Đăng ký Đăng nhập
Trang chủ Kỹ thuật - Công nghệ Kiến trúc xây dựng Phuong phap phan tu huu han nguyen xuan luu 209 trang...

Tài liệu Phuong phap phan tu huu han nguyen xuan luu 209 trang

.PDF
209
213
78

Mô tả:

hay...............................
NGUYỄN XUÂN LỰU PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN . NHÀ XUẤT BẢN GIAO THÔNG VẬN TẢI HÀ NỘI - 2007 Tài liệu này được lưu trữ tại http://tailieuxd.com/ LỜI NÓI ðẦU Trong những phương pháp tính toán kết cấu hiện nay, các phương pháp số, ñặc biệt là phương pháp phần tử hữu hạn ngày càng ñược ứng dụng rộng rãi. Ở các trường ñại học kỹ thuật, môn học Phương pháp phần tử hữu hạn ñã ñược ñưa vào chương trình giảng dạy. ðể ñáp ứng yêu cầu học tập và nghiên cứu của sinh viên, chúng tôi biên soạn cuốn sách này nhằm cung cấp cho người ñọc những kiến thức cơ bản nhất của môn học, biết sử dụng phương pháp này ñể giải những dạng bài toán ñiển hình ñơn giản, từ ñó có cơ sở ñể vận dụng vào công tác tính toán, thiết kế công trình trong thực tế. Sách cũng có thể làm tài liệu tham khảo cho các học viên cao học, các kỹ sư thiết kế cơ khí và công trình. ðể nắm vững môn học này người ñọc cần ôn lại hoặc bổ túc thêm các kiến thức về Cơ học vật rắn, Lý thuyết ñàn hồi, Lý thuyết ma trận, Phương trình ñạo hàm riêng. Vì vậy ở cuối cuốn sách chúng tôi giới thiệu thêm về ðại cương Lý thuyết ñàn hồi như là Phần phụ lục của cuốn sách. Trong quá trình biên soạn cuốn sách, tác giả ñã nhận ñược nhiều ý kién ñóng góp quí báu của các bạn ñồng nghiệp, nhân ñây chúng tôi xin tỏ lòng cám ơn chân thành. Tác giả PPPTHH 3 Tài liệu này được lưu trữ tại http://tailieuxd.com/ Chương 1 KHÁI NIỆM CHUNG VỀ PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN 1.1. Mô hình rời rạc hóa kết cấu Trong mấy chục năm gần ñây, kỹ thuật tính toán kết cấu ñã có những bước phát triển mới do việc ứng dụng rộng rãi máy tính ñiện tử. Một trong những phương pháp tính toán ñang ñược sử dụng ngày càng nhiều và có hiệu quả là phương pháp phần tử hữu hạn (sau ñây viết tắt là PTHH). Phương pháp PTHH trong tính toán kết cấu là tổng hợp của nhiều bộ môn, vì nó liên quan ñến kiến thức trong ba lĩnh vực sau ñây: - Cơ học kết cấu: sức bền vật liệu, lý thuyết ñàn hồi, lý thuyết dẻo, ñộng lực học… - Giải tích số: các phương pháp gần ñúng, giải hệ phương trình tuyến tính, bài toán trị riêng… - Tin học ứng dụng. Ý tưởng cơ bản của phương pháp PTHH trong tính toán kết cấu là coi vật thể liên tục như là tổ hợp của nhiều phần nhỏ liên kết với nhau bởi một số hữu hạn các ñiểm, gọi là nút. Các phần nhỏ ñược hình thành gọi là các phần tử hữu hạn (gọi tắt là phần tử). Hình dạng và kích thước các phần tử có thể khác nhau, tạo thành các mạng lưới khác nhau. Trên hình 1.1 giới thiệu một số sơ ñồ rời rạc hóa kết cấu liên tục thành mạng lưới PTHH. Dĩ nhiên, quan niệm rời rạc hóa như vậy chỉ là gần ñúng. Khi thay thế kết cấu thực (hệ liên tục) bằng tổ hợp các phần tử như trên, người ta thừa nhận rằng, năng lượng bên trong mô hình thay thế phải bằng năng lượng trong kết cấu thực. Trong mỗi phần tử, các ñại lượng cần tìm (thí dụ chuyển vị, ứng suất) ñược lấy xấp xỉ theo một dạng hàm ñơn giản gọi là hàm xấp xỉ. Các hàm xấp xỉ, thí dụ hàm xấp xỉ chuyển vị, phải thỏa mãn ñiều kiện liên tục trên biên các phần tử tiếp xúc với nhau. Trong một số trường hợp, các ñiều kiện tương thích này chỉ thỏa mãn một cách gần ñúng. Người ta căn cứ vào hình dạng và tình hình chịu lực của kết cấu ñể chọn loại phần tử thích hợp. ðối với hệ thanh, lấy ñoạn dầm và thanh làm PTHH. Với kết cấu tấm phẳng thường sử dụng các phần tử hình tam giác, phần tử hình chữ nhật, phần tử hình tứ giác có cạnh thẳng hoặc cong. ðối với kết cấu vỏ, ngoài các loại phần tử tấm phẳng còn sử dụng phần tử vỏ. ðối với vật thể khối, thường dùng các loại phần tử hình tứ diện, hình lập phương, hình lục diện. Còn ñối với vật thể ñối xứng trục, thường dùng phần tử hình vành khăn. Hình 1.2a giới thiệu một số loại phần tử thường dùng. Tài liệu này được lưu trữ tại http://tailieuxd.com/ Hình 1.1 Tùy theo số lượng nút và cách bố trí nút trong mỗi PTHH, người ta phân biệt các loại phần tử tuyến tính và phần tử bậc cao, tương ứng với các dạng hàm chuyển vị tuyến tính và dạng hàm chuyển vị bậc cao. Hình 1.2b giới thiệu 3 loại phần tử bậc cao. a) b) Hình 1.2 Khi phân tích các kết cấu có thể sử dụng các mô hình tính như sau: 1. Mô hình chuyển vị chọn chuyển vị ở các nút làm ẩn. Các ẩn này ñược xác ñịnh từ hệ phương trình cân bằng thành lập trên cơ sở nguyên lý thế năng toàn phần dừng. Nguyên lý này phát biểu như sau: PPPTHH 5 Tài liệu này được lưu trữ tại http://tailieuxd.com/ Trong tất cả các trường chuyển vị thỏa mãn các ñiều kiện tương thích và ñiều kiện biên ñộng học, thì trường chuyển vị tương ứng với sự cân bằng của vật thể sẽ làm cho thế năng toàn phần π ñạt giá trị dừng (ñạt giá trị cực tiểu). δπ = δ U + δ V = 0 trong ñó: (1.1) π = U + V là hàm của các chuyển vị. U – thế năng biến dạng ñàn hồi của vật thể, biểu diễn bằng phần diện tích vẽ trên hình 1.3. V – công của ngoại lực sinh ra trên dịch chuyển của ngoại lực do vật thể bị biến dạng. Nếu hệ ở trạng thái ổn ñịnh, thế năng toàn phần có giá trị cực tiểu. Như vậy sau khi giả thiết một dạng hàm chuyển vị trong phần tử, từ ñiều kiện dừng của phiếm hàm π ta sẽ nhận ñược một hệ phương trình cân bằng trong khi các ñiều kiện liên tục ñã ñược thỏa mãn. Hình 1.3 2. Mô hình cân bằng chọn các ứng suất hay nội lực ở các nút làm ẩn. Các ẩn này ñược xác ñịnh từ hệ phương trình tương thích thành lập trên cơ sở nguyên lý cực tiểu của thế năng bù toàn phần. Nguyên lý này phát biểu như sau: Trong tất cả các trường ứng suất thỏa mãn ñiều kiện cân bằng và ñiều kiện biên tĩnh học, thì trường ứng suất thỏa mãn ñiều kiện tương thích sẽ làm cho thế năng bù toàn phần π ∗ ñạt giá trị dừng. δπ ∗ = δ U ∗ + δ V ∗ = 0 trong ñó: (1.2) π ∗ = U ∗ + V ∗ là hàm của các ứng suất. U ∗ - thế năng bù của biến dạng, biểu diễn bằng phần diện tích phía trên vẽ trên hình 1.3. V ∗ - công bù của ngoại lực. Tài liệu này được lưu trữ tại http://tailieuxd.com/ Thông thường người ta hay sử dụng mô hình chuyển vị vì nó thuận lợi hơn cho việc tự ñộng hóa tính toán trên máy tính. Do ñó trong tài liệu này chỉ ñề cập ñến mô hình chuyển vị của phương pháp PTHH. 1.2. Hàm chuyển vị. Hàm dạng 1.2.1. ða thức xấp xỉ. Hàm chuyển vị Nếu sử dụng mô hình chuyển vị trong phương pháp PTHH thì hàm xấp xỉ của ñại lượng cần tìm là hàm chuyển vị. Hàm này mô tả gần ñúng chuyển vị của các ñiểm trong phần tử. Thông thường người ta chọn hàm chuyển vị dưới dạng ña thức, bởi vì ở dạng ña thức dễ ñạo hàm, tích phân, dễ thiết lập công thức khi xây dựng các phương trình cơ bản của phương pháp PTHH. Bậc của ña thức và số lượng số hạng trong ña thức phụ thuộc vào bậc tự do của phần tử, tức là số chuyển vị ở tất cả các nút của phần tử. ðiều này sẽ nói kỹ hơn khi phân tích những kết cấu cụ thể trong những phần sau. Các ña thức xấp xỉ phải thỏa mãn ñiều kiện hội tụ, tức là khi kích thước phần tử nhỏ dần thì kết quả sẽ hội tụ ñến lời giải chính xác. Muốn vậy trong ña thức ñược chọn phải tồn tại số hạng tự do (hằng số) và tồn tại ñạo hàm riêng ñến bậc cao nhất trong phiếm hàm năng lượng. Thí dụ, ñối với bài toán một chiều có thể chọn: f ( x ) = α1 + α 2 x (xấp xỉ tuyến tính) f ( x ) = α1 + α 2 x + α 3 x 2 (xấp xỉ bậc hai) n +1 f ( x) = ∑ α i xi −1 (xấp xỉ bậc n) 1 ðối với bài toán hai chiều có thể chọn: f ( x , y ) = α1 + α 2 x + α 3 y (xấp xỉ tuyến tính) f ( x, y ) = α1 + α 2 x + α 3 y + α 4 x 2 + α 5 xy + α 6 y 2 (xấp xỉ bậc hai) 1.2.2. Biểu diễn hàm chuyển vị qua chuyển vị nút. Hàm dạng Hình 1.4 PPPTHH 7 Tài liệu này được lưu trữ tại http://tailieuxd.com/ Ta xem xét một PTHH hình tam giác trong bài toán phẳng của Lý thuyết ñàn hồi. Phần tử có 3 nút là 3 ñỉnh của tam giác, nối khớp với các phần tử khác (hình 1.4). Mỗi nút có 2 bậc tự do, tức là có thể chuyển dịch theo 2 phương x và y. Như vậy phần tử có 6 bậc tự do, chúng ñược biểu diễn bằng 6 chuyển vị ở các nút là ui , vi , u j , v j , um , vm . Ta gọi ñó là các chuyển vị nút. Chúng hợp thành vectơ chuyển vị nút của phần tử:  ui  v   i u  {δ } =  j  vj  um     vm  (1.3) Các chuyển vị nút này là ẩn của bài toán tính kết cấu theo mô hình chuyển vị của phương pháp PTHH. Trong nhiều trường hợp, các thành phần trong vectơ chuyển vị nút không chỉ bao gồm các giá trị hàm chuyển vị tại các nút, mà còn có cả giá trị ñạo hàm của hàm chuyển vị nữa (thí dụ trong bài toán uốn thanh, bài toán tấm…). Như ñã thấy, hàm chuyển vị (ña thức xấp xỉ) là hàm của các tọa ñộ, cho phép xác ñịnh chuyển vị tại một ñiểm bất kỳ trong phần tử. Bây giờ ta tìm cách biểu diễn hàm chuyển vị theo các chuyển vị nút. Thí dụ hàm chuyển vị của phần tử tam giác có dạng: u ( x , y ) = α1 + α 2 x + α 3 y (1.4) v ( x, y ) = α 4 + α 5 x + α 6 y u ( x, y )  1 x y 0 0 0  =  v ( x, y )   0 0 0 1 x y  { f } =  hay hoặc trong ñó: α1  α   2 α 3    α 4  α 5    α 6  { f } = [Q]{α } { f } là vectơ chuyển vị [Q ] là ma trận các ñơn thức {α } là vectơ các tham số (1.5) (1.6) Chuyển vị tại các nút, theo (1.6) ta có trong ñó: {δ } = [C ]{α } [C ] là giá trị [Q ] tại các nút, tức là ma trận tọa ñộ nút. (1.7) Tài liệu này được lưu trữ tại http://tailieuxd.com/ Có thể xác ñịnh {α } theo [C ] , ta có từ (1.7) {α } = [C ] {δ } −1 (1.8) Do ñó theo (1.6): { f } = [Q ][C ] −1 {δ } (1.9) { f } = [ N ]{δ } hay (1.10) (1.11) [ N ] = [Q ][C ] Ma trận [ N ] gọi là ma trận các hàm dạng, còn gọi là ma trận các hàm nội suy, vì −1 trong ñó: có thể từ chuyển vị các nút nội suy ra chuyển vị của ñiểm bất kỳ. Các hàm dạng có một ý nghĩa rất quan trọng khi phân tích kết cấu theo phương pháp PTHH. 1.2.3. Lực nút Khi vật thể chịu lực, trong các phần tử sinh ra các nội lực. Phương pháp PTHH giả thiết rằng các nội lực này ñều truyền qua nút. Các lực tác dụng lên nút gọi là lực nút, ñó là lực tương tác giữa các phần tử liên kết với nhau tại nút do các chuyển vị nút sinh ra. ðương nhiên tại các nút còn có thể có các ngoại lực (tải trọng). Nếu tải trọng không ñặt tại nút thì phải dời về nút theo phép biến ñổi tương ñương. Trong mỗi phần tử các lực nút hợp thành vectơ lực nút { F } . Vectơ này có số thành phần bằng số thành phần của vectơ chuyển vị nút, ñược sắp xếp tương ứng với vectơ chuyển vị nút. Thí dụ ñối với phần tử tam giác phẳng ở hình 1.4, ta có vectơ lực nút (hình 1.5a) là: e {F } e = U i Vi U j V j U m Vm  T Hay thí dụ ñối với phần tử thanh chịu uốn (hình 1.5b), tương ứng với vectơ chuyển vị nút (gồm chuyển vị thẳng và góc quay) {δ } = vi θi v j θ j  T là vectơ lực nút {F } e = Vi Mi Vj M j  T a) b) Hình 1.5 PPPTHH 9 Tài liệu này được lưu trữ tại http://tailieuxd.com/ 1.3. Phương trình cơ bản của phương pháp PTHH 1.3.1. Các quan hệ chuyển vị, biến dạng, ứng suất trong phần tử Theo mô hình chuyển vị của phương pháp PTHH, ñại lượng cần tìm ñầu tiên là chuyển vị ở các nút. Sau khi chọn hàm xấp xỉ của chuyển vị, ta xác ñịnh ñược trường chuyển vị theo chuyển vị nút: { f } = [ N ]{δ } (1.12) Sử dụng phương trình biến dạng Cauchy trong Lý thuyết ñàn hồi {ε } = [∂ ]{ f } trong ñó: (1.13) [∂ ] là toán tử vi phân ∂  ∂x  0   0  [∂ ] =  ∂   ∂x  0  ∂   ∂z 0 ∂ ∂y 0 ∂ ∂x ∂ ∂y 0  0  0   ∂ ∂z   0  ∂  ∂y  ∂  ∂z  (1.14) ta có vectơ biến dạng: {ε } = [∂ ][ N ]{δ } hay {ε } = [B ]{δ } (1.15) trong ñó: [ B ] = [ ∂ ][ N ] (1.16) gọi là ma trận tính biến dạng. Ứng suất tại một ñiểm trong phần tử xác ñịnh theo ñịnh luật Hooke: {σ } = [ D ]{ε } trong ñó: (1.17) [ D ] gọi là ma trận ñàn hồi. Từ ñó theo (1.15) ta có vectơ ứng suất: {σ } = [ D ][ B ]{δ } (1.18) Tài liệu này được lưu trữ tại http://tailieuxd.com/ hay {σ } = [ S ]{δ } (1.19) trong ñó: [ S ] = [ D ][ B ] (1.20) gọi là ma trận tính ứng suất. 1.3.2. Phương trình cơ bản của phương pháp phần tử hữu hạn. Ma trận ñộ cứng phần tử. Vectơ tải phần tử Sau ñây ta sử dụng nguyên lý cực tiểu thế năng toàn phần ñể thiết lập phương trình cơ bản của phương pháp PTHH. Giả sử một PTHH có thể tích Ve chịu tác dụng của lực thể tích p và lực bề mặt q trên diện tích Se . Thế năng toàn phần của phần tử là Ue có thể viết dưới dạng: U e = ∫∫∫ Ve 1 T T T [ε ] {σ } dV − ∫∫∫ [ f ] { p} dV − ∫∫ [ f ] {q} dS 2 Ve Se (1.21) ðể ý tới (1.12), (1.15), (1.19) ta có 1 ∫∫∫ 2 [δ ] [ B ] [ D ][ B ]{δ } dV − ∫∫∫ {δ }[ N ] { p} dV − ∫∫ [δ ] [ N ] {q} dS T T T Ve hay U e = ðặt T Ve 1 T [δ ] 2 T (1.22) Se   T T T T ∫∫∫ [ B ] [ D ][ B ] dV {δ } − {δ }  ∫∫∫ [ N ] { p} dV + ∫∫ [ N ] {q} dS   Ve Ve Se [ k ] = ∫∫∫ [ B ] [ D ][ B ] dV T  (1.23) (1.24) Ve và {P} e = ∫∫∫ [ N ] T Ve ta có Ue = { p} dV + ∫∫ [ N ] {q} dS T (1.25) Se 1 T T e [δ ] [ k ]{δ } − [δ ] {P} 2 (1.26) Ma trận [ k ] gọi là ma trận ñộ cứng phần tử, còn vectơ { P} là vectơ tải phần tử bao gồm các thành phần lực ñặt tại nút, các lực này ñược quy ñổi sau khi dời các tải e trọng P và q về nút, do ñó { P} còn gọi là lực nút tương ñương. e Trong trường hợp ở nút có tồn tại lực tập trung {R} e  R1  R    =  2 M   Rn  thì phải cộng thêm các lực tập trung này vào vectơ tải { P} . e PPPTHH 11 Tài liệu này được lưu trữ tại http://tailieuxd.com/ Theo nguyên lý cực tiểu thế năng toàn phần, ñiều kiện cân bằng tại các nút của phần tử là: ∂U e =0 (1.27) ∂ {δ } ∂U e ∂U e ∂U e =0 , = 0 , ... , =0 ∂ {δ1} ∂ {δ 2 } ∂ {δ n } tức là (1.28) Sau khi lấy cực tiểu từ (1.26) ta ñược [ k ]{δ } = {P} e (1.29) ðây là phương trình cơ bản của phương pháp phần tử hữu hạn tính theo mô hình chuyển vị. ðiều ñó có nghĩa là tại từng nút, lực nút do chuyển vị nút gây ra {F }δ = [ k ]{δ } phải cân bằng với tải trọng ñặt ở nút. e {F }δ = {P} e e Trong trường hợp PTHH có biến dạng ban ñầu ε 0 và ứng suất ban ñầu σ 0 thì quan hệ (1.18) ñổi thành: {σ } = [ D ][ B ]{δ } − [ D ]{ε 0 } + {σ 0 } (1.30) Do ñó vectơ tải phần tử (1.25) có thêm thành phần do ε 0 và σ 0 gây ra: {P} e = ∫∫∫ [ N ] T Ve { p} dV + ∫∫ [ N ] {q} dS − ∫∫∫ [ B ] [ D ]{ε 0 } dV + ∫∫∫ [ B ] {σ 0 } dV T Se T Ve T Ve (1.31) 1.3.3. Ma trận ñộ cứng tổng thể. Vectơ tải tổng thể. Phương trình cơ bản của hệ Sau khi thiết lập ñược các ma trận ñộ cứng phần tử và vectơ tải phần tử của tất cả các phần tử trong mạng lưới kết cấu, ta cần phải tổ hợp tất cả chúng lại thành ma trận ñộ cứng tổng thể [ K ] và vectơ tải tổng thể [ P ] của kết cấu, từ ñó xây dựng phương trình cơ bản ñối với toàn bộ kết cấu. Việc tổ hợp này có nghĩa là phải sắp xếp các thành phần trong các ma trận [ k ] của các phần tử vào các vị trí thích hợp trong ma trận [ K ] , và các thành phần trong các ma trận { P} của các phần tử vào các vị trí thích hợp trong { P} . Sự sắp xếp này ñược mô tả bằng ma trận ñịnh vị của các phần tử. e Gọi vectơ chuyển vị nút của phần tử là {δ } và vectơ chuyển vị nút tổng thể của toàn bộ kết cấu là {∆} , thì quan hệ giữa chúng có thể biểu diễn dưới dạng: {δ } = [ L ]e {∆} nd ×1 (1.32) nd × n Tài liệu này được lưu trữ tại http://tailieuxd.com/ trong ñó: [ L ]e là ma trận ñịnh vị của phần tử, nd là số chuyển vị nút trong mỗi phần tử, n là số chuyển vị nút trong toàn bộ kết cấu. Thí dụ có thanh chịu kéo như hình 1.6. Hình 1.6 Chia thanh thành 4 phần tử, 5 nút ñánh số như hình vẽ. Vectơ chuyển vị nút tổng thể: {∆} = [∆1 ∆2 ∆3 ∆4 ∆5 ] T (1.33) Vectơ chuyển vị nút của các phần tử: {δ }  ∆  1 =  1 =  ∆ 2  0 ∆  0 2 {δ } =  2  =   ∆ 3  0 0 0 0 0 {∆} = [ L ]1 {∆} 1 0 0 0  1 0 0 0 {∆} = [ L ]2 {∆} 0 1 0 0   ∆  0 =  3 =  ∆ 4  0 ∆  0 4 {δ } =  4  =   ∆5  0 0 1 0 0 {∆} = [ L ]3 {∆} 0 0 1 0  0 0 1 0 {∆} = [ L ]4 {∆} 0 0 0 1  1 {δ } 3 (1.34) Căn cứ vào (1.26) ta có thể viết ñược biểu thức thế năng toàn phần của toàn bộ kết cấu: ne ne ne 1 T T e [δ ] [ k ]{δ } − ∑ [δ ] {P} e =1 2 e =1 U = ∑U e = ∑ e =1 (1.35) ðể ý ñến (1.32) ta có ne ne 1 T T T T e ∆ L k L ∆ − { } [ ] [ ]e [ ][ ]e [ ∆ ] [ L ]e {P} ∑ e =1 2 e =1 U =∑ ne  1 T  ne T T  T e = [ ∆ ]  ∑ [ L ]e [ k ][ L ]e  {∆} − [ ∆ ]  ∑ [ L ]e {P}  2  e =1   e =1  hay U= 1 T T [ ∆ ] [ K ]{∆} − [ ∆ ] {P} 2 (1.36) PPPTHH 13 Tài liệu này được lưu trữ tại http://tailieuxd.com/ ne với [ K ] = ∑ [ L ]e [ k ][ L ]e T (1.37) e =1 là ma trận ñộ cứng tổng thể của toàn bộ kết cấu, ne và {P} = ∑ [ L ]e {P} T e (1.38) e =1 là vectơ tải tổng thể. Sử dụng nguyên lý cực tiểu thế năng ñối với toàn bộ kết cấu, ta có ñiều kiện cân bằng của toàn hệ là ∂U =0 (1.39) ∂∆ Từ ñó ñược hệ phương trình cơ bản của toàn bộ kết cấu: [ K ]{∆} = {P} (1.40) Trong thực tế tính toán người ta không sử dụng các công thức (1.37) và (1.38) ñể thiết lập [ K ] và { P} , mà sử dụng phương pháp ñơn giản và nhanh chóng hơn, ñó là phương pháp chỉ số. ðiều này sẽ trình bày ở những phần sau. 1.4. Trình tự tính kết cấu theo phương pháp phần tử hữu hạn Quá trình giải bài toán tính kết cấu theo phương pháp PTHH bao gồm các bước sau ñây: (1) Rời rạc hóa kết cấu, tức là chia kết cấu thành mạng lưới các PTHH. Việc chọn loại phần tử và số lượng phần tử tùy thuộc vào tính chất và ñộ chính xác yêu cầu của bài toán. (2) Chọn hàm xấp xỉ chuyển vị mô tả chuyển vị của các ñiểm trong PTHH. (3) Thiết lập ma trận ñộ cứng của từng PTHH. Nếu hệ tọa ñộ phần tử và hệ tọa ñộ kết cấu không trùng nhau thì phải thực hiện phép biến ñổi tọa ñộ. (4) Thiết lập ma trận ñộ cứng tổng thể và vectơ tải tổng thể của toàn bộ kết cấu. (5) Thành lập hệ phương trình cơ bản của kết cấu có dạng: [ K ]{∆} = {P} Cần chú ý là ma trận ñộ cứng [ K ] là ma trận suy biến vì ta ñã coi phần tử có chuyển ñộng tự do (chuyển ñộng cố thể). Do ñó cần sử dụng các ñiều kiện biên ñộng học ñể thành lập vectơ chuyển vị nút {∆∗ } chỉ chứa các chuyển vị nút là ẩn, và tương { } ứng có các ma trận ñộ cứng  K ∗  và vectơ tải tổng thể P * . Từ ñó có phương trình:  K ∗  {∆∗ } = {P ∗ } (1.41) Giải hệ phương trình này tìm ñược vectơ chuyển vị nút tổng thể trong hệ tọa ñộ tổng quát. (6) Xác ñịnh vectơ chuyển vị nút của từng PTHH trong hệ tọa ñộ ñịa phương của từng phần tử. Từ ñó xác ñịnh biến dạng, ứng suất trong từng phần tử. Tài liệu này được lưu trữ tại http://tailieuxd.com/ Câu hỏi ôn tập Chương I 1. Trình bày cơ sở lý thuyết ñể thiết lập các phương trình cơ bản của phương pháp phần tử hữu hạn. 2. Có mối liên hệ gì giữa phương pháp phần tử hữu hạn và phương pháp biến phân trong Cơ học kết cấu? 3. Trình bày cách chọn hàm xấp xỉ. Phân biệt phần tử tuyến tính và phần tử bậc cao. 4. Ý nghĩa của ma trận ñộ cứng của phần tử. Giải thích ý nghĩa các thành phần trong ma trận ñộ cứng phần tử. 5. Ý nghĩa hàm dạng của phần tử hữu hạn khi tính theo mô hình chuyển vị. 6. Nêu các tính chất chủ yếu và cách thiết lập ma trận ñộ cứng tổng thể và cách thiết lập vectơ tải tổng thể. 7. Trình bày trình tự giải một bài toán tính kết cấu theo phương pháp phần tử hữu hạn. Chương 2 TÍNH HỆ THANH 2.1. Phần tử hữu hạn trong hệ thanh Trong các hệ thanh như kết cấu giàn, kết cấu khung, các ñoạn thanh hình lăng trụ ñược coi là các PTHH. Trong kết cấu thanh, các thành phần chuyển vị của phần tử là hàm của một biến, tức là chỉ thay ñổi dọc theo trục thanh, do ñó bài toán hệ thanh là bài toán một chiều. Ở kết cấu giàn, các phần tử chịu biến dạng kéo hoặc nén, còn ở kết cấu khung phẳng các phần tử còn chịu thêm biến dạng uốn. Nếu là khung không gian còn có thể có thêm biến dạng xoắn. Vì vậy ñể dễ dàng nghiên cứu và tổng hợp, ta lần lượt phân tích ba loại phần tử nói trên. 2.1.1. Phần tử thanh chịu kéo (nén) dọc trục Có một phần tử thanh hình lăng trụ có tiết diện không ñổi A, chiều dài a, chịu kéo hoặc nén dọc trục dưới tác dụng của tải trọng phân bố dọc trục q(x) (hình 2.1). PPPTHH 15 Tài liệu này được lưu trữ tại http://tailieuxd.com/ Hình 2.1 Chọn hệ tọa ñộ như hình vẽ. Phần tử thanh có 2 nút là hai ñầu thanh, nút ñầu là i, nút cuối là j, với các chuyển vị nút là δ i và δ j . Vì các chuyển vị nút ñều có phương trùng với trục x nên ta có thể viết vectơ chuyển vị nút: δ  u   j  j {δ } = δ i  = u i  (2.1) Tương ứng với vectơ chuyển vị nút ta có vectơ lực nút của phần tử: {F} e U i  =  U j  Chọn hàm chuyển vị có dạng: u ( x ) = α1 + α 2 x (2.2) ðây là hàm bậc nhất chứa 2 hệ số, ñúng bằng số bậc tự do (số chuyển vị nút) của phần tử. ðiều này ñảm bảo ñiều kiện tương thích của hàm chuyển vị trên các biên chung giữa các phần tử lân cận. Chuyển vị tại nút i (x = 0) là ui , tại nút j (x = a) là u j , thay vào (2.2) ñược ui = α1 (2.3) u j = α1 + α 2 a Viết dưới dạng ma trận: hay Từ ñó có trong ñó:  ui  1 0  α1   =   u j  1 a  α 2  (2.4) {δ } = [C ]{α } (2.5) {α } = [C ] {δ } (2.6) −1 [C ] là ma trận nghịch ñảo của [C ] [C ]  1 = 1 −  a −1 −1 0 1  a  (2.7) Biểu diễn (2.2) dưới dạng ma trận và ñể ý tới (2.6) ta có Tài liệu này được lưu trữ tại http://tailieuxd.com/ α  u = [1 x ]  1  α 2  = [Q ]{α } = [Q ][C ] −1 hay u = [ N ]{δ } trong ñó [ N ] = [Q ][C ] {δ } (2.8) −1 (2.9) Từ ñó ta có [ N ] = 1 −  x a x a  (2.10) [N ] gọi là ma trận các hàm dạng (còn gọi là hàm nội suy Lagrange bậc 1) [ N ] = [ N1 N2 ] (2.11) với các hàm dạng: N1 = 1 − x , a N2 = x a (2.12) Biểu thức (2.8) biểu diễn quan hệ giữa hàm chuyển vị với các chuyển vị nút. Hàm dạng là hàm của tọa ñộ, biểu diễn sự phân bố của chuyển vị trong phần tử khi chuyển vị nút bằng ñơn vị. Trên hình 2.2 là biểu ñồ của các hàm dạng N1 ( x) , N 2 ( x) và biểu ñồ của chuyển vị u ( x) . i j Hình 2.2 Bây giờ ta xét biến dạng và ứng suất trong phần tử. Phương trình biến dạng Cauchy biểu diễn quan hệ giữa biến dạng và chuyển vị trong bài toán một chiều có dạng εx = ∂u ∂x (2.13) Theo (2.2) ta có ε x = α2 PPPTHH 17 Tài liệu này được lưu trữ tại http://tailieuxd.com/ hay viết dưới ma trận α1   α 2  {ε } = [0 1]  ðể ý tới (2.6) ta có {ε } = [ 0 1][C ] {δ } −1  1 0 = [ 0 1]  1 1  {δ } −   a a   1 1 = − {δ }  a a  {ε } = [ B ]{δ } hay trong ñó [ B ] =  − 1  a 1 a  (2.14) (2.15) Ma trận [ B ] gọi là ma trận tính biến dạng. Như vậy biến dạng phần tử có thể biểu diễn qua chuyển vị nút. Trong trường hợp này [ B ] là hằng số, chứng tỏ biến dạng trong phần tử chịu kéo (nén) là hằng số. Ứng suất pháp tại một ñiểm trong phần tử theo phương dọc trục ñối với vật liệu ñàn hồi tuyến tính ñược xác ñịnh dựa vào ñịnh luật Hooke: σ = Eε trong ñó: E là mô ñun ñàn hồi Young của vật liệu. Viết (2.16) một cách tổng quát dưới dạng ma trận: {σ } = [ D ]{ε } trong ñó: (2.16) (2.17) [ D] là ma trận ñàn hồi. Trong trường hợp bài toán một chiều có biến dạng dọc trục thì [ D] = E Ta có thể biểu diễn ứng suất qua chuyển vị nút {σ } = [ D ][ B ]{δ } (2.18) hay {σ } = [ S ]{δ } (2.19) trong ñó [ S ] = [ D ][ B ] (2.20) gọi là ma trận tính ứng suất. Tài liệu này được lưu trữ tại http://tailieuxd.com/ Ta nhận thấy, do biến dạng là hằng số nên ứng suất trong phần tử cũng là hằng số. Ma trận ñộ cứng phần tử ñược thiết lập dựa vào công thức (1.24): [ k ] = ∫∫∫ [ B ] [ D ][ B ] dV T Ve  1 − a a  1 = ∫   E − 0  1   a  a  (2.21) 1 Adx a  Sau khi tích phân ñược  EA  [ k ] =  aEA −  a EA  a   EA  a  − (2.22) ðó là một ma trận vuông ñối xứng. Vectơ tải phần tử, ở ñây là vectơ lực nút tương ñương, theo (1.25) ta có {P} e T = ∫ [ N ] {q} dx a 0  x 1− a  a  =∫   q ( x)dx 0 x    a  Trong trường hợp tải trọng phân bố ñều q ( x) = q0 = const thì {P} e  q0 a   2  =   q0 a   2  (2.23) tức là phân bố theo sơ ñồ sau: Hình 2.3 Trường hợp có tải trọng tập trung P ñặt tại ñiểm có tọa ñộ x thì {P} = [ N ] e T .P PPPTHH 19 Tài liệu này được lưu trữ tại http://tailieuxd.com/ Trường hợp phần tử có biến thiên nhiệt ñộ ∆T với hệ số dãn nhiệt α thì {P} e = ∫∫∫ [ B ] [ D ]{ε 0 } dV T Ve =∫ a 0  1 − a    E {α ∆T } Adx  1   a  (2.24) −1 = EA α ∆T   1 2.1.2. Phần tử thanh chịu uốn Phần tử thanh có tiết diện không ñổi A , chiều dài a. Chọn trục x là trục thanh, trục y là một trục quán tính chính trung tâm của tiết diện thanh (hình 2.4). Tại 2 nút i và j có các thành phần chuyển vị thẳng theo phương y là vi , v j và các thành phần chuyển vị góc (góc quay quanh trục z) là θ zi , θ zj . Trên hình vẽ các chuyển vị có dấu dương. Ta có vectơ chuyển vị nút  vi  θ  {δ } =  vzi   j θ zj  (2.25) Hình 2.4 Tương ứng với các thành phần chuyển vị nút là các lực nút. Ta có vectơ lực nút của phần tử Tài liệu này được lưu trữ tại http://tailieuxd.com/ {F } e  Vi  M   zi  =   Vj   M zj  (2.26) Vectơ chuyển vị nút gồm 4 thành phần, do ñó ta chọn hàm chuyển vị là một ña thức bậc ba chứa 4 thông số ñộc lập: v ( x ) = α1 + α 2 x + α 3 x 2 + α 4 x 3 (2.27) Vì giữa chuyển vị thẳng v( x) và chuyển vị góc θ z ( x) có quan hệ ñạo hàm ∂v = θz ∂x do ñó chỉ cần chọn hàm xấp xỉ ñối với v( x) là ñủ. Viết (2.27) dưới dạng ma trận: v = 1 x x2 hay v = [Q ]{α } trong ñó: [Q ] = 1 α1  α  3  2 x    α 3  α 4  (2.28) (2.29) x2 x x3  (2.30) Các thành phần chuyển vị tại nút i ( x = 0) và nút j ( x = a ) tính ñược vi = α1  ∂v  θ zi =   = α 2  ∂x  x =0 v j = α1 + α 2 a + α 3 a 2 + α 4 a 3  ∂v  θ zj =   = α 2 + 2α 3a + 3α 4 a 2  ∂x  x = a Viết dưới dạng ma trận:  vi  1    θ zi  0  =  v j  1 θ zj  0 hay 0 0 0  α1  1 0 0  α 2    a a 2 a 3  α 3   1 2a 3a 2  α 4  {δ } = [C ]{α } (2.31) (2.32) PPPTHH 21 Tài liệu này được lưu trữ tại http://tailieuxd.com/
- Xem thêm -

Tài liệu liên quan