Phương trình hàm trên tập số nguyên

  • Số trang: 19 |
  • Loại file: DOC |
  • Lượt xem: 20 |
  • Lượt tải: 0
dinhthithuyha

Đã đăng 3355 tài liệu

Mô tả:

PHƯƠNG TRÌNH HÀM TRÊN TẬP SỐ NGUYÊN Các hàm số xác định trên tập số nguyên là rất đa dạng. Ngoài các vấn đề chung của hàm số như: đơn điệu, bị chặn, liên tục, tuần hoàn, đơn ánh..., chúng còn liên quan đến các khái niệm của số học như: tính chia hết, số nguyên tố, số chính phương, quan hệ đồng dư, hàm nhân tính, ....Trong một số trường hợp bản chất của bài toán về các hàm số xác định trên tập số nguyên chính là bài toán số học. Mặt khác, khi xét các bài toán về hàm f : N *  R ta có thể chuyển về bài toán của dãy số. Dùng các kết quả của dãy số, ta thu được tính chất cần thiết để giải các bài toán liên quan đến phương trình hàm. Dưới đây ta xét một vài phương pháp giải phương trình hàm trên tập số nguyên. I. Sử dụng các kết quả của dãy số 1. Dựa vào công thức xác định số hạng tổng quát của dãy số cho bởi công thức truy hồi Dạng 1 Tìm U n biết aU n 1  bU n  cU n 1 0 , n  N ; n 2 với U1 ;U 2 cho trước. Phương pháp giải Giải phương trình đặc trưng a2  b  c 0 (1) a) Nếu 1 , 2 là hai nghiệm thực phân biệt của (1) thì U n  A1n  Bn2 , trong đó A, B được xác định theo U1 ;U 2 . b) Nếu  là nghiệm kép của (1) thì U n  ( A  nB)n , trong đó A, B được xác định theo U1 ;U 2 . c) Nếu   x  iy là nghiệm phức của (1) thì U n  r n ( A cos n  B sin n ), với r |  | x 2  y 2 ; y        ;  sao cho tan   và A, B được xác định theo U1 ;U 2 . x  2 2 Dạng 2 Tìm U n biết aU n 1  bU n  cU n  1  f n , U1 ;U 2 cho trước, f n là đa thức bậc n cho trước. Phương pháp giải Giải phương trình đặc trưng a2  b  c (2). Ta có U n U n0  U n1 , trong đó U n0 là nghiệm tổng quát của phương trình thuần nhất dạng 1. aU n 1  bU n  cU n  1 0 (3) U n1 là nghiệm riêng của phương trình không thuần nhất. aU n 1  bU n  cU n  1  f n (4) Theo dạng (1) ta tìm được U n0 , trong đó A, B chưa xác định. U n1 xác định như sau a) Nếu  1 là nghiệm của phương trình (2) thì U n1 là đa thức cùng bậc với f n . b) Nếu  1 là nghiệm đơn của (2) thì U n1  n.g n , trong đó g n là đa thức cùng bậc với f n . 1 c) Nếu  1 là nghiệm kép của phương trình (2) thì U n1  n 2 .g n , trong đó g n là đa thức cùng bậc với f n . Thay U n1 vào phương trình (4), đồng nhất hệ số tìm được U n1 . Biết U1 , U 2 từ hệ thức U n U n0  U n1 ta tính được A, B. Ví dụ 1.1 Tìm tất cả các hàm số f xác định trên N thoả mãn các điều kiện sau a) f (n) 1 b) 2 f (n). f (n  k )  2 f (k  n) 3 f (n). f (k ) ; k , n  N (1). Giải Cho k n 0 từ (1) ta có ( f (0)) 2  2 f (0) 0 , suy ra f (0) 0 hoặc f (0)   2 . Nếu f (0) 0 cho n 0 từ (1) ta có f ( k ) 0 , k  N suy ra f (1) 0 mâu thuẫn với giả thiết, vậy f (0)   2 . Từ (1) cho n 1 ta được 2 f (k  1)  3 f (k )  2 f (k  1) 0 ; k  N . Xét phương trình đặc trưng 22  3  2 0 có nghiệm 1  1 và 2  2 . Ta tìm được f dưới 2 1 2 dạng f (n)  A.2n  B.( )n với f (0)   2 ; f (1) 1.  A  B  2  A 0  Ta có  1   2A  2 B 1  B  2 suy ra f (n) ( 1) n 1. 1 1 f (n) ( 1) n 1. n  1 , n  N là n  1 , thay vào thoả mãn đề bài. Vậy 2 2 nghiệm của bài toán. Ví dụ 1.2 Tìm tất cả các hàm f : N *  R thoả mãn các điều kiện sau a) f (1) 1 ; f (2) 0 b) f (n  1)  2 f (n)  f (n  1)  n  1, n  N * (1). Giải Giải phương trình đặc trưng 2  2  1 0 có nghiệm kép  1 . Ta có f (n)  f 0 (n)  f 1 (n), trong đó f (n) ( A  nB ).1n  A  nB và f 1 (n)  n 2 (an  b) (2). Thay f 1 ( n) vào phương trình (1) ta được (n  1) 2 (a (n  1)  b)  2n 2 (an  b)  (n  1) 2 (a (n  1)  b)  n  1, 2 n  N * 1 1  (6a  1)n  2b  1 0, n  N * suy ra a  và b  , thay vào (2) được 6 2 1  n 2 (n  3) 1 n 2 (n  3) f 1 ( n)  n 2  n    và f (n)  A  Bn  . 2 6 6 6 Mà f (1) 1 ; f (2) 0  2  A  B  3 1  A 4 , nên ta có   11   A  2B  10 0  B  3  3 Cuối cùng tìm được f (n)  n 2 (n  3) 11  n  4, 6 3 n  N * là nghiệm của bài toán. Ví dụ 1.3 Tìm tất cả các hàm f : N  Z thoả mãn a) f (1) 1 b) f (k  n)  2 f (n) f (k )  f (k  n) 3n.2k , k ; n  N (1). Giải Từ (1) cho n k 0 ta có f (0)  ( f (0))2 0 suy ra f (0) 0 hoặc f (0) 1 . Nếu f (0) 0 từ (1) cho n 0 thì f (k ) 0, k  N suy ra f (1) 0 mâu thuẫn với giả thiết, nên f (0) 1 . Từ (1) cho n 1 ta có f (k  1)  2 f (k )  f (k  1) 3.2k (2). Xét phương trình đặc trưng 2  2  1 0 có nghiệm kép  1 . Ta tìm được nghiệm dưới dạng f ( k )  f 0 (k )  f 1 ( k ), trong đó f ( k )  A  B.k và f 1 ( k )  a.2 k . Thay f 1 (k ) vào phương trình (2) được  f ( k )  A  Bk  6.2 k. a 2 k 1  2a 2 k  a 2 k  1 3.2 k , k  N nên a 6 Lại có f (0) 1 ; f (1) 1 nên A, B xác định như sau  A 6 1  A  5    A  B 12 1 B  6 suy ra f (n) 62n  6n  5 ; n  N * là nghiệm của bài toán. 2. Kết hợp các tính chất của hàm số như: tuần hoàn, đơn ánh...với các tính chất của dãy số như: cấp số cộng, cấp số nhân... và các bất đẳng thức, các hằng đẳng thức đại số và lượng giác để giải các bài toán về phương trình hàm. 3 Ví dụ 1.4 Có tồn tại hay không hàm số f : Z  Z sao cho f (m  f (n))  f (m)  n; m, n  Z (1). Giải Giả sử tồn tại hàm f thoả mãn đề bài. Từ (1) cho m 0 ta có f ( f (n))  f (0)  n (2). Với n1 , n2  Z mà f (n1 )  f (n2 ) thì f ( f (n1 ))  f ( f (n2 )), từ (2) suy ra f (0)  n1  f (0)  n2 , do đó n1  n2 nên f là đơn ánh. Cho n 0 từ (1) ta có f (m  f (0))  f (m)  m  f (0) m Từ đó ta được f (0) 0 thay vào (2) có f ( f (n))   n, n  Z (3) Từ (1) thay m bằng f (m) và áp dụng (3) ta được f ( f (m))  f (n)   m  n. Xét m, n, p, q là các số nguyên sao cho m  n  p  q, khi đó f  f ( m )  f ( n )    m  n   p  q  f ( f ( p )  f ( q )  Theo chứng minh trên f là đơn ánh, nên suy ra f (m)  f (n)  f ( p)  f (q) Do đó với mọi n  Z ta có f (n  1)  f (n  1)  f (n)  f (n)  f (n  1)  f (n)  f (n)  f (n  1)  f (n  1)  f (n)  f (n)  f (n  1) ...  f (2)  f (1)  f (1)  f (0) nên  f (n) là một cấp số cộng với số hạng đầu là U1  f (0) 0 và công sai d  f (1) suy ra f (n) U n 1 U1  nd  nd , n 0. Ta xét với hai số n  0, m 0 sao cho m  nd 0 thay vào (1) được f (m  f (n))  f (m  nd )  f (m)  n  f (m  nd ) md  n  (m  nd )d md  n Từ đó có d 2   1 (vô lý), do vậy không tồn tại hàm f thoả mãn yêu cầu của đề bài. Ví dụ 1.5 Tìm tất cả các hàm f : N  R thoả mãn các điều kiện sau a) f (0) c b) f (n  1)  3 f ( n)  1 , 3  f ( n) n  N * (1). Giải 1   f (n)  tan f (0)  tan 3  6  f (1)  6 Từ (1) ta có f (n  1)  1   1 f (n) 1  f (n) tan 1  f (0) tan 6 6 3 f ( n)   6 Do đó ta đặt f (0) c  tan  thì f (1)  tan(  )    tan(  )  tan 6  6 6  tan(  2 ) f ( 2)     6 1  f (1) tan 1  tan(  ) tan 6 6 6 f (1)  tan  6 Ta chứng minh quy nạp công thức f (n)  tan(  ), n  N Thật vậy, với n  0;1;2 công thức (2) đúng. 4 (2). Giả sử f (n)  tan(  n ). 6  n  tan(  )  tan 6  6 6  tan    (n  1)  , Ta có f (n  1)  hay (2) đúng với n  1.    6  1  f (n) tan 1  tan(  ) tan 6 6 6 f (n)  tan  6 Nghiệm của bài toán là f (n)  tan(  n ), n  N . II. Sử dụng phương pháp chứng minh quy nap Nguyên lý quy nạp: Cho T  N ; 1  T và nếu n  T suy ra n 1  T thì T  N * . Khi giải các bài toán liên quan đến phương trình hàm ta có thể sử dụng các phương pháp quy nạp khác nhau. Thông thường ta tìm cách tính một vài giá trị ban đầu để phát hiện quy luật tổng quát f (n) và chứng minh nó bằng quy nạp theo n . Ví dụ 2.1 Tìm tất cả các hàm f : N *  N * thoả mãn đồng thời các điều kiện sau a) f (1) 1 b) f (m  n)  f (m)  f (n)  mn, m; n  N * . Giải Cho m 0 từ b) ta có f (n  1)  f (n)  n  1, n  N * (1)  f (n)  f (n  1)  n , n  N , n  1 (2). Ta tính vài giá trị ban đầu của f (n) . n 1 từ a) suy ra f (1) 1  1(1  1) . 2 n  2 từ (2) suy ra f (2)  f (1)  2 3  2(2  1) . 2 n 3 từ (2) suy ra f (3)  f (2)  3 6  Ta chứng minh quy nạp f (n)  3(3  1) . 2 n(n  1) , n  N * (3). 2 Với n 1 thì (3) đúng. Giả sử f (n)  n(n  1) . 2 Ta có f (n  1)  f (n)  n  1  với mọi n(n  1) (n  1)(n  2)  n 1  , tức là (3) đúng với n  1 nên (3) đúng 2 2 n  N * . Mặt khác do có (1) nên nếu f thoả mãn đề bài thì f được xác định duy nhất. Vậy hàm số cần tìm là f (n)  n(n  1) , n  N * . 2 Ví dụ 2.2 5 Cho hàm f ( m, n) với m, n  Z thoả mãn đồng thời các điều kiện sau a) f (0, n) n  1 b) f (m  1,0)  f (m,1) c) f (m  1, n  1)  f  m, f (m  1, n) ; m, n 0 . Hãy tính f (4,1981). Giải Theo c) có f (4,1981)  f (3, f (4,1981)) . Ta đi xác định f (3, n), muốn vậy ta phải tính f (1, n) và f (2, n) . . Tính f (1, n) f (1,0)  f (0,1) 1  1  2. f (1,1)  f (0, f (1,0))  f (0,2)  2  1 3. f (1,2)  f (0, f (1,1))  f (0,3) 3  1  4. Ta chứng minh quy nạp f (1, n) n  2 , n  N . Giả sử có f (1, n) n  2, phải chứng minh f (1, n  1)  n  3 . Thật vậy có f (1, n  1)  f (0, f (1, n))  f (0, n  2)  n  3, đó là điều phải chứng minh. . Tính f (2, n) f (2,0)  f (1,1) 3  2.0  3. f (2,1)  f (1, f (2,0))  f (1,3) 5  2.1  3. f (2,2)  f (1, f (2,1))  f (1,5) 7  2.2  3. Ta chứng minh quy nạp f (2, n  2n  3 , n  N . Giả sử có f (2, n)  2n  3, phải chứng minh f (2, n  1)  2n  5. Thật vậy có f (2, n  1)  f (1, f (2, n))  f (1,2n  3)  2n  5, đó là điều phải chứng minh. . Tính f (3, n) f (3,0)  f (2,1) 5. f (3,1)  f ( 2, f (3,0))  f ( 2,5) 13  213  3. f (3,2)  f (2, f (3,1))  f (2,13)  29  22  3  3. Chứng minh quy nạp f (3, n)  2n 3  3 , n  N . Giả sử có f (3, n)  2n 3  3 ta chứng minh f (3, n  1)  2n  4  3. Thật vậy có f (3, n  1)  f (2, f (3, n))  f (2,2n 3  3) 2(2n 3  3)  3 2n  4  3, suy ra điều phải chứng minh. . Tính f (4, n) f (4,0)  f (3,1)  2 4  3 13. f (4,1)  f (3, f (4,0))  f (3,13)  216  3  22 16 22  3. f (4,2)  f (3, f (4,1))  f (3,216  3)  22  3  22 22 2  3. 6 Chứng minh quy nạp với n  N thì Giả sử f ( 4, n)  2 2 .. .2  3 f ( 4, n)  2 2 .. .2  3, trong đó có ( n  3) số 2. với ( n  3) số 2. Ta chứng minh f (4, n  1)  22 .. .2  3 với (n  4) số 2. Thật vậy có f ( 4, n  1)  f (3, f (4, n))  f (3,2 2 Từ đó ta được f (4,1981)  2 ( 2. 2. .. .. 2. .. 2  3) với ( n  3) số 2 2  3)  3 2  3  3 2 2. .. 2 ( n  4) số 2, đó là điều phải chứng minh  3 với với 1984 số 2. Nhận xét: Nguyên lý quy nạp không còn đúng trong tập Z, nhưng trong các bài toán ta có thể chia tập Z thành phần dương, âm và quy nạp rời rạc, có thể làm như sau: Giả sử bài toán đúng với  n; n  1;...; 1;0;1;2;...; n ta chứng minh bài toán cũng đúng với  n  1 và n  1, chẳng hạn xét các ví dụ sau Ví dụ 2.3 Tìm tất cả các hàm f :Z  Z thoả mãn các điều kiện sau a) f (0) 1 b) f ( f (n))  n , n  Z c) f  f (n  2)  2   n, n  Z . Giải Từ a) và b) ta có 0  f ( f (0))  f (1), vậy f (0) 1 và f (1) 0 . Cho n   2 từ c) ta có: f ( f (0)  2)   2 suy ra f (3)   2 1  3 Cho n 3 từ b) ta có f ( f (3)) 3 suy ra f ( 2) 3 1  ( 2) Cho n   1 từ c) ta có f ( f (1)  2)   1 suy ra f (2)   1 1  2 Cho n  2 từ b) ta có f ( f (2))  2 suy ra f ( 1)  2 1  ( 1) Chứng minh quy nạp f (n) 1  n, n  Z (1). Đẳng thức (1) đúng với n   2; ; ,0;1;2. Giả sử (1) đúng với n    2k ; 2k  1;...;0;1;...;2k ;2k  1 . Ta chứng minh (1) đúng với n    2k  2; 2k  1;2k  2;2k  3 . Thật vậy, theo giả thiết quy nạp ta có f (  2k ) 1  (  2k )  2k  1 và f ( 2k  1) 1  (  2k  1)  2k suy ra f (2k  2)  f ( f (  2k  1  2)  2)   2k  1 1  (2k  2) f ( 2k  3)  f ( f ( 2k  2  2)  2)   2k  2 1  ( 2k  3) f (  2k  2)  f ( f ( 2k  3))  2k  3 1  (  2k  2) f ( 2k  1)  f ( f (2k  2))  2k  2 1  ( 2k  1) Chứng tỏ (1) đúng với n    2k  2; 2k  1;2k  2;2k  3 . 7 Vậy f (n) 1  n, n  Z là nghiệm của bài toán. Ví dụ 2.4 Xác định tất cả các hàm f :Z  Z thoả mãn các điều kiện sau a) f (k  n)  f (k  n)  2 f (k ). f (n), k ; n  Z b) Tồn tại số nguyên N sao cho | f (n) | N , n  Z . Giải Cho n k 0 từ a) ta có f (0)  f 2 (0) suy ra f (0) 0 hoặc f (0) 1. . Nếu f (0) 0 từ a) cho n 0 thì f (k ) 0, k  Z suy ra f 0 là một nghiệm của bài toán. . Nếu f (0) 1 , từ a) cho k 0 ta có f (n)  f ( n), n  Z , vì vậy ta chỉ cần xét hàm số trên tập N * . Với n 1 từ a) ta có f (k  1)  f (k  1)  2 f (1). f (k ) , k  N * (1) Ta đi xác định f (1). Cho k  n từ a) ta có f (2n)  2 f 2 (n)  1 . Nếu | f (1) | 2 thì | f (2) || 2 f 2 (1)  1 |7 suy ra | f (4) || 2 f 2 (2)  1 |97 ... Vậy ta được | f (2 n )   khi n   hay f (2 n ) hkông bị chặn mâu thuẫn với b), do đó | f (1) | 2 nên f (1)    1;0;1 . Trường hợp 1: f (1)   1 f (2)  2 f 2 (1)  1 1 ( 1) 2 f (3)  2 f (2). f (1)  f (1)   2  1   1 (  1)3 Ta chứng minh quy nạp f (n) ( 1) n , n  N * . Thật vậy, giả sử f (2k ) 1, f (2k  1)   1 . Khi đó f (2k  2) 2 f (2k  1) f (1)  f (2k )  2  1 1 ( 1) 2 k  2 f (2k  3)  2 f ((2k  2). f (1)  f (2k  1)   1 ( 1) 2 k 3 suy ra f (n) ( 1) n , n  N * . Trường hơp 2: f (1) 1 f (2)  2 f 2 (1)  1 1 f (3)  2 f ( 2). f (1)  f (1)  2  1 1 ... f ( n)  2 f (n  1) f (1)  f ( n  2)  2.1  1 1. Ta dễ dàng chứng minh bằng quy nạp f (n) 1, n  N * Trường hợp 3: f (1) 0 Thay vào (1) ta có f (k  1)  f (k  1) 0 suy ra f (k  1)   f (k  1) . Cho f ( 2 )   f ( 0)   1 8 k 1; ;2;3 ta được f (3)   f (1) 0 f ( 4)   f ( 2) 1. Chứng minh quy nạp m  N * (2) f (4m  3) 0, m  N * (3). f (4m) 1, m  N *; f ( 4m  1) 0, f ( 4m  2)   1, m  N *; Thật vậy, giả sử có f ( 4m) 1; f (4m  1) 0 (*) f ( 4m  2)   1; f ( 4m  3) 0 (**) Khi đó f (4(m  1))  f (4m  4)   f (4m  2)  f (4m) 1 do (*) f (4(m  1)  1)  f (4m  5)   f (4m  3)  f 4m  1) 0 do (*) f (4(m  1)  2)  f (4m  6)   f (4m  4)  f (4m  2)  1 f (4(m  1)  3)  f (4m  7)   f (4m  5)  f ( 4m  3)  0 do (**) do (**) Nghĩa là (2) và (3) đúng với m  1 , ta được điều phải chứng minh. Vậy trong các trường hợp hàm f được xác định như sau nếu n 0 (mod 4) f ( n) 1, f ( n)   1, f ( n)  0 nếu n  2 (mod 4) trong các trường hợp còn lại của n. Kết luận: Vậy có 4 hàm số thoả mãn đề bài đó là . f (n) 0, n  Z . . f (n) 1, n  Z . . f (n) ( 1) n nếu f ( n) 1 n  0, n  Z nếu n 0 f (n) ( 1)  n nếu n  0, n  Z . f (n) 1 nếu n 0 (mod 4) f ( n)   1 f ( n)  0 nếu n  2 (mod 4) trong các trường hợp còn lại của n. Nhận xét: Đối với các trường hợp 1 và 2 ta cũng có thể giải được nhờ giải phương trình đặc trưng 2  2 f (1)  1 0. III. Sử dụng nguyên lý thứ tự Định lý 1: Mọi tập con khác rỗng của N đều có phần tử nhỏ nhất. Định lý 2: Mọi tập con khác rỗng và bị chặn của N đều có phần tử lớn nhất và nhỏ nhất. Ví dụ.3.1 9 Giả sử f , g : N  N là các hàm thoả mãn f là toàn ánh, g là đơn ánh và f (n)  g (n), n  N . Chứng minh rằng f  g . Giải Giả sử f (n)  g (n) với n nào đó, n  N . Khi đó xét tập khác rỗng A  g (n) : f (n)  g (n) . Theo định lý (1) ở trên A có phần tử nhỏ nhất. Giả sử đó là g (n0 ), n0  N . Vì f là toàn ánh f (n1 )  g (n0 ). Từ nên với g (n0 ), tồn tại n1  N sao cho giả thiết có g ( n1 )  f ( n1 )  g ( n0 )  f ( n0 ) (1). Vì g (n0 )  A nên g (n0 )  f (n0 ) từ (1) ta có g (n0 )  f (n0 ) và f (n1 )  f (n0 ) suy ra n1  n0 . Mà g (n1 )  g (n0 ) và g là đơn ánh nên g (n1 )  g (n0 ). Ta có g (n1 )  g (n0 )  f (n0 ) hay g (n1 )  g (n1 )  f (n0 ) suy ra g ( n1 )  A và g (n1 )  g (n0 ), mâu thuẫn với việc chọn g (n0 ). Vậy f  g , đó chính là điều phải chứng minh. Ví dụ 3.2 Giả sử f : N *  N * . Chứng minh rằng nếu f (n  1)  f ( f (n)) , n  N * thì f ( n )  n, n  N * . Giải Gọi A là tập giá trị của hàm số. Khi đó A là tập con khác rỗng của N nên A có phần tử nhỏ nhất. Từ giả thiết ta có f (2)  f ( f (1)), f (3)  f ( f (2)). Vì vậy phần tử nhỏ nhất của A không thể là một trong các số f (2), f (3), f (4),... Mà phần tử nhỏ nhất của A là f (1) và nó được xác định duy nhất. Từ f (1) 1 suy ra f (n)  1, n  1 Vì vậy ta có thể hạn chế hàm f trên N * \ 1 , f : N * \1  N * \1 Lập luận tương tự như trên f (2) là phần tử nhỏ nhất của miền giá trị của hàm này, nên ta có f (1)  f (2) suy ra f (2)  2, n  2 . Lại tiếp tục hạn chế hàm f trên N * \ 1;2 f : N * \1;2  N * \1;2 Lập lại quá trình trên ta có f (1)  f (2)  f (3)  ... dẫn đến f là hàm tăng và f ( n)  n, n  N * . Giả sử f (n)  n với n nào đó, n  N thì ta có f (n) n  1 suy ra f ( f (n))  f (n  1) , do f là hàm tăng, điều này mâu thuẫn với giả thiết f ( f (n))  f (n  1). Vì vậy f ( n)  n , n  N * . Đó là điều phải chứng minh. 10 Nhận xét: Một số phương trình hàm được giải bằng cách kết hợp nguyên lý quy nạp và nguyên lý thứ tự cùng với một số tính chất của hàm số, ta xét ví dụ sau Ví dụ 3.3. Tìm tất cả các hàm thoả mãn f (m  f (n))  f (m)  n, f : N  N m;.n  N . Giải Giả sử f (0) a  0 Từ giả thiết cho n 0 ta được f (m  f (0))  f (m) suy ra f (m  a)  f (a), m  N . Chứng tỏ f là hàm tuần hoàn và như thế tập giá trị của f là A  f (0); f (1); f ( 2);... f ( a  1) Gọi M là số lớn nhất trong A thì f (n)  M , n  N . Mặt khác, từ giả thiết cho m 0 ta có f ( f (n))  f (0)  n  a  n   khi n   điều có f (0) a 0, khi đó f ( f (n))  n, n  N . này mâu thuẫn với f (n)  M , n  N nên phải Nếu f (1) 0 thì 0  f (0)  f ( f (1)) 1 vô lý, vậy f (1) b  0 . Ta chứng minh quy nạp f (n) bn, n  N (1) Thật vậy, với n 0;1 thì (1) đúng. Giả sử có f (n) bn, khi đó f ( f ( n))  f (bn) suy ra n  f (bn). f (n  1)  f (1  f (bn))  f (1)  bn b  bn  b(n  1) , vậy (1) đúng với n  1 . Do đó f (n) bn, n  N . Lại có f (bn) b 2 n n nên b 1 và f (n)  n. Hàm số thoả mãn đề bài là f ( n)  n, n  N . IV. Sử dụng tính chất của hàm hoàn toàn nhân tính Ta đã biết đối với hàm hoàn toàn nhân tính rất thuận lợi khi tính giá trị của nó tại một điểm    tuỳ ý đó là: Cho n  p1 1 p2 2 ... pk k là sự phân tích tiêu chuẩn của số tự nhiên n , nếu f là   hàm số hoàn toàn nhân tính thì f (n) ( f ( p1 )) 1 ...( f ( pk )) k . Do đó để xác định giá trị của hàm f ta chỉ cần xác định giá trị của nó tại các điểm nguyên tố. Ví dụ 4.1 Tìm một hàm số f : N *  N * thoả mãn f (mf (n))  n 2 f ( m) , m; n  N * Giải Từ (1) cho m 1 ta có f ( f (n))  n 2 f (1), n  N * . Nếu n1 , n2  N * mà f (n1 )  f (n2 ) thì f ( f (n1 ))  f ( f (n2 ))  n12 f (1)  n22 f (1) Do f (n)  N * nên f (1)  0 Từ (1) cho m n 1 và do f suy ra n1  n2 , vậy f là đơn ánh. là đơn ánh ta có f ( f (1))  f (1)  f (1) 1 . suy ra f ( f (n))  n 2 , n  N * . 11 (1). Mặt khác với mọi m, n  N * ta có f ( f (m) f (n)) n 2 f ( f (m))  n 2 m 2  f ( f (mn))  f (m) f (n)  f (mn) . Từ đó ta có nguyên tố. f là hàm hoàn toàn nhân tính. Vì vậy ta quan tâm đến giá trị của f tại các điểm Gọi p là một số nguyên tố tuỳ ý Nếu f ( p ) là hợp số thì tồn tại a, b  N *, a b  1 sao cho f (b)  ab . Ta có p 2 f ( f ( p))  f (ab)  f (a ) f (b) xảy ra các trường hợp sau . Nếu f (a)  p 2 thì f (b) 1 suy ra b 1 vô lý. . Nếu f (b)  p 2 thì f (a) 1 suy ra a 1 vô lý. . Nếu f (a)  f (b)  p do f đơn ánh thì a b suy ra f (b)  a 2 . Lại xét, nếu a  nn với m, n  N * thì p 2  f ( f ( p ))  f ( a 2 ) ( f ( a )) 2 và p  f (a)  f (mn)  f (m) f (n) suy ra f (m) 1 hoặc f (n) 1 nghĩa là m 1 hoặc n 1 , vậy a là số nguyên tố. Từ chứng minh nếu p là số nguyên tố thì f ( p ) hoặc là số nguyên tố hoặc là bình phương của một số nguyên tố. Mặt khác ta lại có . Nếu f ( p)  p thì f ( f ( p))  f ( p) suy ra p2  p nên p 1 mâu thuẫn với p nguyên tố. . Nếu f ( p )  p 2 thì f ( f ( p))  f ( p 2 ) suy ra p 2 ( f ( p)) 2  p 4 nên nguyên tố. Do đó f ( p)  p và f ( p)  p 2 . Vì lẽ đó, ta có thể xây dựng hàm số f p 1 mâu thuẫn với p là số như sau Gọi pi là số nguyên tố thứ i trong dãy các số nguyên tố. ( p1  2, p2 5, p3 7,...) thì f ( p2 k  1 )  p2 k ; f ( p2 k )  p22k  1 với mọi k 1,2,3,.. Hàm f xác định như trên thoả mãn điều kiện của bài toán. Ví dụ 4.2 Xét hàm f : N *  N * thoả mãn f ( m 2 f (n))  n 2 ( f ( m)) 2 , m, n  N * Xác định giá trị nhỏ nhất có thể có của f (2005). Giải Đặt f (1) a  0 . Từ (1) cho m 1  f ( f ( n))  a 2 n , Từ (1) cho n 1  f (am2 ) ( f (m))2 , m  N * Từ (1), (2), (3) ta có : ( f (m) f (n)) 2 ( f (m)) 2 ( f (n)) 2  f ( am 2 )( f ( n)) 2  f ( n 2 f ( f ( am 2 )))  f ( n 2 .a 2 .a.m 2 ) 12 n  N * (3) (2) (1)  f (a.(amn) 2 )  f ((amn) 2 f (1)) ( f (amn)) 2  f (m) f (n)  f (amn) Vậy f (an)  af (n); af (mn)  f (mn)  f (m) f (n) (4) Từ (3) và (4) ta có f (an 2 ) af (n 2 ) ( f (n)) 2 Với mỗi a k f (n k 1 (5) n  N * , ta chứng minh công thức sau bằng quy nạp ) ( f (n)) , k  N * (6) k 1 Với k 1 công thức (6) đúng do có (5) Giả sử có a k f (n k 1 ) ( f (n))k 1 . Khi đó ta có a k f (n k  2 ) a k .a. f (n k  2 )  a k f (ank  2 )  a k . f ( a.n.n k 1 )  a k . f ( n k 1 ). f ( n) ( f ( n)) k 1. f (n) ( f (n)) k  2 suy ra (6) đúng với k  1, hay công thức (6) đúng với mọi k  N * . Từ đó ta có a k | ( f (n)) k 1. Ta chứng minh a | f (n), thật vậy Giả sử số mũ của số nguyên tố p trong phân tích tiêu chuẩn của n là  và số mũ của p trong phân tích tiêu chuẩn của f (n) là  . Khi đó số mũ của p trong phân tích tiêu chuẩn của k 1 là  (k  1) . Nếu    thì a k là k còn số mũ của p trong phân tích tiêu chuẩn ( f ( n)) 1 luôn tồn tại số nguyên dương k0 sao cho    (1  k ) . Suy ra k0   (k0  1) hay a k 0 không là 0 ước của ( f (n)) k 0 1 Khi đó đặt g (n)  g (1)  mâu thuẫn (6). Vậy   tức là a | f (n). f ( n)  N *, ta có a f (1) f (a) f ( f (1)) a 2 1 ; g (a)    a a a a a g ( m) g ( n)  f (m) f (n) af (mn) f (mn)    g (mn), m, n  N * a2 a2 a f ( f (m)) a 2 m   am. a a ag ( g (m))  g ( a ) g ( g ( m))  g (ag (m))  g ( f ( m))  Suy ra g ( g (m))  m hay g (m 2 g (n))  g (m 2 ) g ( g (n)) ( g (m)) 2 .n  n.( g (m)) 2 Vì vậy g thoả mãn đề bài và nó có giá trị g (n)  f ( n)  f (n) với a  1 và g (1) 1. Do đó muốn a tìm giá trị nhỏ nhất của f (2005) ta sẽ tìm các hàm f thoả mãn đề bài và có f (1) a 1. Theo chứng minh trên f là hàm đơn ánh và là hàm hoàn toàn nhân tính. Với p nguyên tố mà f ( p)  mn ; m, n  N * thì ta có f ( f ( p ))  f (mn)  f ( m) f (n) p  f ( m) f ( n) 13 Suy ra f (m) 1 hoặc f (n) 1, nghĩa là m 1 hoặc n 1 . Vì vậy f ( p ) là số nguyên tố. Do đó f nhận các giá trị nguyên tố phân biệt tại các điểm nguyên tố phân biệt. Với f thoả mãn trên thì f (2005)  f (5.401)  f (5) f (401) 2.3 6 . Ta chỉ ra tồn tại một hàm số thoả mãn đề bài có f (1) 1 và f (2005) 6 được xác định như sau f (1) 1 ; f (5)  2 ; f ( 2) 5 ; f ( 401) 3 ; f (3)  401, f ( p )  p, p nguyên tố p   2,3,5,401 , do vậy giá trị nhỏ nhất có thể có f (2005) là 6. Nhận xét: Theo cách chứng minh trên ta có thể xác định giá trị nhỏ nhất có thể có của f (n) với mỗi giá trị cụ thể của n và hàm f thoả mãn đề bài. Ví dụ 4.3 Tìm tất cả các hàm f : N *  N * thoả mãn điều kiện f (mf (n))  n 3 f (m) ; m, n  N * (1). Giải Đặt f (1)  a . Từ (1) cho m 1 ta có f ( f (n))  n3 f (1)  an3 (2) Nếu n1 , n2  N * mà f (n1 )  f (n2 ) suy ra f ( f (n1 ))  f ( f (n2 ))  an13  an23 do (2)  n1  n2 tức f là đơn ánh. Với n 1 thay vào (1) và do f là đơn ánh ta có f (m.a)  f (m)  am  m suy ra a 1 thay vào (2) có f ( f (n))  n3 ; n  N * f ( f (m) f ( n))  n3 f ( f (m))  n3m3  f ( f ( mn))  f (m) f (n)  f (mn) Từ đó ta được f là hàm hoàn toàn nhân tính . Vì vậy ta chỉ cần xét các giá trị của nguyên tố. f tại các điểm Gọi p là số nguyên tố, giả sử f ( p )  ab, a b 1 , ta có p 3  f ( f ( p))  f (ab)  f (a) f (b). Xảy ra các trường hợp sau . f (a)  p 3 ; f (b) 1  b 1. . f (b)  p 3 ; f (a) 1  b 1. . f (a) b; f (b)  p 2 hoặc f (a)  p 2 ; f (b)  p Xét trường hợp f (a )  p ; f (b)  p 2 , còn trường hợp ngược lại làm tương tự. Ta có f ( f ( a ))  f (b)  a 3  f ( p ) và f ( f (b))  f ( p 2 )  b3  f ( p 2 )  f ( p. p ) ( f ( p )) 2 suy ra b3 (a 3 ) 2  a 6 hay b  a 2 . Vậy f (b)  a 3 Nếu a  mn thì p  f (a)  f (mn)  f (m) f (n) suy ra m 1 hoặc n 1 nên a là số nguyên tố. Do đó ta có với mỗi số nguyên tố p thì f ( p ) hoặc là số nguyên tố hoặc là lập phương của một số nguyên tố. Mặt khác với p nguyên tố mà f ( p )  p thì f ( f ( p))  f ( p) nên với p là số nguyên tố. p3  p suy ra p 1 mâu thuẫn Còn nếu f ( p )  p 3 thì p 3  f ( f ( p))  f ( p 3 ) ( f ( p))3  p 9 suy ra p 1 mẫu thuẫn với p nguyên tố . Vậy f ( p )  p và f ( p )  p 3 . Khi đó ta xây dựng hàm f như sau 14 Chia tập số nguyên tố thành vô hạn các cặp ( p; q ) ( p  q) rời nhau, đặt f ( p)  q 3 ; f (q)  p hoặc f ( p)  q; f (q)  p 3 thì f luôn thoả mãn đề bài (để ý rằng có vô số hàm f thoả mãn đề bài, chẳng hạn theo cách xác định trên). V. Sử dụng một số tính chất của số học Trong phần này, ta xét một số phương trình hàm giải được bằng cách áp dụng các tính chất của số học như: tính chia hết, nguyên tố, quan hệ đồng dư, phần nguyên... Ví dụ 5.1 Có bao nhiêu hàm f : N *  N * thoả mãn đồng thời các điều kiện sau a) f (1) 1 b) f (n) f (n  2) 9 f (n  1))2  1997, n  N * . Giải Gọi D là tập hợp tất cả các hàm số f thoả mãn điều kiện bài toán. Theo giả thiết b) ta có f ( n) f ( n  2) ( f (n  1)) 2  1997 ; f ( n  1) f ( n  3) ( f (n  2)) 2  1997 suy ra f (n) f (n  2)  ( f (n  1)) 2  f (n  1) f (n  3)  ( f (n  2))2 1997  f (n)  f (n  2) f (n  1)  f (n  3)  , n  N * . f (n  1) f (n  2) Vì vậy ta có f (1)  f (3) f ( 2)  f ( 4) f ( n)  f (n  2)  ...  ... f ( 2) f (3) f (n  1) Đặt c  f (1)  f (3) f (2) (1) suy ra f (n  2) cf (n  1)  f (n), n  N * (2) Ta chứng minh c  N * . Thật vậy, nếu c p q với p, q  N và ( p, q ) 1 thì từ (2) ta có q( f (n)  f (n  2))  pf (n  1), n  N * q | f (n  1), n  N * hay q 2 | f (n) f (n  2), n  N * và n 2. Vì 1997  f (n) f (n  2)  ( f (n  1)) q . suy ra 2 Mà 1997 là số nguyên tố nên q 2 1 2 hay q 1 suy ra cN* Gọi f (2)  a, do (1) ta có ac 1  f (3) suy ra ac  1  f (3)  f (1) f (3) ( f (2))2  1997  ac  1  a 2  1997  a (c  a) 1998 Ta được a | 1998 , hay f (2) là một ước dương của 1998. Ngược lại với mỗi ước dương a của 1998 ta xây dựng hàm f : N *  N * như sau f (1) 1; f (2)  a f (n  2) ( a  b) f ( n  1)  f (n), n  N * ; trong đó b  15 1998  N *. a Ta chứng minh f thoả mãn điều kiện đề bài, nghĩa là f D. Thật vậy: f ( n  1) f (n  3)  ( f (n  2)) 2  f (n  1)(( a  b) f (n  2)  f ( n  1))  ( f ( n  2)) 2 (a  b) f (n  1) f (n  2)  ( f (n  1)) 2  ( f ( n  2)) 2  f ( n  2)((a  b) f ( n  1)  f (n  2))  ( f (n  1)) 2  f (n  2) f (n)  ( f (n  1)) 2 , n  N * suy ra f (n  1) f (n  3)  ( f (n  2)) 2  f (n  2) f (n)  ( f (n  1)) 2 ...  f (3) f (1)  ( f (2)) 2  f (3)  ( f ( 2)) 2 Từ đó ta có f (n) f (n  2)  ( f (n  1)) 2  f (3)  ( f (2)) 2 ( a  b) f ( 2)  f (1)  ( f (2)) 2 ( a  b) a  1  a 2 ab  1 1998  1 1997. Vậy ta được f (n) f (n  1) ( f (n  1))2  1997 hay f D Ta có tương ứng, mỗi f  D với một giá trị f (2) | 1998 là một song ánh giữa D và tập các ước 1998 . D dương của Do đó số phần tử của là: | D | d (1998)  d (2.33.37) (1  1)(3  1)(1  1) 16. Vì vậy có tất cả 16 hàm số thoả mãn đề bài. Ví dụ 5.2 Xác định tất cả các hàm f :Z  Z thoả mãn đồng thời các điều kiện sau a) f (1995) 1996 b) Với mọi n  Z nếu f (n)  m thì f (m)  n ; f (m  3)  n  3. Giải Viết lại điều kiện b) ta có f ( f (n))  n; f ( f (n)  3)  n  3 , n  Z suy ra f (n  3)  f ( f ( f (n)  3))  f (n)  3, n  Z hay f (n)  f (n  3)  3 , n  Z Từ đó ta có f (3)  f (0)  3 f (6)  f (3)  3 ... f (3t )  f (3t  3)  3 suy ra f (3t )  f (0)  3t , t  Z Làm tương tự như trên ta có f (3t  1)  f (1)  3t ; f (3t  2)  f ( 2)  3t. 16   f (0)  3t , n 3t ; t  Z .  Vì vậy ta được f (n)  f (1)  3t , n 3t  1; t  Z .   f (2)  3t , n 3t  2 ; t  Z .  (1) Do vậy để tính f (n) ta tính f (0); f (1) và f (2). Vì 19953 theo (1) ta có f (1995)  f (0)  1995 1996  f (0) 3991 (2). Từ (2)  f ( f (0))  f (3991)  f (3991) 0. Mà 3991 3.1330  1 do đó f (3991)  f (1)  3990 0  f (1) 3990 (3) . Nếu f (2) 3k , k  Z thì f ( f (2))  f (3k )  f (0)  3k  2 3991  3k hay 3k 3989 (vô lý ), vậy f ( 2) 3k . . Nếu f (2) 3k  1, k  Z thì 2  f ( f (2))  f (3k  1)  f (1)  3k  3k  f (1)  2 3988 (vô lý ), vậy f ( 2) 3k  1. Do đó f (2) 3k  2, k  Z (4). Từ (1), (2), (3), (4) ta có   3991  n, n 2(mod 3). f (n)    3k  4  n, k  Z ; n 2(mod 3).  Thử lại ta thấy f (n) xác định như trên thoả mãn đề bài. Bài tập tự luyện 1. Cho hàm f : N *  R thoả mãn các điều kiện sau a) f (1)  21998 b) (1  ( f (n)) 2 ) f (n  1) ( f (n)) 2 , n  N * Chứng minh rằng f (n) 1 , n  1998. 2. Tìm tất cả các hàm f : N *  N thoả mãn các điều kiện sau a) f (mn)  f (m)  f (n), m; n  N * b) f (30) 0 c) f (n) 0 nếu n có chữ số tận cùng bằng 7. 3. Cho hàm f : N  R thoả mãn a) f (n) 0  n 0 b) f (mn)  f (m) f (n), m; n  N 17 c) f (m  n)  f (m)  f (n), m; n  N . Gọi n0 là số nguyên dương bé nhất trong các số nguyên dương n thoả mãn rằng với mọi số nguyên dương n ta đều có bất đẳng thức sau f (n)  ----------------------------- 18  f (n0 )   f (n)  1. Chứng minh 1 log n 0 n f (n0 )  1  . TÀI LIỆU THAM KHẢO [1]. Bùi Huy Hiền, Bài tập đại số và số học- T1, NXBGD - 1985. [2]. Nguyễn Trọng Tuấn, Bài toán hàm số qua các kỳ thi Olympic, NXBGD - 2004. [3]. Nguyễn Văn Mậu, Phương trình hàm, NXBGD - 2003. [4]. Bộ Giáo dục và Đào tạo, Tạp chí Toán học và tuổi trẻ, NXBGD. ------------------------------- 19
- Xem thêm -