phương trình: 2 x 2  8x  6  x 2  1 2 x  2 (10) Điều kiện là các giá trị của x thoả mãn hệ : 2  2 x  8 x  6 0  2  x  1 0  2 x  2 0    x  1    x  3   x  1     x 1  x  1    x 1 hoặc x = -1 Bình phương hai vế đưa phương trình về : 2 2 x  1  8 x  1 2 2  x  3 x  1 x 2  1  x  3 x  1  x  1 2  x  1 2  ( x + 1)2(x - 1)(7x + 25) = 0   x 1    x  1 ;  25  x  7  x=- 25 7 loại vì không thoả mãn x 1; x  1 (loại) Tập nghiệm của phương trình (10) là: S = {-1; 1} 3, Một số dạng phương trình vô tỉ khác thường gặp: Cách giải: Đặt ẩn phụ hoặc đưa về dạng giải hệ phương trình hoặc kết hợp cả hai cách. Ví dụ 11: 9 Giải phương trình:  y 2  (11)  5  5 y 2  5 6 Giải:  y  5 Điều kiện : y  5   y  5 Nếu đặt y 2  5  x 0 thì phương trình (11) có dạng :  x  1 x2 - 5x - 6 = 0   x 6  ; x = - 1 loại vì ĐK x 0  y  41 2 Với x = 6 ta có y  5 6    y  41 Tập nghiệm của phương trình (11) là: S = { 41 ; - 41 } Trên cơ sở học sinh có khái niệm về phương pháp đặt ẩn phụ, cần cho học sinh làm một số bài tập khác đòi hỏi sự sáng tạo trong qua trình đặt ẩn phụ. Ví dụ 12: Giải phương trình: 2x2 - 8x - 3 x 2  4x  5 = 12 (12) Giải: Ta viết phương trình (12) dưới dạng: 2(x2 - 4x - 5) - 3 Đặt t = x 2  4x  5 x 2  4x  5  0. Ta có phương trình: 2t2 - 3t - 2 = 0 Giải phương trình ta được: t1 = 2 (TMĐK), t2 = - 1/2 (loại) Với t1 = 2, ta giải phương trình: x 2  4x  5 Phương trình có hai nghiệm: x1 = 2 + 13 , = 2  x2 - 4x - 9 = 0 x2 = 2 - 13 Ví dụ 13: Giải phương trình: 3 x 2  21x  18  2 x 2  7 x  7 2 Giải: ĐK : x 2  7 x  7 0 . Đặt 2 2 x 2  7 x  7  y 0  y  x  7 x  7 . Phương trình (12) trở thành 3y2 + 2y - 5 = 0 10 (13) -2=0  y 1    y  5 3  ; y  5 3 < 0 loại  x  1  x  6 2 2 Với y = 1 ta có x  7 x  7 1  x  7 x  6 0   Bây giờ ta phải kiểm tra xem các giá trị x = - 1 ; x = - 6 có thoả mãn đk căn thức có nghĩa hay không. Cách kiểm tra : * Với x = - 1 ta có x2 + 7x +7 = (-1)2 + 7(-1) + 7 = 1 > 0 (TMĐK) * Với x = - 6 ta có x2 + 7x +7 = 1 > 0 (TMĐK) Tập nghiệm của phương trình (13) là: S = {- 6; -1} Ví dụ 14: Giải phương trình: 3 x  2  x  1 3 (14) Giải: Điều kiện : x 1 Đặt 3 x  2  X ; x  1 Y 0  x  2 X 3 và x + 1 = Y2  Y 2  X 3  x  1  x  2 3 Phương trình (13) trở thành hệ phương trình:  X Y 3 Y 3 X 2 3 2 3 Y  X 3  Y  X 3  Y 0  Y 0       X  1 X 2  6 0  X 3  X 2  6 X  6 0 Do X2 + 6 > 0 với mọi x, nên X = 1  Y 2 thoả mãn ĐK Y 0 . * Với Y = 2 ta có x  1  2  x 3 thoả mãn x  1 Tập nghiệm của phương trình (14) là: S = {3}. 11 Ngoài cách giải như trên bài tập này còn có cách giải bằng phương pháp bất đẳng thức tức là sử dụng tính đối nghịch ở hai vế của phương trình. Cụ thể : Ta nhận thấy x = 3 là nghiệm của phương trình. Bây giờ ta chứng minh x > 3 và -1 x  3 đều không phải là nghiệm của phương trình. Thật vậy : Với x > 3 thì 3 x  2 1 và x 1  2 suy ra vế trái lớn hơn 3 còn vế phải bằng 3 suy ra phương trình vô nghiệm. Với -1 x  3 thì 3 x  2 1 và x2 2 suy ra vế trái nhỏ hơn 3; vế phải bằng 3 . Vậy phương trình vô nghiệm. Do đó x = 3 là nghiệm duy nhất của phương trình (14). Phương pháp này tương đối khó đối với học sinh, do đó ta có thể cho các em làm thêm một vài bài tập tương tự để giúp học sinh hiểu rõ hơn về phương pháp này. Phương pháp đặt ẩn phụ và phương pháp hệ phương trình dùng để giải được nhiều dạng phương trình vô tỉ như dạng 1 và dạng 2 đã nêu ở trên. Vì vậy, khi giảng dạy, giáo viên nên khuyến khích học sinh lựa chọn cách giải nhanh gọn nhất. Ví dụ 15: Giải phương trình: x 1 (15) 2 x  1 5 Ngoài cách giải nâng lên luỹ thừa như ở dạng 2, ta giải như sau: Giải: Đặt u = x 1 0 và v = 2x  1  0 Phương trình (14) trở thành: u + v = 5. Ta lại có: v2 - 2u2 = 1.  u  v 5 Vậy ta có hệ phương trình:  2 2  v  2u 1 Giải hệ, ta được: u1 = 2 (TMĐK), u2 = - 12 (loại). Với u1 = 2 ta giải phương trình: x 1 = 2 (x  1)  x = 5 Vậy phương trình có nghiệm duy nhất: x = 5. 12 C. KẾT LUẬN I. KẾT QUẢ NGHIÊN CỨU: Với những kinh nghiệm như vừa trình bày ở trên, sau khi nghiên cứu và áp dụng giảng dạy ở bộ môn Toán 9, bản thân và đồng nghiệp thấy trình độ học sinh được nâng lên rõ rệt. Học sinh đã nhận dạng thành thạo phương trình chứa căn thức và đứng trước một phương trình chứa căn thức các em đã biết lựa chọn phương pháp giải phù hợp. Mức độ đạt được cụ thể là: Tổng số 34 Giỏi SL 3 % Khá SL 8,8 7 % Trung bình SL % Yếu SL % 20,6 20 4 11,8 58,8 II. KIẾN NGHỊ, ĐỀ XUẤT: Với những kiến thức về phương trình vô tỉ được đề cập trong SGK Toán 9 không đáp ứng được đầy đủ nhu cầu của các em. Vì vậy, để HS học tốt phần này, cần phải kết hợp các tài liệu, sách báo tham khảo. Đặc biệt là hình thành cho HS thói quen nhìn nhận bài toán, từ đó có phương pháp giải phù hợp. Do đó, bản thân tôi có một số kiến nghị đề xuất sau: - Thư viện cần tăng cường bổ sung thêm sách tham khảo, sách nâng cao để đáp ứng nhu cầu học tập của HS . - Cung cấp đầy đủ tranh ảnh, đồ dùng trực quan, dụng cụ đo đạc đối với bộ môn toán nói riêng và các bộ môn khác nói chung. - Lắp đặt hệ thống máy chiếu sử dụng trong các tiết dạy để đạt hiệu quả tốt hơn. Do năng lực bản thân có hạn và do một số khó khăn mang lại, chắc chắn đề tài tôi nghiên cứu còn nhiều thiếu xót và hạn chế. Rất mong được sự đóng góp ý kiến chân thành của đồng nghiệp và các cấp lãnh đạo. Tôi xin chân thành cảm ơn ! 13 14
- Xem thêm -