Phức chất kim loại chuyển tiếp với phối tử benzamidin ba càng dẫn xuất từ thiosemcacbazit

  • Số trang: 96 |
  • Loại file: PDF |
  • Lượt xem: 66 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- Dƣơng Thu Trang PHỨC CHẤT KIM LOẠI CHUYỂN TIẾP VỚI PHỐI TỬ BENZAMIĐIN BA CÀNG DẪN XUẤT TỪ THIOSEMICACBAZIT LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2012 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN --------------------- Dƣơng Thu Trang PHỨC CHẤT KIM LOẠI CHUYỂN TIẾP VỚI PHỐI TỬ BENZAMIĐIN BA CÀNG DẪN XUẤT TỪ THIOSEMICACBAZIT Chuyên ngành: Hóa Vô Cơ Mã số: 60 44 25 LUẬN VĂN THẠC SĨ KHOA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC: TS NGUYỄN HÙNG HUY Hà Nội – Năm 2012 MỤC LỤC DANH MỤC CÁC KÍ HIỆU VIẾT TẮT MỤC LỤC HÌNH MỤC LỤC BẢNG MỞ ĐẦU .................................................................................................................. 1 Lý do chọn đề tài .................................................................................................. 2 Nội dung chính...................................................................................................... 2 CHƢƠNG 1 - TỔNG QUAN .................................................................................. 3 1.1. Giới thiệu về kim loại .................................................................................... 3 1.1.1. Tính chất chung của Paladi ..................................................................... 3 1.1.2. Khả năng tạo phức chất của Pd(II) .......................................................... 3 1.1.3. Một số phức chất điển hình của Pd(II) .................................................... 5 1.1.4. Vai trò sinh học của Palađi ...................................................................... 5 1.2. Giới thiệu về Benzamiđin .............................................................................. 7 1.2.1. Benzamiđin hai càng ............................................................................... 7 1.2.2. Benzamiđin ba càng ................................................................................ 8 1.2.2.1. Benzamiđin ba càng .......................................................................... 8 1.2.2.2. Benzamiđinba càng dẫn xuất từ thiosemicacbazit ............................ 9 1.2.3. Benzamiđin bốn càng .............................................................................. 16 1.3. Các phƣơng pháp nghiên cứu ........................................................................ 17 1.3.1. Phƣơng pháp phổ hồng ngoại IR ............................................................. 17 1.3.2. Phƣơng pháp phổ cộng hƣởng từ 1H-NMR............................................. 18 1.3.3. Phƣơng pháp phổ khối lƣợng ESI-MS .................................................... 19 1.3.4. Phƣơng pháp nhiễu xạ tia X đơn tinh thể ................................................ 20 1.4. Thử hoạt tính sinh học ................................................................................ 22 CHƢƠNG 2 - THỰC NGHIỆM .............................................................................. 23 2.1. Dụng cụ và hóa chất ...................................................................................... 23 2.1.1. Dụng cụ ................................................................................................... 23 2.1.2. Hóa chất ................................................................................................... 23 2.1.3. Chuẩn bị hóa chất .................................................................................... 24 2.2. Tổng hợp phối tử ........................................................................................... 24 2.2.1. Tổng hợp hai dẫn xuất của benzoylthioure ............................................. 24 2.2.2. Tổng hợp hai dẫn xuất phức chất niken(II) benzoylthioureato ............... 25 2.2.3. Tổng hợp hai dẫn xuất benzimiđoyl clorua ............................................. 25 2.2.4. Tổng hợp hai loại 4,4’-điankylthiosemicacbazit ..................................... 26 2.2.5. Tổng hợp phối tử benzamiđin ba càng H2L ............................................ 27 2.3. Tổng hợp phức chất ....................................................................................... 28 2.3.1. Tổng hợp phức chất [Pd(HL)Cl] ............................................................. 28 2.3.2. Tổng hợp phức chất [{Pd(L)}3]............................................................... 28 2.4. Các thông số kỹ thuật của máy đo áp dụng cho việc đo mẫu phức chất ....... 29 2.4.1. Phƣơng pháp phổ hồng ngoại IR ............................................................. 29 2.4.2. Phƣơng pháp phổ cộng hƣởng từ 1H NMR ............................................. 29 2.4.3. Phƣơng pháp phổ khối ESI-MS .............................................................. 30 2.4.4. Phƣơng pháp nhiễu xạ tia X đơn tinh thể ................................................ 30 2.5. Thử hoạt tính sinh học ................................................................................ 30 CHƢƠNG 3 - KẾT QUẢ VÀ THẢO LUẬN.......................................................... 31 3.1. Thảo luận về quá trình tổng hợp và nghiên cứu phối tử ................................ 31 3.1.1. Tổng hợp phối tử H2L ............................................................................. 31 3.1.2. Nghiên cứu phối tử H2L .......................................................................... 34 3.1.2.1. Nghiên cứu phối tử bằng phƣơng pháp IR ....................................... 34 3.1.2.2. Nghiên cứu phối tử bằng phƣơng pháp 1H NMR ............................. 37 3.1.2.3. Nghiên cứu phối tử bằng phƣơng pháp ESI-MS .............................. 42 3.2. Thảo luận về quá trình tổng hợp và nghiên cứu phức chất [Pd(HL)Cl] ........ 46 3.2.1. Tổng hợp phức chất [Pd(HL)Cl] ................................................................ 46 3.2.2. Nghiên cứu phức chất [Pd(HL)Cl] .......................................................... 46 3.2.2.1. Nghiên cứu phức chất [Pd(HL)Cl] bằng phƣơng pháp IR................ 46 1 3.2.2.2. Nghiên cứu phức chất [Pd(HLE5)Cl] bằng phƣơng pháp H NMR ........................................................................................................................ 51 3.2.2.3. Nghiên cứu phức chất [Pd(HL)Cl] bằng phƣơng pháp ESI-MS ...... 53 3.2.2.4. Nghiên cứu phức chất [Pd(HLE5)Cl] bằng phƣơng pháp nhiễu xạ tia X đơn tinh thể ................................................................................................ 56 3.3. Thảo luận về quá trình tổng hợp và nghiên cứu phức [{Pd(L)}3] ................. 60 3.3.1. Tổng hợp phức chất [{Pd(L)}3]............................................................... 60 3.3.2. Nghiên cứu phức chất [{Pd(L)}3] ........................................................... 61 3.3.2.1. Nghiên cứu phức chất [{Pd(L)}3] bằng phƣơng pháp IR ................. 61 3.2.2.2. Nghiên cứu phức chất [{Pd(L)}3] bằng phƣơng pháp 1H NMR ....... 65 3.3.2.3. Nghiên cứu phức chất [{Pd(LE7)}3] bằng phƣơng pháp nhiễu xạ tia X đơn tinh thể .................................................................................................... 68 3.4. Kết quả thử hoạt tính sinh học ....................................................................... 72 KẾT LUẬN .............................................................................................................. 73 TÀI LIỆU THAM KHẢO ........................................................................................ 74 A. TÀI LIỆU TIẾNG VIỆT.................................................................................. 74 B. TÀI LIỆU TIẾNG ANH .................................................................................. 74 C. TRANG WEB .................................................................................................. 78 MỤC LỤC BẢNG Bảng 3.1. Quy kết các dải hấp thụ trên phổ IR của phối tử H2L ............................ 35 Bảng 3.2 . Quy kết các tín hiệu trên phổ 1H NMR của các phối tử H2L ................ 38 Bảng 3.3. Quy kết các dải hấp thụ trên phổ IR của phức chất ................................. 49 Bảng 3.4. Quy kết các tín hiệu trên phổ 1H NMR của H2LE5 và [Pd(HLE5)Cl]. .... 52 Bảng 3.5. Một số độ dài liên kết và góc liên kết trong phức chất [Pd(HLE5)C]. ..... 57 Bảng 3.6. Một số thông tin về tinh thể phức chất [Pd(HLE5)C]. ............................. 58 Bảng 3.7. Quy kết các dải hấp thụ trên phổ IR của phức chất [{Pd(L)}3] .............. 62 Bảng 3.8. Bảng quy kết các tín hiệu phổ H1 của phức chất [{Pd(L)}3] .................. 67 Bảng 3.9. Một số thông tin về tinh thể phức chất [{Pd(LE7)}3]. ............................. 69 Bảng 3.10. Một số độ dài liên kết và góc liên kết trong phức chất [{Pd(LE7)}3]..... 69 Bảng 3.11. Kết quả thử hoạt tính sinh học ............................................................... 73 MỤC LỤC HÌNH Hình 1.1. Sự tách mức năng lƣợng của các obitan d và sự sắp xếp electron của ion Pd2+(d8) trong trƣờng đối xứng bát diện, bát diện lệch và vuông phẳng. ................ 4 Hình 1.2. Benzamiđin ba càng dẫn xuất từ 2-aminophenol (1), 2(aminometyl)piriđin (2), axit antranilic (3), benzoylhiđrazin (4) và thiosemicacbazit (5). ........................................................................................................................... 9 Hình 1.3. Sơ đồ tổng hợp benzamiđin ba càng dẫn xuất từ thiosemicacbazit ........ 10 Hình 1.4. Các dạng tautome hóa của H2L1 .............................................................. 11 Hình 1.5. Cấu trúc phân tử H2L1(a) (thiosemicacbazit). .......................................... 12 Hình 1.6. Cấu trúc phân tử H2L1(b) (thiosemicacbazon). ........................................ 12 Hình 1.7. Tổng hợp phức chất của {M=O}3+ với phối tử H2L. .............................. 13 Hình 1.8. Tổng hợp phức chất của {M≡N}2+ với phối tử H2L. ............................... 13 Hình 1.9. Phản ứng của Na[AuCl4] với phối tử H2L. .............................................. 14 Hình 1.10. Phức chất [AuIII(L)Cl] (a) và [AuI(L2)Cl](b) ...................................... 14 Hình 1.11. Cơ chế oxi hóa phối tử H2L bởi Au(III) ................................................ 14 Hình 1.12. Phối tử H2LE5 ......................................................................................... 16 Hình 1.13. Phối tử H2LE7 ......................................................................................... 16 Hình 1.14. Phối tử H2LM5 ........................................................................................ 16 Hình 1.15. Phối tử H2LM7 ....................................................................................... 16 Hình 3.1. Phổ IR của phối tử H2LM5 ....................................................................... 36 Hình 3.2. Phổ IR của phối tử H2LE7 ........................................................................ 36 Hình 3.3. Phổ 1H NMR của phối tử H2LE5 .............................................................. 37 Hình 3.4. Phổ 1H NMR của phối tử H2LM7 ............................................................. 37 Hình 3.5. Phổ MS của phối tử H2LM5. .................................................................... 43 Hình 3.6. Phổ MS của phối tử H2LE5. ..................................................................... 43 Hình 3.7. Tóm tắt cơ chế phân mảnh của các phối tử ............................................. 45 Hình 3.8. Phổ hồng ngoại của phối tử H2LE7và phức chất [Pd(HLE7)Cl]. .............. 47 Hình 3.9. Phổ hồng ngoại của phối tử H2LM5 và phức chất [Pd(HLM5)Cl]. ........... 48 Hình 3.10. Phổ 1H NMR của phức chất [Pd(HLE5)Cl] ........................................... 51 Hình 3.11. Phổ khối lƣợng của phức chất [Pd(HLE5)Cl]. ....................................... 54 Hình 3.12. Phổ khối lƣợng của phức chất [Pd(HLM5)Cl]. ...................................... 55 Hình 3.13. Cơ chế phân mảnh của phức chất [Pd(HLE5)Cl]. .................................. 55 Hình 3.14. Tinh thể phức chất [Pd(HLE5)Cl]. ......................................................... 56 Hình 3.15. Cấu trúc phân tử của phức chất [Pd(HLE5)C]. ...................................... 56 Hình 3.16. Phổ hồng ngoại của phối tử H2LE7; phức chất [Pd(HLE7)Cl] và phức chất [{Pd(LE7)}3]. ............................................................................................................ 63 Hình 3.17. Phổ hồng ngoại của phối tử H2LM5; phức chất [Pd(HLM5)Cl] và phức chất [{Pd(LM5)}3] .................................................................................................... 64 Hình 3.18. Phổ 1H NMR của phức chất [{Pd(LM5)}3] ............................................. 66 Hình 3.19. Phổ 1H NMR của phức chất [{Pd(LE7)}3] ............................................. 66 Hình 3.20. Cấu trúc phân tử của phức chất [{Pd(LE7)}3]. ....................................... 68 Hình 3.21. Tinh thể phức chất [{Pd(LE7)}3]. ........................................................... 68 Hình 3.22 . Cấu trúc vòng 6 cạnh tạo bởi Pd 1(a,b,c) và S2(a,b,c). ........................ 70 DANH MỤC CÁC KÍ HIỆU, CHỮ VIẾT TẮT Phổ IR Kí hiệu Chú giải Kí hiệu Chú giải y cƣờng độ yếu m cƣờng độ mạnh cƣờng độ trung bình tb Phổ 1H NMR Kí hiệu Chú giải Kí hiệu Chú giải s singlet d doublet t triplet q quartet m multiplet br chân rộng Kí hiệu các chất hóa học theo quy ƣớc chung Kí hiệu Chú giải Kí hiệu Chú giải Me Metyl Ph Phenyl Et Etyl Kí hiệu các chất tổng hợp đƣợc trong luận văn H2 L H2LE5 H2LE7 H2LM5 H2LM7 [Pd(HL)Cl] [Pd(HLE5)Cl] [Pd(HLM5)Cl] [Pd(HLE7)Cl] [Pd(HLM7)Cl] [{Pd(L)}3] [{Pd(LE5)}3] [{Pd(LM5)}3] [{Pd(LE7)}3] [{Pd(LM7)}3] MỞ ĐẦU Benzamiđin hai càng là lớp phối tử vòng càng thông dụng chứa nhóm thioure, có công thức chung: Với R1, R2, R3 = H, ankyl, aryl... Hóa học phối trí của benzamiđin hai càng bắt đầu phát triển mạnh từ những năm 1980. Giống nhƣ các dẫn xuất chứa nhóm thioure khác, hợp chất của benzamiđin hai càng đƣợc quan tâm nhiều bởi hoạt tính sinh học của chúng. Cho đến nay, phức chất của chúng với các kim loại chuyển tiếp đã đƣợc nghiên cứu đầy đủ và hệ thống. Nếu nhóm thế R3 có thêm một nguyên tử cho khác có khả năng tạo phức chất vòng càng thì phối tử này trở thành benzamiđin ba càng. Phức chất của benzamiđin ba càng với các kim loại chuyển tiếp chắc chắn sẽ hứa hẹn nhiều điều thú vị hơn so với benzamiđin hai càng. Mặc dù vậy, hiện nay phức chất của benzamiđin ba càng mới đƣợc nghiên cứu chủ yếu với Re và Tc [13-20]. Những nghiên cứu này tập trung trong lĩnh vực phát triển thuốc chứa đồng vị phóng xạ 188 Re và 99mTc. Bên cạnh đó, ngƣời ta còn phát hiện khả năng ức chế sự phát triển tế bào ung thƣ vú ở ngƣời của benzamiđin ba càng dẫn xuất từ thiosemicacbazit và phức chất của nó với Renioxo(V) (ReO3+) cao hơn hàng chục lần so với cis-platin [17]. Các phức chất benzamdin ba càng với các kim loại chuyển tiếp khác mới đƣợc nghiên cứu trong một vài năm trở lại đây, bao gồm: các phức chất của Ni(II), Cu(II) và Pd(II) với benzamiđin dẫn xuất từ aminometyl piridin; và phức chất của Au(III) với benzamiđin dẫn xuất từ thiosemicacbazit. Các phức chất này đều có hoạt tính sinh học tốt, có khả năng ức chế tế bào ung thƣ vú ở ngƣời tốt. 1 Lý do chọn đề tài Qua thống kê về tình hình nghiên cứu benzamiđin ba càng, có thể nói rằng hoá học phức chất của benzamiđin ba càng còn rất sơ khai. Việc tổng hợp các hệ phối tử và nghiên cứu sự tạo phức của benzamiđin ba càng với kim loại chuyển tiếp còn thiếu tính hệ thống. Thêm vào đó hoạt tính sinh học của lớp hợp chất này có triển vọng tốt nhƣng chƣa đƣợc quan tâm nhiều. Phạm vi hƣớng nghiên cứu về benzamiđin ba càng rất rộng vì từ một khung phối tử ban đầu, tiến hành thay đổi các nhóm thế, sử dụng các amin khác nhau nhƣ amin kháng sinh, amin có hoạt tính sinh học mạnh trong các cây dƣợc liệu hoặc thay bằng các axit amin, các peptit nhỏ...là có thể thu đƣợc những phối tử có hoạt tính sinh học quý giá. Từ một phối tử tổng hợp đƣợc nhƣ vậy, tiến hành nghiên cứu tạo phức với các kim loại chuyển tiếp d dãy thứ nhất, thứ hai, thứ ba, các nguyên tố đất hiếm..., tìm điều kiện tạo phức ở các nhiệt độ, dung môi, xúc tác... khác nhau. Tất cả những nghiên cứu ấy sẽ làm cơ sở để lựa chọn những hoạt chất tốt nhất ứng dụng vào sản xuất thuốc chữa bệnh. Nội dung chính Nội dung bản luận văn này nhằm góp phần mở rộng các nghiên cứu về phức chất của benzamiđin ba càng với các kim loại chuyển tiếp; trong đó, phối tử benzamiđin ba càng đƣợc nghiên cứu là benzamiđin ba càng dẫn xuất từ thiosemicacbazit và ion trung tâm là ion Pd2+. Các phức chất đƣợc tổng hợp dƣới dạng rắn, sau đó đƣợc xác định cấu trúc và thử khả năng ức chế tế bào ung thƣ vú. 2 CHƢƠNG 1 - TỔNG QUAN 1.1. Giới thiệu về kim loại 1.1.1. Tính chất chung của Paladi Palađi là kim loại chuyển tiếp thuộc nhóm VIIIB, chu kì 5, nằm ở ô 46. Cấu hình electron là [Kr]4d105s0 [7]. Cấu hình electron của Pd nhƣ vậy là do sự chênh lệch mức năng lƣợng giữa 4d và 5s nhỏ hơn giữa 3d và 4s và điều này cũng tuân theo quy luật là các obitan có số lƣợng tử chính càng lớn thì mức năng lƣợng sẽ càng gần nhau. Trong tự nhiên, Pd thƣờng tồn tại dƣới dạng tự sinh, hợp kim tự sinh hay các quặng sunfua, asenua [4]. Pd2+ là một axít mềm, điều này cho phép dự đoán Pd2+ sẽ tạo phức tốt với các phối tử chứa bazơ mềm nhƣ S, N. Các mức oxi hóa có thể có của palađi là 0,[Pd(PPh3)3]; +1,[Pd2(PMe3)6]2+; +2,[Pd(CN)4]2-; +3,Pd2(hpp)4Cl2; +4,[PdCl6]2-; các mức oxi hóa thƣờng gặp là +2 và +4, trong đó mức +2 bền nhất, các hợp chất đơn giản và phức chất của Pd(II) đều bền. Các hợp chất đơn giản của Pd(IV) có tính oxi hóa cao, dễ chuyển hóa thành hợp chất Pd(II). Các phức chất của Pd(IV) bền hơn so với hợp chất Pd(IV) đơn giản tuy nhiên số lƣợng của chúng tƣơng đối ít [4]. 1.1.2. Khả năng tạo phức chất của Pd(II) Pd(II) có khuynh hƣớng vƣợt trội đối với sự tạo thành các phức chất vuông phẳng. Điều này là do tính chất đặc biệt của cấu hình electron d8, nên không những chỉ Pd(II) mà cả những nguyên tố nằm cùng nhóm nhƣ Ni(II), Pt(II) cũng thể hiện khuynh hƣớng nhƣ vậy. Tuy nhiên, khuynh hƣớng đó ở Pd(II) còn mạnh hơn cả Ni(II), bởi lẽ lực trƣờng phối tử tăng lên nhiều khi chuyển từ nguyên tử trung tâm Ni(II) sang Pd(II) [7]. 3 Hình 1.1. Sự tách mức năng lượng của các obitan d và sự sắp xếp electron của ion Pd2+(d8) trong trường đối xứng bát diện, bát diện lệch và vuông phẳng. Đối với phức chất vuông phẳng của Pd(II), 8 electron đƣợc xếp trên 4 obitan dxz, dyz, dxy và d z . Trạng thái này có năng lƣợng thấp hơn nhiều so với trạng thái 2 trong phức chất bát diện lệch (hình 1.1). Các phức chất vuông phẳng của Pd (II) không có xu hƣớng kết hợp thêm phối tử thứ năm, trong khi nguyên tố Ni(II) cùng nhóm lại có xu hƣớng này. Điều này dẫn đến cơ chế của phản ứng thế phối tử của các phức chất Pd(II) là SN1 trong khi cơ chế tƣơng ứng ở phức chất Ni(II) là SN2. Trong lý thuyết chung về cấu tạo phức chất, liên kết giữa phối tử với ion trung tâm không thuần túy là cộng hóa trị (thuyết VB) hay thuần túy ion (thuyết trƣờng tinh thể) mà nó là một sự tổ hợp phức tạp của liên kết ion và liên kết cộng hóa trị. Pd(II) có số lớp electron lớn nên chúng dễ bị phân cực hóa, dẫn đến bên cạnh hợp phần ion thì liên kết giữa Pd(II) với phối tử có sự đóng góp của hợp phần 4 cộng hóa trị nhiều hơn, điều này làm cho liên kết giữa Pd(II) với phối tử thƣờng bền hơn và khả năng tạo phức chất của Pd(II) cũng tốt. Năng lƣợng bền hóa trong trƣờng vuông phẳng của Pd(II) cao, nên chúng có khả năng thể hiện phức chất vuông phẳng cao, điều này thể hiện qua việc các tetrahalogenua của Pd(II) đều có cấu dạng vuông phẳng [6]. Cũng vì năng lƣợng bền hóa ở phức chất Pd(II) lớn nên tính trơ động học của nó cũng cao, việc áp dụng kết quả “ảnh hƣởng trans” vào việc điều chế các phức chất đó sẽ hiệu quả hơn. 1.1.3. Một số phức chất điển hình của Pd(II) Phức chất của Pd(II) chủ yếu tồn tại dạng vuông phẳng, chẳng hạn: [Pd(NH3)4]2+,[Pd(NH3)2Cl2], [PdCl2]n, [Pd(CN)4]2-... Trong một số trƣờng hợp đặc biệt, phức chất Pd(II) có thể tồn tại dạng bát diện nhƣ [Pd(diars)2I2] hoặc lƣỡng chóp tam giác nhƣ [Pd(diars)2Cl]+. Các phức chất của Pd có độ bền cao của liên kết hóa học, do đó trơ về mặt động học. Một trong những phức chất quan trọng và tan đƣợc là M[PdCl4] màu vàng. [1] 1.1.4. Vai trò sinh học của Palađi Các phức chất của Pt(II) đƣợc biết đên nhiều bởi hoạt tính sinh học và ứng dụng trong thuốc chữa nhiều loại ung thƣ khác nhau. Ví dụ nhƣ CisPlatin (phức chất dạng cis của Pt với hai phối tử NH3 và hai phối tử Cl) có tác dụng ức chế sự phát triển của tế bào ung thƣ; đƣợc sử dụng làm thuốc hóa trị liệu chống ung thƣ: tinh hoàn, đầu, cổ, tử cung, phổi và bàng quang. Cis Platin tạo thành các liên kết chéo bên trong và giữa các sợi DNA, nên làm thay đổi cấu trúc DNA và ức chế sự tổng hợp DNA. [25] H3N NH3 Pt Cl Cl 5 Các phức chất tƣơng tự của Pd(II) cũng có hoạt tính ức chế tế bào ung thƣ, tuy nhiên hoạt tính của phức chất Pd(II) thƣờng thấp hơn những phức chất tƣơng ứng của Pt(II). PdCl2 đã từng đƣợc dùng để điều trị bệnh lao, tuy nhiên nó có nhiều tác dụng phụ tiêu cực vì thế sau này ngƣời ta thay thế PdCl2 bằng các loại thuốc khác. 6 1.2. Giới thiệu về Benzamiđin 1.2.1. Benzamiđin hai càng Benzamiđin hai càng đầu tiên trên thế giới đƣợc tổng hợp thành công vào năm 1982 bởi L.Bayer và các cộng sự [10]. Kể từ đó, có rất nhiều công trình nghiên cứu về benzamiđin hai càng. Các phối tử dạng này thƣờng đƣợc sử dụng trong quá trình tách chiết kim loại quý [12]. Nhiều phức chất benzamiđin có khả năng kháng nấm, kháng khuẩn cao. Để điều chế benzamiđin hai càng, thƣờng xuất phát từ benzamiđoyl clorua, khi cho benzamiđoyl clorua phản ứng với NH3 hay các amin bậc một sẽ thu đƣợc benzamiđin hai càng [10, 11]: Trong dung dịch, benzamiđin hai càng tồn tại ở một số dạng tautome nằm cân bằng với nhau, trong đó proton có thể định cƣ trên các nguyên tử N của khung benzamiđin hay trên nguyên tử S của nhóm thioure: Tuy nhiên ở trạng thái rắn, khi nghiên cứu cấu trúc đơn tinh thể của benzamiđin ngƣời ta thấy rằng nguyên tử H thƣờng liên kết với N(1), trong một số ít trƣờng hợp, nguyên tử H có thể định cƣ trên nguyên tử N(2) [10]. Sự tồn tại của đồng phân chứa nhóm thiol (-SH) ở trạng thái rắn chƣa đƣợc xác nhận. Benzamiđin hai càng tạo phức chất vòng 6 cạnh bền với hầu hết kim loại chuyển tiếp qua nguyên tử cho là S và N. Phản ứng tạo phức chất thƣờng đi kèm với quá trình tách một proton của khung benzamiđin và phối tử lúc này mang điện 7 tích 1–, điện tích âm này không định cƣ trên một nguyên tử nào mà đƣợc giải tỏa trên năm nguyên tử phi kim của vòng chelat. Điều này làm tăng độ bền của các phức chất tạo thành [12]. Thực nghiệm đã xác định rằng benzamiđin hai càng có xu hƣớng tạo thành phức chất vuông phẳng ở dạng cis với các ion kim loại M2+ thuộc nhóm VIIIB (nhƣ Ni2+, Pd2+, Pt2+) và kể cả Cu2+. Những tính toán lƣợng tử cũng cho thấy dạng cis bền hơn dạng trans [11]. Tuy nhiên do ảnh hƣởng của hiệu ứng không gian, khi nhóm thế R3 có kích thƣớc lớn thì sự tạo thành phức chất dạng trans lại chiếm ƣu thế. Trong một số trƣờng hợp, đặc biệt là phức chất của Ag+ và Au+ với benzamiđin hai càng, chúng không tạo thành phức chất vòng càng mà ion trung tâm chỉ liên kết với phối tử qua nguyên tử S nhƣ những phối tử thioure đơn giản. 1.2.2. Benzamiđin ba càng 1.2.2.1. Benzamiđin ba càng Phải mất gần 30 năm sau kể từ khi các benzamiđin hai càng đầu tiên đƣợc tổng hợp, đến cuối năm 2008 những benzamiđin ba càng đầu tiên dẫn xuất từ 2-aminophenol, axit 2-(aminometyl)piriđin, thiosemicacbazit mới đƣợc công bố (hình 1.2). 8 antranilic, benzoylhiđrazin và
- Xem thêm -