Đăng ký Đăng nhập
Trang chủ Phương trình sóng cấp hai một chiều...

Tài liệu Phương trình sóng cấp hai một chiều

.PDF
81
245
53

Mô tả:

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ NGỌC LIÊN PHƯƠNG TRÌNH SÓNG CẤP HAI MỘT CHIỀU LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN - 2014 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ NGỌC LIÊN PHƯƠNG TRÌNH SÓNG CẤP HAI MỘT CHIỀU LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành : TOÁN ỨNG DỤNG Mã số : 60 46 01 12 Giáo viên hướng dẫn: TS NGUYỄN VĂN NGỌC THÁI NGUYÊN, 2014 Mục lục Mở đầu 1 1 Chuỗi Fourier và các bài toán Sturm-Liouville 1.1 Chuỗi Fourier thông thường . . . . . . . . . . . . . . . . . . . . 1.1.1 Khái niệm về chuỗi Fourier . . . . . . . . . . . . . . . . 1.1.2 Sự hội tụ của chuỗi Fourier . . . . . . . . . . . . . . . . 1.2 Chuỗi Fourier - Cosin và chuỗi Fourier- Sin . . . . . . . . . . . 1.2.1 Khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Sự hội tụ . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Sự hội tụ của chuỗi Fourier trong L2 . . . . . . . . . . . . . . . 1.3.1 Dãy trực giao . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2 Bất đẳng thức Bessel- Định lý Parseval . . . . . . . . . 1.4 Khái niệm về bài toán Sturm-Liouville . . . . . . . . . . . . . . 1.4.1 Khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2 Tính chất . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Một số ví dụ về hàm riêng và giá trị riêng cho toán tử vi phân hai trên khoảng hữu hạn . . . . . . . . . . . . . . . . . . . . . . 1.5.1 Các ví dụ đơn giản . . . . . . . . . . . . . . . . . . . . . 1.5.2 Các ví dụ phức tạp hơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cấp . . . . . . . . . 2 Phương trình sóng thuần nhất 2.1 Bài toán Cauchy đối với một lớp phương trình đạo hàm riêng cấp hai và định lý Cauchy- Kovalevskaya . . . . . . . . . . . . . . . . . . 2.2 Phương trình sóng một chiều . . . . . . . . . . . . . . . . . . . . . . 2.3 Nghiệm tổng quát của phương trình thuần nhất trong R . . . . . . 2.4 Công thức d’ Alembert của bài toán Cauchy và của các bài toán biên giá trị ban đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Công thức d’Alembert cho bài toán Cauchy . . . . . . . . . . 2 3 3 3 4 4 4 5 7 7 8 11 11 12 13 13 16 21 21 22 22 25 25 2.4.2 Công thức d’Alembert cho bài toán biên giá trị ban đầu trên nửa trục khi một đầu thanh được giữ chặt . . . . . . . . . . 2.4.3 Công thức d’Alembert cho bài toán biên giá trị ban đầu trên nửa trục khi một đầu thanh để tự do . . . . . . . . . . . . . 2.5 Công thức d’Alembert của các bài toán biên-giá trị ban đầu trên nửa trục với các điều kiện biên không thuần nhất . . . . . . . . . . 2.5.1 Bài toán biên-giá trị ban đầu dạng Dirichlet . . . . . . . . . 2.5.2 Bài toán biên-giá trị ban đầu dạng Neumann . . . . . . . . . 2.6 Năng lượng của sóng và tính duy nhất nghiệm . . . . . . . . . . . . 2.6.1 Năng lượng của sóng . . . . . . . . . . . . . . . . . . . . . . . 2.6.2 Tính duy nhất nghiệm . . . . . . . . . . . . . . . . . . . . . . 2.7 Phương pháp tách biến giải phương trình sóng thuần nhất trên khoảng hữu hạn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.7.1 Nghiệm hình thức của bài toán dao động của một dây có hai đầu cố định- Bài toán biên Dirichlet . . . . . . . . . . . . . . 2.7.2 Tính đúng đắn của nghiệm bài toán dao động của một dây . 2.8 Một số bài toán biên-giá trị ban đầu khác của phương trình sóng trên khoảng hữu hạn . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8.1 Bài toán biên dạng Neumann . . . . . . . . . . . . . . . . . . 2.8.2 Bài toán biên dạng hỗn hợp . . . . . . . . . . . . . . . . . . . 2.9 Bài toán Goursat đối với phương trình sóng . . . . . . . . . . . . . . 2.9.1 Một bài toán Goursat cho phương trình sóng . . . . . . . . . 2.9.2 Bài toán giá trị ban đầu đặc trưng cho phương trình sóng . 2.10 Sóng cầu đối xứng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Phương trình không thuần nhất- Nguyên lý Duhamel 3.1 Nguyên lý Duhamel trong các phương trình không thuần nhất . . . 3.1.1 Nguyên lý Duhamel đối với phương trình cấp một . . . . . . 3.1.2 Nguyên lý Duhamel đối với phương trình cấp hai . . . . . . 3.1.3 Nguyên lý Duhamel tổng quát . . . . . . . . . . . . . . . . . 3.2 Phương trình sóng không thuần nhất trên trục thực . . . . . . . . . 3.3 Phương trình sóng không thuần nhất trên nửa trục thực . . . . . . 3.4 Phương trình sóng không thuần nhất trên khoảng hữu hạn-Phương pháp tách biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 Trường hợp điều kiện biên thuần nhất . . . . . . . . . . . . . 3.4.2 Trường hợp điều kiện không biên thuần nhất . . . . . . . . . 3 26 28 30 30 30 31 31 32 33 33 36 40 40 44 48 48 49 50 52 52 52 53 54 55 57 59 59 64 4 Phương pháp sai phân hữu hạn giải phương trình sóng 4.1 Các khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Phương pháp sai phân giải phương trình sóng . . . . . . . . . . . . . 68 68 69 Kết luận 75 Tài liệu tham khảo 76 4 Mở đầu Phương trình sóng là một trong những phương trình cơ bản và quan trọng của lý thuyết các phương trình đạo hàm riêng và vật lý toán. Phương trình sóng rất đa dạng, sóng âm, sóng nước, sóng điện từ, sóng đàn hồi, v.v.., và thuộc dạng hyperbolic. Các bài toán đối với các phương trình thuộc dạng hyperbolic thường là rất khó, nhất là các phương trình nhiều chiều, hay phi tuyến. Do tính phức tạp nói trên, nên nhiều tính chất quan trọng và lý thú của nghiệm các phương trình sóng chủ yếu được phát hiện đối với phương trình sóng cấp hai và có số chiều thấp. Trong thực tế có nhiều hiện tượng của cơ học và vật lý được mô tả dưới dạng phương trình sóng tuyến tính cấp hai một chiều. Do đó việc tìm hiểu sâu hơn về phương trình sóng thông qua phương trình sóng cấp hai một chiều là cần thiết. Đó chính là đề tài học tập và nghiên cứu của luận văn này. Bố cục của luận văn gồm phần Mở đầu, bốn chương nội dung chính, Kết luận và Tài liệu tham khảo. Chương 1: Chuỗi Fourier và các bài toán Sturm-Liouvill Chương này trình bày các kiến thức bổ trợ cần thiết cho các vấn đề được đề cập tới trong luận văn, đó là vấn đề về chuỗi Fourier và khai triển vào chuỗi Fourier theo các hàm riêng của các bài toán Sturm-Liouville có nhiều ứng dụng trong phương pháp tách biến giải các bài toán biên của các phương trình đạo hàm riêng. Chương 2: Phương trình sóng thuần nhất Chương này trình bày về phương trình sóng cấp hai một chiều thuần nhất. Vấn đề chính của chương này là trình bày công thức d’ Alambert biểu diễn nghiệm của bài toán Cauchy và của các bài toán biên giá trị ban đầu của phương trình sóng cấp hai trên nửa trục. Tiếp đó, trình bày năng lượng của sóng và tính duy nhất nghiệm của phương trình sóng, trình bày phương pháp tách biến giải các bài toán biên của phương trình sóng trên khoảng hữu hạn. Vận dụng công thức d’ Alambert, tìm nghiệm của một số bài toán Goursat đối với phương trình truyền sóng. Chương 3: Phương trình sóng không thuần nhất-Nguyên lý Duhamel Chương này trình bày nguyên lý Duhamel giải các phương trình tuyến tính không thuần nhất trên cơ sở biết công thức nghiệm của phương trình thuần nhất tương 1 ứng. Tiếp đó, trình bày cách giải các phương trình sóng không thuần nhất trên trục thực, trên nửa trục và trên một khoảng hữu hạn. Chương 4: Phương pháp sai phân hữu hạn giải phương trình sóng Nội dung của luận văn này được hình thành chủ yếu từ các tài liệu [1-6] dưới sự hướng dẫn tận tình và nghiệm khắc của Thầy Nguyễn Văn Ngọc, Viện Toán học, Viện Hàn lâm Khoa học Việt Nam. Em xin bày tỏ lòng biết ơn sâu sắc đến Thầy. Em cũng chân thành cảm ơn tới các thầy cô của Trường Đại học Khoa học, Đại học Thái Nguyên, các thầy cô giảng dạy lớp cao học Toán K6D trường Đại học khoa học Thái Nguyên, Phòng đào tạo Trường Đại học Khoa học Thái Nguyên đã tận tình giảng dạy và giúp đỡ chúng em trong quá trình học tập, nghiên cứu và hoàn thành luận văn này. Thái Nguyên, ngày 28 tháng 06 năm 2014 Tác giả Nguyễn Thị Ngọc Liên 2 Chương 1 Chuỗi Fourier và các bài toán Sturm-Liouville Chương này trình bày cơ sở lý thuyết về chuỗi Fourier đối với các hàm lượng giác và những ứng dụng giải các bài toán biên của các phương trình đạo hàm riêng trong miền hữu hạn. Các kiến thức của chương này chủ yếu được trích ra từ tài liệu [1]. 1.1 1.1.1 Chuỗi Fourier thông thường Khái niệm về chuỗi Fourier Với hàm f ∈ L1 [−π, π], nghĩa là f khả tích Lesbesgue trên [−π, π], ta định nghĩa chuỗi Fourier của f là chuỗi hàm lượng giác như sau ∞ a0 X + (ak cos kx + bk sin kx), 2 (1.1) k=1 trong đó Zπ 1 ak = π f x0 cos kx0 dx0 , k = 1, 2, ...  −π 1 bk = π Zπ f x0 sin kx0 dx0 , k = 1, 2, ...  (1.2) −π Chuỗi 1.1 được gọi là chuỗi lượng giác của hàm f (x) và mối quan hệ trên đây được ký hiệu là ∞ a0 X f (x) ∼ 2 + (ak cos kx + bk sin kx). k=1 Lưu ý rằng ký hiệu ∼ không mang ý nghĩa gì về sự hội tụ của chuỗi trên, đơn giản là nó chỉ mối liên hệ (1.1)- (1.2) mà thôi. 3 Nếu f tuần hoàn với chu kỳ 2π , ta có định nghĩa chuỗi Fourier của f tương tự như trên. Trong đó các hệ số ak , bk được tính trên mỗi đoạn tùy ý [a, a + 2π]. Nếu f tuần hoàn với chu kỳ 2l, bằng phép đổi biến t = πx l , ta đưa về trường hợp tuần hoàn với chu kỳ 2π . Để ý rằng vì f ∈ L1 [−π, π] nên các tích phân trong (1.2) tồn tại. 1.1.2 Sự hội tụ của chuỗi Fourier Ta nói hàm f (x) thỏa mãn điều kiện Dirichlet trên một khoảng hữu hạn, nếu nó có biến phân hữu hạn và có một số hữu hạn các điểm cực trị trên khoảng đó. Định nghĩa 1.1. ( Điều kiện Dirichlet).Cho f là hàm số (thực hoặc phức) xác định trên (a, b). Các điều kiện sau đây được gọi là điều kiện Dirichlet (i) Tồn tại f (a+ ), f (b− ) và f có biến phân bị chặn trên [a, b]. (ii) Có nhiều nhất là hữu hạn các điểm thuộc đoạn[a, b] sao cho khi bỏ đi các lân cận bé tùy ý của những điểm này thì f có biến phân bị chặn trên các phần còn lại của đoạn [a, b], hơn nữa f ∈ L1 (a, b). Định lý 1.1. Cho f ∈ L1 [−π, π]. Nếu f thỏa mãn điều kiện Dirichlet trong (−π, π) thì chuỗi Fourier của f sẽ hội tụ về f (x) tại các điểm x ∈ (−π, π) mà tại đó hàm f liên tục, hội tụ về       1 1 + + f x− + + f π− f x nếu x là điểm gián đoạn thông thường, hội tụ về f −π 2 2   − + tại x = ±π nếu f π và f −π tồn tại. 1.2 1.2.1 Chuỗi Fourier - Cosin và chuỗi Fourier- Sin Khái niệm Cho f ∈ L1 [0, π] và thỏa mãn điều kiện Dirichlet trên (0, π). Ta định nghĩa f trên (−π, 0) bằng công thức f (x) = f (−x) . Khi đó, f ∈ L1 [−π, π] và thỏa mãn điều kiện Dirichlet trên (−π, π) vì vậy có thể áp dụng kết quả phần trên. Ngoài ra, do f là hàm chẵn 2 a0 = π Zπ f x0 dx0 ,  0 ak = 2 π Zπ f x0 cos kx0 dx0 ,  0 bk = 0, k = 1, 2, ... Ta có định lý sau [1] 4 Định lý 1.2. Cho f ∈ L1 [0, π] và thỏa mãn điều kiện Dirichlet trên (0, π). Khi đó ta có chuỗi cosin Zπ Zπ ∞ X   2 1 (1.3) f x0 dx0 + cos kx f x0 cos kx0 dx0 π π 0 k=1 0      hội tụ về 12 f x+ + f x− tại những điểm x ∈ (0, π) mà f x+ và f x− tồn tại,     hội tụ về f 0+ tại x = 0 nếu f 0+ tồn tại; hội tụ về f π − tại x = π nếu f π − tồn tại. Định lý 1.3. Cho f ∈ L1 [0, π] và thỏa mãn điều kiện Dirichlet trên (0, π). Khi đó, ta có chuỗi sin Zπ ∞  2X (1.4) sin kx f x0 sin kx0 dx0 π k=1 0   hội tụ về 2 f x + f x tại những điểm x ∈ (0, π) mà f x+ và f x− tồn tại, hội tụ về 0 tại x = 0 hay x = π .  1 1.2.2  −  + Sự hội tụ Định lý 1.4. Cho f ∈ L1 [0, π]. Giả sử rằng f bị chặn, thỏa mãn điều kiện Dirichlet trên (−π, π). Giả sử f liên tục trên khoảng (u, v) ⊂ (−π, π). Khi đó, chuỗi Fourier của f hội tụ đều về f trên một đoạn bất kỳ [a, b] ⊂ (u, v) . Ví dụ 1.1. Cho f (x) = x2 , −π ≤ x ≤ π ta khai triển f thành chuỗi Fourier như sau Ta có bn = 0, ∀n, do f là hàm chẵn, và 1 a0 = π 1 an = π Zπ −π Zπ 2 f x dx = π 0  0 Zπ 2 x0 dx0 = 2π 2 , 3 0 2 f x cos nx0 dx0 = π  0 −π Zπ 2 x0 cos nx0 dx0 = (−1)n 4 , n = 1, 2, ... n2 0 Ngoài ra, f thỏa mãn điều kiện Dirichlet trên (−π, π), f bị chặn, f (−π) = f (π) nên do các định lý 1.1 và 1.4, ta có chuỗi Fourier của f sẽ hội tụ về f từng điểm trên [−π, π], sự hội tụ này là đều. Vậy, với x ∈ [−π, π], thì   π2 cos 2x cos 3x x2 = 3 − 4 cos x − 22 5 + 32 −··· . Ví dụ 1.2. Cho f (x) = x, −π ≤ x ≤ π . Ta có an = 0, n = 0, 1, 2, ...do f lẻ, 2 bn = π Zπ 2(−1)n+1 x sin nx dx = . n 0 0 0 0 1 2 Do định lý 1.1, chuỗi Fourier của f hội tụ về f tại x ∈ (−π, π) và hội tụ về [f (π) + f (−π)] = 0 tại x = ±π. Vậy   x = 2 sin x − sin 2x sin 3x + − · · · , ∀x ∈ (−π, π) . 2 3 Ví dụ 1.3. Với f (x) = x, 0 ≤ x ≤ 2π thì 1 a0 = π an = 1 π Z2π 0 Z2π x0 dx0 = 2π, x0 cos nx0 dx0 = 0, n ≥ 1, 0 bn = 1 π Z2π 2 x0 sin nx0 dx0 = − , n ≥ 1. n 0 1 2 Do định lý 1.1, chuỗi Fourier của f hội tụ về f (x) tại x ∈ (0, 2π) và hội tụ về [f (0) + f (2π)] = π tại x = 0; 2π . Vậy   x = π − 2 sin x + sin 2x sin 3x + − · · · , ∀x ∈ (0; 2π) . 2 3 Ví dụ 1.4. Cho f (x) = x2 , 0 ≤ x ≤ 2π . Tương tự ví dụ 2.3 ta có  ∞  2 X x2 = 4π +4 3 n=1 cos nx π sin nx − , ∀x ∈ (0; 2π) . n2 n tại x = 0; 2π thì chuỗi trên hội tụ về 2π 2 . 6 1.3 1.3.1 Sự hội tụ của chuỗi Fourier trong L2 Dãy trực giao Xét không gian L2 các hàm thực bình phương khả tích trên [−π, π]. Trong L2 , dãy hàm {ϕn |n ∈ N} được gọi là một hệ trực giao nếu Zπ ϕm (x) ϕn (x) dx = 0, ∀m 6= n −π và nếu hệ {ϕn |n ∈ N} có thêm tính chất Zπ ϕ2 n (x) dx = 1, ∀n −π thì ta nói hệ {ϕn } trực chuẩn. Cho hàm f ∈ L2 , với hệ trực chuẩn {ϕn }, ta đặt Zπ f (x) .ϕn (x) dx, ∀n ∈ N cn = −π và gọi ∞ P là f ∼ n=0 ∞ P cn ϕn là chuỗi Fourier của hàm f (ứng với hệ trực chuẩn {ϕn } ) và kí hiệu cn ϕn . Ta xét bài toán khi nào hàm σn có dạng n=0 σn = a0 ϕ0 + a1 ϕ1 + · · · + an ϕn là xấp xỉ của hàm f tốt nhất theo nghĩa đại lượng sau đây đạt cực tiểu δn = kf − σn k22 Zπ = [f (x) − σn (x)]2 dx. −π Ta có định lý sau Định lý 1.5. σn là xấp xỉ tốt nhất của f khi và chỉ khi ak = ck , ∀k = 0, 1, ..., n. 7 Chứng minh. Ta có δn = Rπ f 2 (x) dx+ −π Rπ = f 2 (x) dx + −π Rπ Rπ σn2 (x) dx − 2 −π  n π R P −π Rπ Rπ f 2 (x) dx + n P f 2 (x) dx + k=0 n P f 2 (x) dx và −π n P a2k − 2 n P n P ak ϕk (x)dx k=0 P ap aq ϕp (x) ϕq (x)dx p 6= q 0 ≤ p, q ≤ n ak c k k=0 (ak − ck )2 − k=0 Rπ −π Rπ −π f (x) . f (x) ϕk (x)dx −π Ta có: (x)dx + Rπ −π k=0 Rπ = = ak dx − 2 ak ϕk (x) −π Rπ n P f (x) .σn (x) dx −π 2 k=0 n P = f 2 (x) dx + a2k ϕ2k −π −π k=0 −2 Rπ n P k=0 n P k=0 c2k . c2k là các hằng số. Do đó, δn đạt cực tiểu khi và chỉ khi 2 (ak − ck ) = 0, tức là ak = ck , ∀k = 0, ..., n. k=0 1.3.2 Bất đẳng thức Bessel- Định lý Parseval ∞ P Bất đẳng thức Bessel. Giả sử ck ϕk là chuỗi Fourier của f ứng với hệ trực k=0 chuẩn {ϕn } . Khi đó Zπ 2 f (x) dx ≥ ∞ X c2k . k=0 −π Chứng minh. Trong chứng minh của định lý 1.5, ta có giá trị cực tiểu là δn là n Rπ Rπ 2 P 2 2 [f (x) − σn (x)] dx = ∆n = Suy ra −π n P k=0 f (x) dx − −π c2k ≤ Rπ f 2 (x) dx, do đó chuỗi −π k=0 n P c2k k=0 ck ≥ 0, ∀n. hội tụ và ta có điều phải chứng minh. Vậy với hệ {ϕn } trực chuẩn thì mọi hàm f ∈ L2 đều thỏa mãn bất đẳng thức Bessel. Vấn đề được xét tiếp là khi nào bất đẳng thức Bessel xảy ra dấu bằng. Định nghĩa 1.2. Hệ trực chuẩn {ϕn } được gọi là đầy đủ trong L2 nghĩa là n X k=0 c2k = Zπ f 2 (x) dx, −π 8 ∀f ∈ L2 . Sau đây ta xét một tiêu chuẩn đơn giản cho biết một hệ trực chuẩn là đầy đủ. Định lý 1.6. Cho hệ trực chuẩn {ϕn } trong L2 . Hệ này là đầy đủ nếu và chỉ nếu ∀F ∈ C [−π, π] , ∀ε > 0, ∃σn = a0 ϕ0 + · · · + an ϕn , kF − σn k2 < ε. (1.5) Chứng minh. Giả sử (1.5) thỏa mãn. Xét f ∈ L2 và cho trước ε > 0 tùy ý. Như đã biết, không gian C [−π, π] trù mật trong L2 nên có một hàm F ∈ C [−π, π] sao cho  π 1/2 Z kf − F k2 =  [f (x) − F (x)]2 dx < ε. −π Từ giả thiết (1.5), ta cũng có hàm σn = a0 ϕ0 + · · · + an ϕn sao cho  π 1/2 Z kF − σn k2 =  [F (x) − δn (x)]2 dx < ε. −π Từ hai bất đẳng thức trên, bất đẳng thức Bessel và định lý 1.5 dẫn đến Zπ 2 f (x) dx − 0≤ ∞ X c2k k=0 −π Zπ Zπ f (x) dx − ≤ f (x) − − σn k22 = kf Rπ c2k n X Zπ #2 −π ≤ (kf − F k2 + kF − σn k2 )2 < 4ε2 . f 2 (x) dx = −π [f (x) − σn (x)]2 dx dx ≤ ck ϕk (x) k=0 −π Vì ε > 0 là tùy ý nên n X k=0 −π " = 2 ∞ P k=0 c2k . Trường hợp ngược lại, nghĩa là hệ {ϕn } đầy đủ dẫn đến (1.5), bạn đọc tự chứng minh. Kết hợp tiêu chuẩn trên và định lý Frjér, ta có Định lý 1.7. (Parseval). Hệ trực chuẩn   1 cos x sin x cos nx sin nx √ , √ , √ , ..., √ , √ , ... π π π π 2π là đầy đủ nghĩa là với hàm f ∈ L2 [−π, π] và f ∼ a0 2 + ∞ P (an cos nx + bn sin nx) như n=1 định nghĩa trong mục 1.2 thì 1 π Zπ ∞  a2 X 2 f (x) dx = 0 + ak + b2k . 2 2 k=1 −π Đẳng thức trên được gọi là đẳng thức Parseval. 9 Chứng minh. Cho f là hàm số bất kỳ liên tục trên đoạn [−π, π] và cho trước ε > 0, khi đó f bị chặn bởi M > 0. Đặt  2 2 δ = min ε /32M , π > 0. Đặt g là hàm số liên tục trên đoạn [−π, π] sao cho g bằng f trên đoạn [−π + δ, π − δ], g (−π) = g (π) = 12 [f (−π) + f (π)] và g tuyến tính trên hai đoạn [−π, −π + δ] và [π − δ, π]. Suy ra g bị chặn bởi M và |f − g| < 2M. Ngoài ra ta xem như g tuần hoàn với chu kì 2π và liên tục trên R nghĩa là g thỏa mãn giả thiết của định lý Fejér, nên ta có một đa thức lượng giác tổng quát (tổng Fejér-Césaro của g ) σn thỏa mãn sup [g (x) − σn (x)] < ε/(8π)1/2 , x∈[−π,π] và dĩ nhiên σn có dạng tổ hợp tuyến tính của hữu hạn các hàm trong họ trực chuẩn đang xét. Vậy kf − σn k2 ≤ kf − gk2 + kg − σn k2  21  Z |f (x) − g (x)|2 dx =    π−δ≤|x|≤π  π  21 Z +  |g (x) − σn (x)|2 dx −π ε ε < + = ε, 2 2 tức là tiêu chuẩn (1.5) thỏa mãn. Do đó hệ trực chuẩn đang xét là đầy đủ. Định lý 1.8. Chuỗi Fourier của hàm f ∈ L2 [−π, π] sẽ hội tụ trung bình về f theo định nghĩa !#2 Zπ " n a0 X lim n→∞ −π f (x) − 2 + (ak cos kx + bk sin kx) k=1 10 dx = 0. Chứng minh. Ta có Zπ a0 + 2 [f (x) − −π Zπ = n X !#2 (ak cos kx + bk sin kx) dx k=1 " n  a20 X 2 2 f (x) dx − π ak + b2k + 2 # k=1 −π dẫn đến điều phải chứng minh, do bất đẳng thức Parseval. 1.4 1.4.1 Khái niệm về bài toán Sturm-Liouville Khái niệm Cho L là một toán tử tuyến tính được xác định trên một không gian tuyến tính đã biết của các phần tử. Một phần tử y 6= 0 được gọi là một vectơ riêng của L nếu Ly = λy , và λ được gọi là giá trị riêng tương ứng của L . Một trong những toán tử đơn giản nhất thường được sử dụng trong ứng dụng là 2 L=− d + q (x) . dx2 Giả sử rằng q (x) là một hàm giá trị thực và liên tục trên đoạn [a, b]. Những điều kiện giá trị biên quan trọng nhất cho toán tử là 1. y (a) cosα + y 0 (a) sin α = 0, y (b) cosβ + y 0 (b) sin β = 0, ở đó α và β là hai số thực tùy ý, và 2. y (a) = y (b), y 0 (a) = y 0 (b). Khi đó, chúng ta nghiên cứu bài toán giá trị biên Ly (x) = −y 00 + q (x) y = λy, y (a) cosα + y 0 (a) sin α = 0, y (b) cosβ + y 0 (b) sin β = 0, (1.6) (1.7) được biết đến như là bài toán Sturm-Liouville. Bài toán Sturm-Liouville được gọi là chính quy nếu đoạn [a, b] là hữu hạn và hàm q (x) là khả tổng trên đoạn đó. Ngược lại, nếu đoạn [a, b] là vô hạn, hoặc nếu q (x) là không khả tổng trên đoạn đó, hoặc cả hai thì bài toán Sturm-Liouville được gọi là kì dị. Chú ý rằng phương trình cấp hai tổng quát hơn y 00 + p (x) y 0 + [l (x) + λr (x)] y = 0, (1.8) ở đó hàm r (x) dương trên đoạn [a, b], có thể rút gọn được về dạng (1.6). Nếu chúng ta giả sử rằng đạo hàm cấp một của p (x) và đạo hàm cấp hai của r (x) là liên tục, 11 khi đó (1.8) có thể được rút gọn về dạng chính tắc d2 η + [λ + q (ζ)] η = 0, dζ 2 thông qua phép thay thế ζ=  Zx p r (t)dt, η (ζ) = Φ (x) y (x) , Φ (x) = p 4 r (x) exp  1 2  Zx p (t) dt , (1.9) a a ánh xạ đoạn [a, b] vào đoạn [0, π], trong khi điều kiện biên (1.7) không thay đổi dạng của nó. Phép biến đổi như (1.9) được gọi là phép biến đổi Liouville. 1.4.2 Tính chất Chúng ta xét bài toán giá trị biên (1.6), (1.7). Không mất tổng quát, có thể giả sử rằng a = 0 và b = π . Thực tế đoạn [a, b] được ánh xạ vào đoạn [0, π] bởi phép thế t = x−a b−a π, phép thế này không làm thay đổi dạng của (1.6), (1.7). Nếu bài toán giá trị biên có một nghiệm không tầm thường y (x, λ1 ) 6= 0 với λ1 đã biết, thì khi đó λ1 được gọi là một giá trị riêng, và y (x, λ1 ) 6= 0 được gọi là hàm riêng của (1.6), (1.7). Bổ đề 1.1. Hai hàm riêng y (x, λ1 ) 6= 0 và y (x, λ2 ) 6= 0 tương ứng với những giá trị riêng khác nhau là trực giao, tức là Zπ y (x, λ1 )y (x, λ2 ) dx = 0, λ1 6= λ2 . 0 Chứng minh. Lấy f (x) và g (x) là các hàm liên tục và khả vi hai lần. Đặt Lf = −f 00 (x) + q (x) f (x) . Tích phân từng phần hai lần, chúng ta có Zπ Zπ Lf.g (x)dx = Wπ {f, g} − W0 {f, g} + 0 ở đó Lg.f (x)dx, 0 f (x) g (x) Wx {f, g} = 0 f (x) g 0 (x) 12 . (1.10) Lấy f (x) = y (x, λ1 ) và g (x) = y (x, λ2 ) . Từ điều kiện biên (1.7) ta có W0 {f, g} = Wπ {f, g} = 0. Do đó, từ (1.10), ta có Zπ (λ1 − λ2 ) y (x, λ1 )y (x, λ2 ) dx = 0. 0 Vì λ1 6= λ2 nên ta có điều phải chứng minh. Bổ đề 1.2. Các giá trị riêng của bài toán giá trị biên (1.6), (1.7) là thực. Chứng minh. Lấy λ1 = u + iv là một giá trị riêng phức. Vì q (x) có giá trị thực và α, β là thực, nên λ2 = λ1 = u − iv cũng là một giá trị riêng, tương ứng với hàm riêng y (x, λ1 ). Khi đó, từ bổ đề trước ta có Zπ |y (x, λ1 )|2 dx = 0, 0 do đó, y (x, λ1 ) ≡ 0, mâu thuẫn với y (x, λ1 ) là một hàm riêng. Vậy ta có điều phải chứng minh. Định lý 1.9. Nếu q (x) là một hàm liên tục trên đoạn [a, b], khi đó với bất kì α, tồn tại duy nhất một nghiệm ϕ (x, λ) , a ≤ x ≤ b, của phương trình (1.6), sao cho ϕ (a, λ) = sin α và ϕ0 (a, λ) = −cosα. Với bất kì x cố định thuộc đoạn [a, b], ϕ (x, λ) là một hàm nguyên của λ. 1.5 1.5.1 Một số ví dụ về hàm riêng và giá trị riêng cho toán tử vi phân cấp hai trên khoảng hữu hạn Các ví dụ đơn giản Ví dụ 1.5. Tìm các giá trị riêng và hàm riêng của phương trình y 00 + λ2 y = 0 với các giá trị biên y (0) = 0 và y (L) = 0. Lời giải. Nghiệm tổng quát là y (x) = a cos λx + b sin λx. Khi đó, từ điều kiện y (0) = 0, ta có a = 0. Từ điều kiện y (L) = 0 và cùng với a = 0, ta có 0 = b sin λL. Chúng ta giả sử rằng b 6= 0, khi đó 0 = sin λL. Từ đó, chúng ta có λL = πn, 13 và do đó πn . L λ= Chúng ta viết λn thay cho λ, tức là λn = πn . L Vì a = 0 nên các hàm riêng là yn = sin (λn x) với các giá trị riêng λn = πn , L n = 1, 2, 3, ... Chúng ta không xét n = 0 vì khi n = 0, ta có λ0 = 0, và khi đó một hàm riêng sẽ là y0 = sin (0) = 0. Tuy nhiên, theo định nghĩa thì hàm riêng không đồng nhất bằng 0, vì vậy đây không phải là hàm riêng. Ví dụ 1.6. Tìm các giá trị riêng và hàm riêng của phương trình y 00 + λ2 y = 0 với các giá trị biên y 0 (0) = 0 và y 0 (L) = 0. Lời giải. Nghiệm tổng quát là y (x) = a cos λx + b sin λx. Khi đó, từ điều kiện biên y 0 (0) = 0, ta có b = 0. Từ điều kiện biên y 0 (L) = 0 và cùng với b = 0, ta có 0 = aλ sin λL. Giả sử a 6= 0, khi đó 0 = sin λL. Từ đó, chúng ta có λL = πn. Chúng ta viết λn thay cho λ, tức là λn = πn . L Vì b = 0 nên các hàm riêng là yn = cos (λn x) , với các giá trị riêng λn = πn , L n = 0, 1, 2, 3, ... Ở đây, chúng ta xét cả n = 0, vì khi đó λ0 = 0 và ta có một hàm riêng là y0 = cos (0) = 1. 14 Ví dụ 1.7. Tìm các giá trị riêng và hàm riêng của phương trình y 00 + λ2 y = 0 với các giá trị biên y (0) = 0 và y 0 (L) = 0. Lời giải. Nghiệm tổng quát là y (x) = a cos λx + b sin λx. Khi đó, từ điều kiện y (0) = 0, ta có a = 0. Từ y 0 (L) = 0 và cùng với a = 0, ta có 0 = bλcos (λL). Vì cos x = 0 tại x = 2n+1 2 π , nên ta có λL = và do đó λ= 2n + 1 π, 2 2n + 1 π. 2L Chúng ta viết λn thay cho λ, tức là λn = 2n + 1 π. 2L Khi đó, các hàm riêng là yn = sin (λn x) , với các giá trị riêng λ= 2n + 1 π, 2L n = 0, 1, 2, 3, ... hoặc chúng ta cũng có thể viết λ= 2n − 1 π, 2L n = 1, 2, 3, ... Ví dụ 1.8. Tìm các giá trị riêng và hàm riêng của phương trình y 00 + λ2 y = 0 với các giá trị biên y (0) = y (L), y 0 (0) = y 0 (L). Lời giải. Nghiệm tổng quát là y (x) = a cos λx + b sin λx. Từ điều kiện y (0) = y (L) và y 0 (0) = y 0 (L), ta có  a = a cos λL + b sin λL, bλ = −aλ sin λL + bλ cos λL. 15
- Xem thêm -

Tài liệu liên quan