Phát triển hệ thống nhận dạng khuôn mặt ứng dụng trong các hệ thống quản lý nhân sự

  • Số trang: 83 |
  • Loại file: PDF |
  • Lượt xem: 18 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự MỤC LỤC MỤC LỤC.............................................................................................................. I DANH SÁCH CÁC HÌNH VẼ........................................................................... IV DANH SÁCH CÁC BẢNG BIỂU ...................................................................... VI DANH SÁCH CÁC TỪ VIẾT TẮT.................................................................. VII LỜI NÓI ĐẦU .......................................................................................................1 Chương 1................................................................................................................2 TỔNG QUAN VỀ HỆ THỐNG ............................................................................2 1.1. Các phần tử cơ bản của hệ thống xử lý nhận dạng ảnh ..................................2 1.2. Các vấn đề cơ bản trong xử lý nhận dạng ảnh ...............................................3 1.2.1. Một số khái niệm ...................................................................................3 1.2.2. Biểu diễn ảnh .........................................................................................4 1.2.3. Tăng cường ảnh - khôi phục ảnh ............................................................5 1.2.4. Biến đổi ảnh...........................................................................................6 1.2.5. Phân tích ảnh .........................................................................................7 1.2.6. Nhận dạng ảnh .......................................................................................8 1.2.7. Nén ảnh..................................................................................................8 1.3. Những vấn đề đặt ra với các hệ thống QLNS hiện nay ..................................9 1.3.1. Mục đích và ý nghĩa của đề tài .............................................................12 1.4. Giới thiệu về hệ thống QLNS đề xuất .........................................................13 1.4.1. Sơ đồ khối............................................................................................13 1.4.2. Các chức năng cơ bản của hệ thống.....................................................15 Chương 2..............................................................................................................20 Trần văn Huy – Kỹ thuật điện tử – K3 I Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự MODULE NHẬN DẠNG....................................................................................20 KHUÔN MẶT VÀ ĐẶC TRƯNG BVLC...........................................................20 2.1. Cơ sở lý thuyết của bài toán nhận dạng khuôn mặt.....................................20 2.2. Module nhận dạng khuôn mặt và đặc trưng BVLC .....................................23 2.2.1. Module nhận dạng khuôn mặt ..............................................................23 2.2.2. Đặc trưng BVLC..................................................................................24 Chương 3..............................................................................................................28 PHÂN TÍCH VÀ THIẾT KẾ..............................................................................28 PHẦN MỀM QUẢN LÝ NHÂN SỰ ...................................................................28 3.1. Giới thiệu phần mềm quản lý nhân sự .........................................................28 3.1.1. Tìm hiểu yêu cầu..................................................................................28 3.1.2. Các chỉ tiêu về hệ thống quản lý nhân sự .............................................31 3.2. Phân tích và thiết kế hệ thống .....................................................................31 3.2.1. Phân tích hệ thống................................................................................31 3.2.2. Thiết kế hệ thống .................................................................................34 3.2.3. Công cụ và ngôn ngữ lập trình .............................................................51 Chương 4..............................................................................................................52 ĐÁNH GIÁ KẾT QUẢ ĐẠT ĐƯỢC VÀ ...........................................................52 HƯỚNG PHÁT TRIỂN CỦA ĐỀ TÀI...............................................................52 4.1. Đặc trưng BVLC.........................................................................................52 4.1.1. Lựa chọn công cụ và ngôn ngữ lập trình...............................................52 4.1.2. Vectơr BVLC.......................................................................................53 4.1.3. Hiệu suất của đặc trưng BVLC.............................................................54 Trần văn Huy – Kỹ thuật điện tử – K3 II Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự 4.1.4. Phần mềm QLNS .................................................................................58 4.2. Đánh giá chung về hệ thống........................................................................67 4.2.1. Kết quả đạt được ..................................................................................67 4.2.2. Đánh giá chung về hệ thống .................................................................69 4.2.3. Hướng phát triển của đề tài ..................................................................72 KẾT LUẬN..........................................................................................................74 TÀI LIỆU THAM KHẢO...................................................................................75 Trần văn Huy – Kỹ thuật điện tử – K3 III Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự DANH SÁCH CÁC HÌNH VẼ Hình 1.2. Ảnh biến dạng do nhiễu ...........................................................................5 Hình 1.3. Ưu điểm của hệ thống QLNS bằng phần mềm .......................................10 Hình 1.4. Hạn chế của hệ thống QLNS sử dụng công nghệ RFID..........................12 Hình 1.5. Sơ đồ khối hệ thống QLNS ứng dụng nhận dạng khuôn mặt ..................14 Hình 1.6. Mô hình hệ thống RFID cơ bản..............................................................18 Hình 2.1. Sơ đồ khối phương pháp nhận dạng khuôn mặt sử dụng bộ phân loại SVM và các đặc trưng BDIP, BVLC...............................................................................23 Hình 2.2. Phân loại BVLC.....................................................................................26 Hình 3.1. Mẫu lưu trữ nhân viên............................................................................29 Hình 3.2. Mẫu phiếu chấm công nhân viên............................................................29 Hình 3.3. Mẫu bảng lương nhân viên.....................................................................30 Hình 3.4. Biểu đồ phân cấp chức năng...................................................................32 Hình 3.5. Biểu đồ mức ngữ cảnh ...........................................................................33 Hình 3.6. Biểu đồ mức đỉnh...................................................................................34 Hình 3.7. Sơ đồ thực thể liên kết ERD...................................................................36 Hình 3.8. Lưu đồ thuật toán nhập thông tin nhân viên ...........................................44 Hình 3.9. Lưu đồ thuật toán tìm thông tin nhân viên..............................................45 Hình 3.10. Lưu đồ thuật toán sửa thông tin nhân viên............................................46 Hình 3.11. Lưu đồ thuật toán xóa thông tin nhân viên ...........................................47 Hình 3.12. Lưu đồ thuật toán thêm thông tin giao việc cho nhân viên....................48 Hình 3.13. Lưu đồ thuật toán sửa thông tin giao việc cho nhân viên ......................49 Hình 3.14. Lưu đồ thuật toán xóa thông tin giao việc cho nhân viên......................50 Trần văn Huy – Kỹ thuật điện tử – K3 IV Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự Hình 4.1. (a) Ảnh gốc; (b) Ảnh BVLC...................................................................53 Hình 4.2. Minh họa một số ảnh trong tập S+(hàng trên) .........................................55 và tập S-negative (hàng dưới). ...............................................................................55 Hình 4.3. Ảnh đầu vào có độ tương phản thấp và sau khi cân bằng mức xám. .......55 Hình 4.4. Đường cong ROC với đặc trưng BVLC .................................................57 Hình 4.5. Giao diện dành cho người sử dụng .........................................................58 Hình 4.6. Giao diện dành cho người quản lý..........................................................59 Hình 4.7. Các chức năng Danh mục công việc, trình độ, và phòng ban..................60 Hình 4.8. Chức năng quản lý thông tin cá nhân của nhân viên ..............................61 Hình 4.9. Chức năng giao việc cho nhân viên .......................................................62 Hình 4.10. Chức năng chấm công cho nhân viên ...................................................63 Hình 4.11. Chức năng tính lương cho nhân viên ....................................................64 Hình 4.12. Chức năng giám sát chứng thực ..........................................................65 Hình 4.13. Báo cáo về thông tin nhân viên ............................................................66 Hình 4.14. Giao diện module thu nhận thông tin đầu vào.......................................68 Hình 4.15. Giao diện tổng thể của hệ thống QLNS ................................................69 ứng dụng nhận dạng khuôn mặt và RFID...............................................................69 Hình 4.16. Các kết quả nghiên cứu đạt được..........................................................71 Trần văn Huy – Kỹ thuật điện tử – K3 V Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự DANH SÁCH CÁC BẢNG BIỂU Bảng 3.1. Bảng liệt kê các thuộc tính.....................................................................35 Bảng 3.2. Bảng từ điển dữ liệu ..............................................................................39 Bảng 4.1. So sánh các wrapper kết nối OpenCV với .NET ...................................53 Bảng 4.2. Kết quả kiểm tra ....................................................................................56 Trần văn Huy – Kỹ thuật điện tử – K3 VI Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự DANH SÁCH CÁC TỪ VIẾT TẮT TỪ STT VIẾT TẮT THUẬT NGỮ THUẬT NGỮ TIẾNG ANH TIẾNG VIỆT Block Difference of Inverse Sai lệch khối của xác suất Probabilities nghịch đảo Block Variation of Local Sai lệch khối của các hệ số Correlation Coefficients tương quan cục bộ DFD Data Flow Diagram Biểu đồ luồng dữ liệu 4 ERD Enity Relationship Diagram Biểu đồ quan hệ thực thể 5 FD Function Diagram Biểu đồ chức năng 6 LAN Local Area Network Mạng nội bộ 7 PCA 8 RFID 9 ROC 10 SVM 11 QLNS 1 BDIP 2 BVLC 3 Principal Component Analysis Radio Frequency Identification Receiver Operating Characteristic Support Vector Machine Trần văn Huy – Kỹ thuật điện tử – K3 Phân tích thành phần chủ yếu Nhận dạng bằng sóng vô tuyến Đặc tính hoạt động của đầu vào Vecto trợ giúp Quản lý nhân sự VII Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự LỜI NÓI ĐẦU Xử lý ảnh là một lĩnh vực nghiên cứu rộng và có rất nhiều ứng dụng trong thực tế. Một trong những khía cạnh nghiên cứu của xử lý ảnh là nhận dạng khuôn mặt. Kỹ thuật này cho phép chúng ta nhận dạng khuôn mặt người từ ảnh tĩnh hay video bằng cách so sánh với kho dữ liệu có sẵn trong hệ thống. Với sự phát triển mạnh mẽ của công nghệ thông tin và truyền thông, rất nhiều phương pháp nhận dạng khuôn mặt có độ chính xác cao, hiệu quả và dễ sử dụng đã được áp dụng nhiều trong các hệ thống tương tác giữa người và máy, đặc biệt là các hệ thống quản lý, đặc biệt là các hệ thống quản lý đòi hỏi có độ bảo mật và có tính ưu việt như hệ thống quản lý nhân sự, quản lý hàng hóa, giám sát sân bay. Để xây dựng được một hệ thống quản lý nói chung và quản lý nhân sự nói riêng với những đòi hỏi về tính ưu việt, hiệu quả cao cũng như đảm bảo được các yêu cầu về an ninh khắt khe, các nhà nghiên cứu và kỹ thuật đã tích hợp các công nghệ khác nhau như công nghệ thông tin, tự động hóa, công nghệ không dây… trong cùng một hệ thống. Có thể nói một trong những xu hướng phát triển chính của khoa học công nghệ hiện đại đó là tổng hợp thành tựu của các lĩnh vực khác nhau để xây dựng một hệ thống đáp ứng được những yêu cầu ngày càng cao của sản xuất và đời sống. Dựa trên cơ sở của việc nghiên cứu và đề xuất một phương pháp nhận dạng khuôn mặt mới có độ chính xác cao, em đã phát triển nghiên cứu của mình trong một ứng dụng về quản lý nhân sự sử dụng nhận dạng khuôn mặt làm nền tảng hoạt động chính. Đề tài mà em thực hiện trong luận văn là nghiên cứu đặc trưng BVLC sử dụng trong module nhận dạng khuôn mặt và thiết kế phần mềm quản lý nhân sự ứng dụng cho phương pháp nhận dạng khuôn mặt . Em xin chân thành cảm ơn thầy giáo hướng dẫn PGS.TS Nguyễn Tiến Dũng đã có những định hướng và góp ý quý báu đối với em, để em hoàn thành tốt luân văn của mình với kết quả tốt nhất. Cuối cùng em xin cảm ơn gia đình và bạn bè đã giúp đỡ, động viên em trong thời gian vừa qua. Hà Nội, ngày .... tháng .... năm 2012 Học viên Trần văn Huy Trần văn Huy – Kỹ thuật điện tử – K3 1 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự Chương 1 TỔNG QUAN VỀ HỆ THỐNG 1.1. Các phần tử cơ bản của hệ thống xử lý nhận dạng ảnh Xử lý nhận dạng ảnh đã và đang được ứng dụng rộng rãi hiện nay. Để có thể hình dung cấu hình một hệ thống xử lý nhận dạng ảnh chuyên dụng hay một hệ thống xử lý nhận dạng ảnh dùng trong nghiên cứu, đào tạo, trước hết chúng ta sẽ xem xét các bước cần thiết trong xử lý nhận dạng ảnh. Trước hết là quá trình thu nhận nhận dạng ảnh. Ảnh có thể thu nhận qua camera. Thường ảnh thu nhận qua camera là tín hiệu tương tự (loại camera ống kiểu CCIR), nhưng cũng có thể là tín hiệu số hóa (loại CCD - Charge Coupled - Device). Hình 1.1. Các giai đoạn chính trong xử lý nhận dạng ảnh Ảnh cũng có thể thu nhận từ vệ tinh qua các bộ phận cảm ứng (sensor), hay ảnh, tranh được quét trên scanner. Tiếp theo là quá trình số hóa (Digitalizer) để biến đổi tín hiệu tương tự sang giai đoạn xử lý, phân tích hay lưu trữ lại. Quá trình phân tích nhận dạng ảnh thực chất bao gồm nhiều công đoạn nhỏ. Trước hết là công việc tăng cường ảnh để nâng cao chất lượng ảnh. Do những Trần văn Huy – Kỹ thuật điện tử – K3 2 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự nguyên nhân khác nhau: có thể do chất lượng thiết bị thu nhận ảnh, do nguồn sáng hay do nhiễu, ảnh có thể bị suy biến. Do vậy cần phải tăng cường và khôi phục lại ảnh để làm nổi bật một số đặc tính chính của ảnh, hay làm cho ảnh gần giống nhất với trạng thái gốc, trạng thái trước khi ảnh bị biến dạng. Giai đoạn tiếp theo là phát hiện các đặc tính như biên, phân vùng ảnh, trích chọn các đặc tính, v.v... Cuối cùng, tùy theo mục đích của ứng dụng, sẽ là giai đoạn nhận dạng, phân lớp hay các quyết định khác. Các giai đoạn chính của quá trình xử lý nhận dạng ảnh có thể mô tả ở hình 1.1. Đối với một hệ thống xử lý nhận dạng ảnh thu nhận qua camera - camera như là con mắt của hệ thống. Có 2 loại camera: camera ống loại CCIR và camera CCD. Loại camera ứng với chuẩn CCIR quét ảnh với tần số 1/25 và mỗi ảnh gồm 625 dòng. Loại CCD gồm các photo điốt và làm tương ứng một cường độ sáng tại một điểm ảnh ứng với một phần tử ảnh (pixel). Như vậy, ảnh là tập hợp các điểm ảnh. Số pixel tạo nên một ảnh gọi là độ phân giải (resolution). 1.2. Các vấn đề cơ bản trong xử lý nhận dạng ảnh Như đã đề cập trong phần giới thiệu, chúng ta đã thấy được một cách khái quát các vấn đề chính trong xử lý nhận dạng ảnh. Để hiểu chi tiết hơn, trước tiên ta xem xét hai khái niệm (thuật ngữ) thường dùng trong xử lý ảnh đó là Pixel (phần tử ảnh) và grey level (mức xám), tiếp theo là tóm tắt các vấn đề chính. 1.2.1. Một số khái niệm • Pixel (Picture Element): phần tử ảnh Ảnh trong thực tế là một ảnh liên tục về không gian và về giá trị độ sáng. Để có thể xử lý ảnh bằng máy tính cần thiết phải tiến hành số hóa ảnh. Trong quá trình số hóa, người ta biến đổi tín hiệu liên tục sang tín hiệu rời rạc thông qua quá trình lấy mẫu (rời rạc hóa về không gian) và lượng hóa thành phần giá trị mà thể về nguyên tắc bằng mắt thường không phân biệt được hai điểm kề nhau. Trong quá trình này, người ta sử dụng khái niệm Picture element mà ta quen gọi hay viết là Trần văn Huy – Kỹ thuật điện tử – K3 3 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự Pixel - phần tử ảnh. Ở đây cũng cần phân biệt khái niệm pixel hay đề cập đến trong các hệ thống đồ họa máy tính. Để tránh nhầm lẫn ta tạm gọi khái niệm pixel này là pixel thiết bị. Khái niệm pixel thiết bị có thể xem xét như sau: khi ta quan sát màn hình (trong chế độ đồ họa), màn hình không liên tục mà gồm nhiều điểm nhỏ, gọi là pixel. Mỗi pixel gồm một cặp tọa đội x, y và màu. Cặp tọa độ x, y tạo nên độ phân giải (resolution). Như màn hình máy tính có nhiều loại với độ phân giải khác nhau: màn hình CGA có độ phân giải là 320 x 200; màn hình VGA là 640 x 350,... Như vậy, một ảnh là một tập hợp các điểm ảnh. Khi được số hóa, nó thường được biểu diễn bởi bảng hai chiều I(n, p): n dòng và p cột. Ta nói ảnh gồm n × x pixels. Người ta thường ký hiệu I(x, y) để chỉ một pixel. Thường giá trị của n chọn bằng p và bằng 250. Hình 1.2 cho ta thấy việc biểu diễn một ảnh với độ phân giải khác nhau. Một pixel có thể lưu trữ trên 1, 4, 8 hay 24 bit. • Gray level: Mức xám Mức xám là kết quả sự mã hóa tương ứng một cường độ sáng của mỗi điểm ảnh với một giá trị số - kết quả của quá trình lượng hóa. Cách mã hóa kinh điển thường dùng 16, 32 hay 64 mức. Mã hóa 256 mức là phổ dụng nhất do lý do kỹ thuật. Vì 28 = 256 (0, 1, ..., 256), nên với 256 mức, mối pixel sẽ được mã hóa bởi 8 bít. 1.2.2. Biểu diễn ảnh Trong biểu diễn ảnh, người ta thường dùng các phần tử đặc trưng của ảnh là pixel. Nhìn chung, ta có thể xem một hàm hai biến chứa các thông tin như biểu diễn của một ảnh. Các mô hình biểu diễn ảnh cho ta một mô tả lô gic hay định lượng các tính chất của hàm này. Trong biểu diễn ảnh cần chú ý đến tính trung thực của ảnh hoặc các tiêu chuẩn "thông minh" để đo chất lượng ảnh hoặc tính hiệu quả của các kỹ thuật xử lý. Trần văn Huy – Kỹ thuật điện tử – K3 4 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự Việc xử lý ảnh số yêu cầu ảnh phải được mẫu hóa và lượng tử hóa. Thí dụ một ảnh ma trận 512 dòng gồm khoảng 512 × 512 pixel. Việc lượng tử hóa ảnh là một chuyển đổi tín hiệu tương tự sang tín hiệu số (Analog Digital Convert) của một ảnh đã lấy mẫu sang một số hữu hạn mức xám. Một số mô hình thường được dùng trong biểu diễn ảnh: Mô hình toán, mô hình thống kê. Trong mô hình toán, ảnh hai chiều được biểu diễn nhờ các hàm hai biến trực giao gọi là các hàm cơ sở. Các biến đổi này sẽ trình bày kỹ trong chương 3. Với mô hình thống kê, một ảnh được coi như một phần tử của một tập hợp đặc trưng bởi các đại lượng như: kỳ vọng toán học, hiệp biến, phương sai, moment. 1.2.3. Tăng cường ảnh - khôi phục ảnh Tăng cường ảnh là bước quan trọng, tạo tiền đề cho xử lý ảnh. Nó gồm một loạt các kỹ thuật như: lọc độ tương phản, khử nhiễu, nổi màu, v.v... Hình 1.2. Ảnh biến dạng do nhiễu Hình 1.2 ở trên cho ta thí dụ về sự biến dạng của ảnh do nhiễu. Khôi phục ảnh là nhằm loại bỏ các suy giảm (degradation) trong ảnh. Với một hệ thống tuyến tính, ảnh của một đối tượng có thể biểu diễn bởi: +∞+∞ g(x, y) = ∫ ∫ h(x, y; α, β)f(α, β)dαd(β + η(x, y)) -∞ -∞ Trong đó: Trần văn Huy – Kỹ thuật điện tử – K3 5 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự - η(x, y) là hàm biểu diễn nhiễu cộng. - f(α, β) là hàm biểu diễn đối tượng. - g(x, y) là ảnh thu nhận. - h((x, y; α, β) là hàm tán xạ điểm (Point Spread Function - PSF). Một vấn đề khôi phục ảnh tiêu biểu là tìm một xấp xỉ của f(α, β) khi PSF của nó có thể đo lường hay quan sát được, ảnh mờ và các tính chất sác xuất của quá trình nhiễu. 1.2.4. Biến đổi ảnh Thuật ngữ biến đổi ảnh (Image Transform) thường dùng để nói tới một lớp các ma trận đơn vị và các kỹ thuật dùng để biến đổi ảnh. Cũng như các tín hiệu một chiều được biểu diễn bởi một chuỗi các hàm cơ sở, ảnh cũng có thể được biểu diễn bởi một chuỗi rời rạc các ma trận cơ sở gọi là ảnh cơ sở. Phương trình ảnh cơ sở có dạng: A*k.1 = ak al*T, với ak là một thứ k của ma trận A. A là ma trận đơn vị. Có nghĩa là A A*T = I. Các A*k.l định nghĩa ở trên, với k, l = 0,1, ..., N-1 là ảnh cơ sở. Có nhiều loại biến đổi được dùng như: - Biến đổi Fourier, Sin, Cosin, Hadamard,... - Tích Kronecker (*). - Biến đổi KL (Karhumen Loeve): biến đổi này có nguồn gốc từ khai miền của các quá trình ngẫu nhiên gọi là phương pháp trích chọn các thành phần chính. Do phải xử lý nhiều thông tin, các phép toán nhân và cộng trong khai triển là khá lớn. Do vậy, các biến đổi trên nhằm làm giảm thứ nguyên của ảnh để việc xử lý ảnh được hiệu quả hơn. Trong xử lý ảnh, việc phân tích có thể được đơn giản hơn khá nhiều do làm việc với ma trận khối gọi là tích Kronecker. Trần văn Huy – Kỹ thuật điện tử – K3 6 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự • Ma trận khối là ma trận mà phân tử của nó lại là một ma trận.  A1 1 A1 2 ... A1.n   ... ... ... ...   Ain 1 Ain 1 ... Ain n Ma trận A với Aij là ma trận m × n; i = 1, 2, ..., m và j = 1, 2, ..., n. • Tích Kronecker Cho A là ma trận kích thước M1 × M2 và B là ma trận kích thước N1 × N2. Tích Kronecker của A và B ký hiệu là A⊗ B là ma trận khối được định nghĩa: A⊗ B Với ai.j là các phần tử của ma trận A. Thí dụ; 31  thì A⊗ B = 1  3 1 2   3 4 1 1   1 -1  ma trận A ma trận B 2 1 2  4 3 4 2 -1 -2  4 -3 -4  1.2.5. Phân tích ảnh Phân tích ảnh liên quan đến việc xác định các độ đo định lượng của một ảnh để đưa ra một mô tả đầy đủ về ảnh. Các kỹ thuật được sử dụng ở đây nhằm mục đích xác định biên của ảnh. Có nhiều kỹ thuật khác nhau như lọc vi phân hay dò theo quy hoạch động. Người ta cũng dùng các kỹ thuật để phân vùng ảnh. Từ ảnh thu được, người ta tiến hành kỹ thuật tách (split) hay hợp (fusion) dựa theo các tiêu chuẩn đánh giá như: màu sắc, cường độ, v.v... Các phương pháp được biết đến như Quad-Tree, Trần văn Huy – Kỹ thuật điện tử – K3 7 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự mảnh hóa biên, nhị phân hóa đường biên. Cuối cùng, phải kể đến các kỹ thuật phân lớp dựa theo cấu trúc. 1.2.6. Nhận dạng ảnh Nhận dạng ảnh là quá trình liên quan đến các mô tả đối tượng mà người ta muốn đặc tả nó. Quá trình nhận dạng thường đi sau quá trình trích chọn các đặc tính chủ yếu của đối tượng. Có hai kiểu mô tả đối tượng: - Mô tả tham số (nhận dạng theo tham số). - Mô tả theo cấu trúc (nhận dạng theo cấu trúc). Trên thực tế, người ta đã áp dụng kỹ thuật nhận dạng khá thành công với nhiều đối tượng khác nhau như: nhận dạng ảnh vân tay, nhận dạng chữ (chữ cái, chữ số, chữ có dấu). Nhận dạng chữ in hoặc đánh máy phục vụ cho việc tự động hóa quá trình đọc tài liệu, tăng nhanh tốc độ và chất lượng thu nhận thông tin từ máy tính. Nhận dạng chữ viết tay (với mức độ ràng buộc khác nhau về cách viết, kiểu chữ, v.v...) phục vụ cho nhiều lĩnh vực. Ngoài 2 kỹ thuật nhận dạng trên, hiện nay một kỹ thuật nhận dạng mới dựa vào kỹ thuật mạng nơron đang được áp dụng và cho kết quả khả quan. 1.2.7. Nén ảnh Dữ liệu ảnh cũng như các dữ liệu khác cần phải lưu trữ hay truyền đi trên mạng. Như đã nói ở trên, lượng thông tin để biểu diễn cho một ảnh là rất lớn. Trong phần 1.1 chúng ta đã thấy một ảnh đen trắng cỡ 512 × 512 với 256 mức xám chiếm 256K bytes. Do đó làm giảm lượng thông tin hay nén dữ liệu là một nhu cầu cần thiết. Nhiều phương pháp nén dữ liệu đã được nghiên cứu và áp dụng cho loại dữ liệu đặc biệt này. Trần văn Huy – Kỹ thuật điện tử – K3 8 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự 1.3. Những vấn đề đặt ra với các hệ thống QLNS hiện nay Các hệ thống QLNS hiện nay được sử dụng rất phổ biến và rộng rãi từ trong các công sở, xí nghiệp, nhà máy cho đến các cơ quan tổ chức Nhà nước, trường học, bệnh viện, khách sạn…[1]. Có thể nói các hệ thống QLNS đã mang lại một cuộc cách mạng trong lĩnh vực quản lý, không những giảm thời gian và chi phí so với việc quản lý thủ công mà còn nâng cao hiệu quả và độ chính xác rất cao. Với những đòi hỏi mới phát sinh trong quá trình sử dụng mà các hệ thống QLNS ngày càng được tăng cường thêm nhiều chức năng mới, giảm lao động trực tiếp của con người, tăng hiệu quả quản lý. Từ những chức năng đơn giản ban đầu như lưu trữ thông tin, tìm kiếm, bổ sung và xóa thông tin khỏi hệ thống, các phần mềm quản lý thông minh hiện nay còn cho phép người dùng có thể thực hiện nhiều bài toán nghiệp vụ trên đó, đặc biệt có thể thực hiện việc chấm công và tính lương một cách chính xác và trung thực. Tuy nhiên, các hệ thống QLNS đang được áp dụng hiện nay vẫn tồn tại một số hạn chế: Thứ nhất, với các hệ thống quản lý thuần túy xây dựng trên các kỹ thuật lập trình phần mềm thì việc chấm công, tính lương cho nhân viên sẽ khó thực hiện được do không giám sát được thời gian đi, về và thời gian làm việc của nhân viên, đặc biệt là ở các công ty lớn, số lượng nhân viên nhiều. Để tính được lương theo ngày công một cách chính xác với nhân viên thì hệ thống QLNS cần có khả năng ghi lại thời gian đến, thời gian ra về, thời gian đó sẽ được lưu lại trong hệ thống để từ đó tính ra thời gian làm việc của nhân viên. Với các hệ thống phần mềm thuần túy, việc nhập dữ liệu về thời gian đi và về của nhân viên phải thực hiện bằng tay và không thể xử lý tự động được. Do đó nhu cầu đặt ra là cần tự động hóa quá trình nhập dữ liệu và xử lý dự liệu đối với các hệ thống quản lý giám sát. Điều này có thể được giải quyết bằng cách áp dụng một công nghệ nhận dạng tự động đó là công nghệ nhận dạng bằng sóng điện từ RFID. Mỗi người dùng mà ở đây là mỗi nhân viên sẽ được phát một thẻ RFID với một mã số duy nhất, mỗi khi ra vào công ty hoặc các Trần văn Huy – Kỹ thuật điện tử – K3 9 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự phòng ban, người sử dụng chỉ cần quẹt thẻ qua một đầu đọc RFID, thông tin về mã số thẻ sẽ xác định nhân viên đó và thời gian quẹt thẻ sẽ được lưu vào trong hệ thống để từ đó biết được thời điểm vào ra của các nhân viên và giải quyết được việc chấm công và tính lương một cách tự động. RFID là một công nghệ nhận dạng điện tử thông qua sóng vô tuyến được áp dụng rộng rãi trong nhiều hệ thống QLNS hiện nay ở Việt Nam. Hình 1.3. Ưu điểm của hệ thống QLNS bằng phần mềm Trần văn Huy – Kỹ thuật điện tử – K3 10 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự Thứ hai,việc áp dụng công nghệ RFID vào hệ thống QLNS tuy có thể giải quyết được bài toán chấm công và tính lương nhưng vẫn tồn tại một nhược điểm có thể làm ảnh hưởng đến kết quả xử lý. Đó là trong trường hợp các nhân viên có thể mượn thẻ của nhau để ra vào công ty hoặc chỉ đơn giản là cầm nhầm thẻ của nhau, cả hai điều đó đều làm mất đi độ chính xác của việc giám sát để xác định thời gian làm việc, tiền đề của bài toán chấm công tính lương. Hoặc trường hợp xấu hơn có thể có là người ngoài công ty sẽ sử dụng thử RFID của nhân viên trong công ty để ra vào trái phép, các tài sản của công ty trong thời gian này khó có thể đảm bảo an toàn. Điều này đặt ra một bài toán kỹ thuật đòi hỏi tăng cường độ chính xác của thông tin đầu vào cho hệ thống quản lý, khắc phục các thiếu sót và nhầm lẫn trong quá trình giám sát truy nhập hệ thống của các nhân viên trong công ty. Trần văn Huy – Kỹ thuật điện tử – K3 11 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự Hình 1.4. Hạn chế của hệ thống QLNS sử dụng công nghệ RFID Trước những hạn chế còn tồn tại ở các hệ thống hiện thời, để xây dựng được một hệ thống QLNS đáp ứng được đầy đủ các chức năng cơ bản và đảm bảo được cho bài toán chấm công và tính lương một cách chính xác nhất, nâng cao tính bảo mật và an toàn cho hệ thống, em đã lựa chọn đề tài “Hệ thống quản lý nhân sự ứng dụng nhận dạng khuôn mặt và RFID”. 1.3.1. Mục đích và ý nghĩa của đề tài Như đã đề cập ở trên, mục đích của em khi chọn đề tài đó là muốn xây dựng hoàn thiện một hệ thống QLNS khắc phục được những tồn tại thiếu sót của các hệ Trần văn Huy – Kỹ thuật điện tử – K3 12 Nhận dạng khuôn mặt ứng dụng trong các quản lý nhân sự thống trước đó, sử dụng các công nghệ hiện đang rất phát triển vào một lĩnh vực có tính áp dụng cao trong thực tế. Hệ thống được xây dựng sẽ đáp ứng những mục đích cơ bản đề ra như sau: • Thực hiện đầy đủ chức năng của một bài toán QLNS thông thường, cho phép nhập, sửa, xóa, quản lý thông tin về các nhân viên trong công ty. • Đảm bảo được yêu cầu bài toán chấm công tính lương, thông tin đầu vào được xác thực và tính toán chính xác. • Quản lý truy nhập vào các phòng ban quan trọng thông qua cơ chế phân quyền người sử dụng. 1.4. Giới thiệu về hệ thống QLNS đề xuất Hệ thống được xây dựng sẽ bao gồm các module chính được thể hiện qua sơ đồ khối tổng quan dưới đây, tiếp theo dó sẽ là phần chú thích cụ thể về các module và chức năng của từng module trong hệ thống. 1.4.1. Sơ đồ khối Trần văn Huy – Kỹ thuật điện tử – K3 13
- Xem thêm -