Đăng ký Đăng nhập
Trang chủ Phân tích tĩnh học kết cấu hệ dây liên hợp theo phương pháp nguyên lý cực trị ga...

Tài liệu Phân tích tĩnh học kết cấu hệ dây liên hợp theo phương pháp nguyên lý cực trị gauss

.PDF
164
472
135

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ PHÙNG BÁ THẮNG PHÂN TÍCH TĨNH HỌC KẾT CẤU HỆ DÂY LIÊN HỢP THEO PHƯƠNG PHÁP NGUYÊN LÝ CỰC TRỊ GAUSS LUẬN ÁN TIẾN SỸ KỸ THUẬT HÀ NỘI - NĂM 2013 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ PHÙNG BÁ THẮNG PHÂN TÍCH TĨNH HỌC KẾT CẤU HỆ DÂY LIÊN HỢP THEO PHƯƠNG PHÁP NGUYÊN LÝ CỰC TRỊ GAUSS Chuyên ngành: Kỹ thuật Xây dựng công trình đặc biệt Mã số: 62 58 02 06 LUẬN ÁN TIẾN SỸ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN TƯƠNG LAI HÀ NỘI - NĂM 2013 i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi. Các số liệu, kết quả trong luận án là trung thực và chưa từng được ai công bố trong bất kỳ công trình nào khác. Tác giả luận án Phùng Bá Thắng ii LỜI CẢM ƠN Tác giả luận án xin bày tỏ lòng cảm ơn chân thành tới TS. Nguyễn Tương Lai đã tận tình giúp đỡ và cho nhiều chỉ dẫn khoa học có giá trị cũng như thường xuyên động viên, tạo mọi điều kiện thuận lợi, giúp đỡ tác giả trong suốt quá trình học tập, nghiên cứu hoàn thành luận án. Tác giả xin trân trọng bày tỏ lòng cảm ơn đối với GS.TSKH. Hà Huy Cương vì những ý tưởng khoa học độc đáo, những chỉ bảo sâu sắc về phương pháp nguyên lý cực trị Gauss và những chia sẻ về kiến thức cơ học, toán học uyên bác của giáo sư. Tác giả xin chân thành cảm ơn các nhà khoa học, các chuyên gia trong và ngoài Học viện Kỹ thuật Quân sự đã tạo điều kiện giúp đỡ, quan tâm góp ý cho bản luận án được hoàn thiện hơn. Tác giả xin trân trọng cảm ơn các cán bộ, giáo viên của Bộ môn Cơ sở kỹ thuật công trình, Viện Kỹ thuật công trình đặc biệt, Phòng Sau đại học-Học viện Kỹ thuật Quân sự, Bộ môn Cầu, Khoa Công trình, Ban Giám hiệu trường Đại học Công nghệ Giao thông vận tải và các đồng nghiệp đã tạo điều kiện thuận lợi, giúp đỡ NCS trong quá trình nghiên cứu và hoàn thành luận án. Tác giả luận án Phùng Bá Thắng iii MỤC LỤC LỜI CAM ĐOAN ....................................................................................................... i LỜI CẢM ƠN ............................................................................................................ ii MỤC LỤC ................................................................................................................. iii DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT ..................................................... vi DANH MỤC CÁC HÌNH VẼ................................................................................. viii DANH MỤC CÁC BẢNG........................................................................................ xi MỞ ĐẦU .....................................................................................................................1 Chương 1 TỔNG QUAN KẾT CẤU HỆ DÂY LIÊN HỢP .......................................4 1.1 Lịch sử phát triển kết cấu hệ dây liên hợp ....................................................... 4 1.1.1 Lịch sử phát triển cầu treo ....................................................................... 4 1.1.2 1.1.3 1.1.4 Lịch sử phát triển cầu dây văng ............................................................... 5 Lịch sử phát triển kết cấu mái treo .......................................................... 8 Lịch sử phát triển kết cấu dây liên hợp ở Việt Nam ................................ 8 1.2 Đặc điểm cấu tạo và làm việc chủ yếu của cầu dây văng .............................. 10 1.2.1 Sơ đồ cầu dây văng ................................................................................ 10 1.2.2 1.2.3 1.2.4 Dầm cứng ............................................................................................... 12 Trụ tháp .................................................................................................. 12 Dây văng ................................................................................................ 14 1.3 Tổng quan về tính toán, thiết kế cầu dây văng .............................................. 14 1.3.1 Bài toán dây đơn .................................................................................... 14 1.3.2 Phân tích tĩnh học kết cấu cầu dây văng ................................................ 21 1.3.3 Phân tích động lực học và phân tích ổn định ......................................... 27 1.4 Phương pháp Nguyên lý cực trị Gauss .......................................................... 28 1.4.1 Nguyên lý cực trị Gauss......................................................................... 28 1.4.2 Phương pháp nguyên lý cực trị Gauss ................................................... 29 1.5 Kết luận chương 1 .......................................................................................... 31 Chương 2 TÍNH DÂY ĐƠN THEO PHƯƠNG PHÁP NGUYÊN LÝ CỰC TRỊ GAUSS ......................................................................................................................33 2.1 Đặt vấn đề ...................................................................................................... 33 2.2 Bài toán dây đơn chịu lực tập trung ............................................................... 33 2.2.1 2.2.2 Bài toán dây ngang mức chịu một lực tập trung .................................... 33 Bài toán dây nghiêng chịu một lực tập trung ......................................... 38 iv 2.2.3 Bài toán dây đơn chịu nhiều lực tập trung ............................................. 41 2.3 Tính dây đơn chịu tải trọng bản thân ............................................................. 44 2.3.1 Phương pháp tính toán ........................................................................... 44 2.3.2 Khảo sát với số đoạn chia khác nhau..................................................... 47 2.3.3 So sánh với lý thuyết tính dây đơn hiện nay.......................................... 48 2.4 Bài toán dây đơn có chiều dài dây lớn hơn chiều dài nhịp ............................ 50 2.5 Bài toán dây đơn có chiều dài dây nhỏ hơn chiều dài nhịp (Dây căng trước)53 2.6 Bài toán dây đơn xét ảnh hưởng của nhiệt độ ................................................ 56 2.7 Khảo sát ảnh hưởng góc nghiêng dây đến nội lực và chuyển vị ................... 60 2.8 Xây dựng thuật toán và chương trình tính dây đơn ....................................... 61 2.8.1 Thuật toán .............................................................................................. 61 2.8.2 Chương trình .......................................................................................... 62 2.9 Bài toán hệ dàn dây xiên ................................................................................ 63 2.10 Kết luận chương ............................................................................................. 65 Chương 3 PHÂN TÍCH TĨNH HỌC BÀI TOÁN PHẲNG CẦU DÂY VĂNG .....67 3.1 Đặt vấn đề ...................................................................................................... 67 3.2 Bài toán dầm chịu uốn có xét ảnh hưởng của biến dạng trượt ngang ............ 68 3.2.1 Xây dựng các phương trình cân bằng .................................................... 69 3.2.2 Phương pháp giải tích để giải bài toán .................................................. 70 3.3 Sơ đồ tổng quát và xây dựng hệ phương trình cân bằng tính toán cầu dây văng 72 3.4 Phương pháp giải tích cho một số bài toán riêng tính cầu dây văng ............. 76 3.4.1 3.4.2 Bài toán dây xiên treo dầm một nhịp ..................................................... 77 Bài toán dây đứng và dầm một nhịp ...................................................... 83 3.4.3 Bài toán hai dây xiên - dầm một nhịp .................................................... 86 3.4.4 Nhận xét ................................................................................................. 92 3.5 Phương pháp số (rời rạc bằng PTHH) tính toán cầu dây văng ...................... 92 3.5.1 Chọn phần tử thanh chịu uốn ................................................................. 93 3.5.2 Hàm nội suy độ võng và lực cắt ............................................................ 93 3.5.3 Ma trận của phần tử và của hệ kết cấu................................................... 95 3.5.4 Phiếm hàm và phương pháp giải bài toán.............................................. 98 3.5.5 Xây dựng thuật toán và chương trình tính cầu dây văng ..................... 101 3.5.6 Nhận xét ............................................................................................... 103 3.6 Kết luận chương ........................................................................................... 104 v Chương 4 THỬ NGHIỆM SỐ ................................................................................105 4.1 Kiểm tra tính đúng đắn của chương trình .................................................... 105 4.1.1 So sánh với lời giải theo phương pháp giải tích .................................. 105 4.1.2 Bài toán dầm liên tục 2 nhịp - 2 dây treo trên gối cố định .................. 106 4.1.3 4.1.4 Bài toán dầm liên tục 2 nhịp - 2 dây treo trên gối di động .................. 106 Bài toán dầm liên tục 2 nhịp - 2 dây treo trên gối di động có xét đến trọng lượng bản thân dầm và dây. .................................................................... 107 4.1.5 Bài toán dầm - dây - tháp ..................................................................... 108 4.1.6 Bài toán dầm - dây - tháp xét đến trọng lượng bản thân dầm và dây .. 109 4.1.7 Bài toán dầm - dây - tháp xét ảnh hưởng lực căng trước trong dây. ... 110 4.1.8 Bài toán dây-dầm-tháp có xét trọng lượng bản thân của dầm, dây, tháp và lực căng trong dây ....................................................................................... 111 4.2 Khảo sát các bài toán cầu dây văng ............................................................. 112 4.2.1 4.2.2 4.2.3 Xét ảnh hưởng vị trí tải trọng đến nội lực, chuyển vị cầu dây văng ... 112 Nội lực và chuyển vị của cầu dây văng chịu tải trọng ......................... 117 Ảnh hưởng sơ đồ dây đến nội lực và chuyển vị trong cầu dây văng... 119 4.3 Kết luận chương ........................................................................................... 121 KẾT LUẬN VÀ KIẾN NGHỊ.................................................................................123 CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ ...............................................125 TÀI LIỆU THAM KHẢO .......................................................................................126 PHỤ LỤC ................................................................................................................131 vi DANH MỤC CÁC KÝ HIỆU, CHỮ VIẾT TẮT Ký Diễn giải Đơn vị hiệu [ ] Ký hiệu toán học Ma trận, véc tơ hàng { } Véc tơ cột α Chữ La Mã Hệ số dãn nở dài vì nhiệt β Góc nghiêng dây theo phương ngang δ Biến phân θ Góc xoay do mô men ε Biến dạng dài tương đối của dây γ Góc xoay do lực cắt χ Biến dạng uốn do mô men λ Thừa số Lagrange ∆t Thay đổi nhiệt độ môi trường A E Chữ La tinh Diện tích tiết diện Mô đun đàn hồi m2 kN/m2 EJ EAC Độ cứng chống uốn Độ cứng chống kéo của dây văng kN.m2 kN G g g0 Mô đun đàn hồi chống trượt của vật liệu Trọng lượng đơn vị của dây theo chiều dài dây Trọng lượng đơn vị của dây theo phương ngang kN/m2 kN/m kN/m H J k M N P PTHH Lực căng dây chiếu theo phương ngang Mô men quán tính Hệ số kể đến sự phân bố ứng suất tiếp tại mặt trung hòa Mô men uốn Lực dọc trong dầm, tháp Lực tập trung Phần tử hữu hạn Q Lực cắt mm/mm/oC rad, độ rad, độ rad, độ o C kN m4 kN.m kN kN kN vii q Tải trọng phân bố đều trên dầm T Td Lực căng trong dây văng Thành phần hình chiếu lên phương đứng của lực căng dây tác dụng lên dầm kN kN Tt Thành phần hình chiếu lên phương ngang của lực căng dây tác dụng lên tháp kN u ut v Chuyển vị ngang của các điểm trên dây Chuyển vị ngang đỉnh tháp Chuyển vị đứng của các điểm trên dây m m m w y Z Độ võng dầm cứng Phương trình đường độ võng của dầm Phiếm hàm lượng cưỡng bức m kN/m viii DANH MỤC CÁC HÌNH VẼ Hình 1.1 Cầu Golden Gate ở San Francisco (Mỹ) xây dựng từ năm 1934, nhịp chính dài 1280 m.....................................................................................................5 Hình 1.2 Cầu Vladivostok – Russky, Liên bang Nga, 2012 .......................................7 Hình 1.3 Sự phổ biến của cầu dây văng ở thế kỷ 20 [53] ...........................................7 Hình 1.4 Tòa nhà trung tâm hội chợ triển lãm Hanover (CHLB Đức) .......................8 Hình 1.5 Cầu Bãi Cháy, 2006 .....................................................................................9 Hình 1.6 Các sơ đồ cầu dây văng ..............................................................................10 Hình 1.7 Sơ đồ bố trí dây theo dọc cầu .....................................................................11 Hình 1.8 Sơ đồ bố trí số mặt phẳng dây ....................................................................12 Hình 1.9 Mặt cắt ngang dạng hình hộp BTCT của dầm cầu Bãi Cháy.....................12 Hình 1.10 Cấu tạo tháp cầu dây văng .......................................................................13 Hình 1.11 Cấu tạo một số loại dây cáp dùng cho cầu dây ........................................14 Hình 1.12 Sơ đồ tính dây đơn treo trên hai gối lệch mức .........................................15 Hình 1.13 Sơ đồ tính dây của Melan [37] .................................................................19 Hình 1.14 Sơ đồ tính cầu dây văng [52], [53] ...........................................................21 Hình 1.15 Sơ đồ tính cầu dây văng theo lý thuyết biến dạng của Smirnov ..............22 Hình 1.16 Mô hình PTHH 3 chiều tính cầu dây văng...............................................25 Hình 1.17 Phần tử dây Catenary trong phương pháp PTHH của CSI Bridge ..........25 Hình 2.1 Sơ đồ tính dây đơn chịu một lực tập trung .................................................34 Hình 2.2 Kết quả của bài toán dây đơn ngang mức chịu một lực tập trung .............36 Hình 2.3 Biểu đồ quan hệ EA-u và EA-v .................................................................38 Hình 2.4 Sơ đồ tính dây nghiêng chịu một lực tập trung ..........................................38 Hình 2.5 Kết quả bài toán tính dây nghiêng chịu một lực tập trung .........................40 Hình 2.6 Sơ đồ tính dây đơn chịu nhiều lực tập trung ..............................................41 Hình 2.7 Sơ đồ tính dây nghiêng chịu nhiều lực tập trung .......................................43 Hình 2.8 Sơ đồ tính dây chịu trọng lượng bản thân ..................................................45 Hình 2.9 Kết quả tính dây đơn chịu tác dụng trọng lượng bản thân .........................46 Hình 2.10 Tương quan giữa số đoạn chia và sai khác về lực căng trong dây...........48 Hình 2.11 Sơ đồ tính dây đơn có chiều dài dây lớn hơn chiều dài nhịp ...................51 Hình 2.12 Kết quả bài toán dây đơn có chiều dài dây lớn hơn chiều dài nhịp .........53 ix Hình 2.13 Sơ đồ tính dây đơn căng trước .................................................................53 Hình 2.14 Kết quả tính dây đơn căng trước ..............................................................56 Hình 2.15 Tính dây đơn chịu lực tập trung và nhiệt độ ............................................57 Hình 2.16 Kết quả tính dây đơn chịu lực tập trung và nhiệt độ ................................59 Hình 2.17 Sơ đồ khảo sát bài toán dây đơn khi thay đổi góc nghiêng dây ...............60 Hình 2.18 Biểu đồ chuyển vị, nội lực khi thay đổi góc nghiêng dây........................60 Hình 2.19 Thuật toán tính dây đơn ...........................................................................62 Hình 2.20 Sơ đồ tính hệ dàn dây xiên .......................................................................63 Hình 2.21 Biểu đồ tương quan giữa độ cứng kéo nén và chuyển vị .........................64 Hình 3.1 Sơ đồ cầu dây văng ....................................................................................67 Hình 3.2 Biến dạng của dầm .....................................................................................68 Hình 3.3 Sơ đồ tổng quát tính cầu dây văng .............................................................73 Hình 3.4 Sơ đồ xét dây văng chịu tải trọng bản thân ................................................74 Hình 3.5 Sơ đồ tính dầm cứng và tháp trong cầu dây văng ......................................75 Hình 3.6 Sơ đồ tính dầm một nhịp và dây treo xiên .................................................77 Hình 3.7 Kết quả bài toán dầm - dây xiên một nhịp .................................................82 Hình 3.8 Bài toán dầm dây treo đứng một nhịp ........................................................83 Hình 3.9 Kết quả bài toán dầm dây treo đứng một nhịp ...........................................85 Hình 3.10 Sơ đồ tính hệ hai dây xiên - dầm một nhịp ..............................................86 Hình 3.11 Kết quả bài toán dầm một nhịp-2 dây nghiêng ........................................91 Hình 3.12 Phần tử thanh chịu uốn trong hệ tọa độ tự nhiên .....................................93 Hình 3.13 Lực căng dây tác dụng lên dầm và tháp .................................................100 Hình 3.14 Thuật toán tính cầu dây văng .................................................................101 Hình 4.1 Bài toán dầm liên tục 2 nhịp - 2 dây treo trên gối cố định .......................106 Hình 4.2 Bài toán dầm liên tục 2 nhịp - 2 dây treo trên gối di động ......................107 Hình 4.3 Bài toán dầm liên tục 2 nhịp - 2 dây treo trên gối di động có xét trọng lượng bản thân dầm, dây .....................................................................................108 Hình 4.4 Bài toán dầm - dây - tháp .........................................................................109 Hình 4.5 Bài toán dầm - dây - tháp xét trọng lượng bản thân dầm, dây .................110 Hình 4.6 Bài toán dầm-dây-tháp có xét lực căng dây .............................................110 Hình 4.7 Bài toán dầm-dây-tháp có xét tải trọng bản thân và lực căng dây ...........112 x Hình 4.8 Sơ đồ cầu dây văng hai nhịp ....................................................................113 Hình 4.9 Ảnh hưởng của vị trí tải trọng đến nội lực và chuyển vị trong cầu dây văng .....................................................................................................................116 Hình 4.10 Sơ đồ tính cầu dây văng chịu tải trọng ...................................................117 Hình 4.11 Chuyển vị và nội lực của cầu dây văng chịu tải trọng ...........................118 Hình 4.12 Tính cầu dây văng có các sơ đồ dây khác nhau .....................................119 Hình 4.13 Biểu đồ chuyển vị, lực cắt và mômen trong cầu dây văng theo các sơ đồ dây .............................................................................................................120 xi DANH MỤC CÁC BẢNG Bảng 1.1 Các cầu dây văng có nhịp dài nhất thế giới .................................................6 Bảng 2.1 Bài toán dây đơn khi thay đổi vị trí đặt lực ...............................................37 Bảng 2.2 Dây đơn khi thay đổi độ cứng kéo EA ......................................................37 Bảng 2.3 Kết quả bài toán dây đơn ngang mức chịu nhiều lực tập trung .................43 Bảng 2.4 Kết quả tính toán dây nghiêng chịu tác dụng 7 lực tập trung ....................44 Bảng 2.5 Bài toán dây đơn chịu tải trọng bản thân khi chia dây 8 đoạn ..................46 Bảng 2.6 Bài toán dây chịu tải trọng bản thân khi số đoạn chia khác nhau .............47 Bảng 2.7 So sánh với lý thuyết dây hiện nay ............................................................49 Bảng 2.8 So sánh độ võng với đường Parabol ..........................................................50 Bảng 2.9 So sánh trường hợp dây dài hơn nhịp và dây dài bằng nhịp .....................53 Bảng 2.10 Kết quả tính dây đơn chịu tải trọng và nhiệt độ ......................................59 Bảng 2.11 Tương quan giữa độ cứng kéo nén của dây với chuyển vị ......................64 Bảng 3.1 Nội lực, chuyển vị của dầm giản đơn chịu tải trọng phân bố đều .............72 Bảng 3.2 So sánh nội lực, chuyển vị trong hai trường hợp xét và không xét biến dạng trượt ngang khi thay đổi tỉ lệ chiều cao với nhịp dầm .........................72 Bảng 4.1 So sánh kết quả lời giải theo phương pháp PTHH và phương pháp giải tích ...............................................................................................................105 Bảng 4.2 Bài toán dầm-dây-tháp có lực căng dây so sánh với phần mềm Midas Civil ....................................................................................................................111 Bảng 4.3 Bài toán dầm - dây - tháp có xét tải trọng bản thân và lực căng dây so sánh với phần mềm Midas Civil ....................................................................112 Bảng 4.4 Kết quả khảo sát bài toán có sơ đồ dây khác nhau ..................................120 1 MỞ ĐẦU Tính cấp thiết của luận án Kết cấu hệ dây liên hợp bao gồm dây liên hợp với tấm, dầm, dàn, vòm, trong đó, dây chủ yếu chịu kéo thường làm bằng cáp cường độ cao; tấm, dầm chủ yếu chịu uốn, vòm chủ yếu chịu nén, dàn chủ yếu chịu kéo nén và tấm, dàn, vòm thường làm bằng kết cấu bê tông cốt thép, kết cấu thép chịu uốn, nén tốt. Như vậy, kết cấu hệ dây liên hợp có ưu điểm tận dụng hợp lý khả năng làm việc của vật liệu, do vậy vượt được nhịp lớn và có tính kinh tế. Kết cấu hệ dây liên hợp được sử dụng trong ngành xây dựng, giao thông chủ yếu là các công trình mái treo, cầu treo, cầu dây văng. Trong các kết cấu hệ dây liên hợp, kết cấu cầu treo đặc biệt là cầu dây văng đã phát triển mạnh và được sử dụng rộng rãi trong ngành giao thông. Ưu điểm của cầu dây văng so với cầu treo là ngoài việc sử dụng hợp lý khả năng làm việc của vật liệu và vượt được nhịp lớn thì cầu dây văng còn có hình dáng đẹp, độ cứng lớn và phù hợp với các công nghệ thi công hiện đại như đúc hẫng, lắp hẫng. Một ưu điểm nữa của cầu dây văng là tính đa dạng về sơ đồ kết cấu, tính kinh tế không những với nhịp lớn mà còn các nhịp nhỏ. Do đó, cầu dây văng đã gây được niềm đam mê, cảm xúc sáng tạo cho các nhà khoa học, các kỹ sư và đã trở thành thành tựu của ngành xây dựng cầu ở thế kỷ XX. Tính toán kết cấu hệ dây liên hợp phải giải quyết bài toán dây đơn và bài toán dây liên hợp với kết cấu cứng (dầm, dàn, vòm, tháp) bao gồm bài toán tĩnh học, bài toán động lực học, bài toán ổn định và ổn định khí động học. Cho đến nay, bài toán dây đơn đã được nhiều tác giả nghiên cứu song vẫn còn dùng nhiều giả thiết gần đúng. Khi tính toán dây đơn hiện nay thường sử dụng đường độ võng của dây có dạng hypecbol hoặc parabol. Tuy nhiên do phương trình đường độ võng của dây nhận được đều là từ phương trình cân bằng lực, nên để xác định lực căng cần cho trước mũi tên võng, chiều dài hoặc thành phần hình chiếu theo phương ngang của lực căng dây. Ngoài ra, khi sử dụng lý thuyết dây cổ điển tính toán cầu dây văng vẫn phải giả thuyết về dạng đường chuyển vị của dây không đổi khi chịu tải. Các nghiên cứu của các tác giả theo phương pháp truyền thống phải sử dụng lý thuyết tính dây gần đúng, do đó khi tính cho kết cấu liên hợp dây và dầm cần phải đưa vào các giả thiết gần đúng. Đó là giả thiết dây xem là thẳng và xem góc nghiêng dây trước và sau khi biến dạng là không đổi [62] hoặc có xét sự thay đổi 2 góc nghiêng dây nhưng vẫn xem dây là thẳng và kể đến độ võng của dây thông qua mô đun đàn hồi tương đương [52], [53] hay diện tích tương đương [61]. Các nghiên cứu này chỉ phù hợp với các hệ kết cấu dây liên hợp có chuyển vị và biến dạng nhỏ. Phương pháp hiện đại tính kết cấu liên hợp cầu dây văng là phương pháp số mà điển hình là phương pháp PTHH đã phát triển thành các phần mềm thương mại như Midas Civil, RM, CSI Bridge, ABAQUS, ANSYS,… Phương pháp PTHH dùng trong các phần mềm đã khắc phục được các nhược điểm của phương pháp truyền thống, đã sử dụng đường độ võng của dây để mô tả chính xác hơn bài toán của hệ liên hợp dây dầm cho phép xác định điều kiện chuyển vị lớn, biến dạng lớn nhưng vẫn sử dụng lý thuyết dây cổ điển nên phải giả thiết trước mũi tên võng hoặc chiều dài dây. Trong những năm gần đây, nhiều tác giả [6], [16], [17]... đã áp dụng phương pháp nguyên lý cực trị Gauss để xây dựng và giải bài toán cơ học vật rắn biến dạng với các bài toán dây, hệ dây, hệ thanh, tấm với ưu điểm là đơn giản và tổng quát từ bài toán tuyến tính đến bài toán phi tuyến. Với các lý do trên, tác giả lựa chọn đề tài nghiên cứu của luận án là: “Phân tích tĩnh học kết cấu hệ dây liên hợp theo phương pháp nguyên lý cực trị Gauss”. Mục tiêu nghiên cứu của luận án Ứng dụng phương pháp nguyên lý cực trị Gauss để xây dựng lý thuyết dây tổng quát cho phép xác định đồng thời lực căng và chuyển vị trong dây, kết hợp giữa lý thuyết dây và lý thuyết dầm chịu uốn có xét biến dạng trượt ngang vào xây dựng và giải bài toán phẳng phân tích tĩnh học kết cấu hệ dây liên hợp mà không cần đưa vào các giả thiết về dạng đường độ võng dây trước và sau khi biến dạng. Đối tượng nghiên cứu của luận án Do kết cấu hệ dây liên hợp khá đa dạng nên trong phạm vi của luận án tác giả lựa chọn kết cấu cầu dây văng là kết cấu điển hình trong hệ dây liên hợp để nghiên cứu. Phạm vi nghiên cứu của luận án Nghiên cứu bài toán dây đơn và bài toán phẳng kết cấu hệ dây liên hợp của cầu dây văng chịu các tác động tĩnh. Phương pháp nghiên cứu Nghiên cứu lý thuyết, xây dựng thuật toán và chương trình tính theo lý thuyết đã nghiên cứu. Khảo sát bằng các ví dụ số để kiểm tra thuật toán và chương trình đã 3 lập; sử dụng chương trình vào phân tích một số bài toán cơ bản trong phân tích tĩnh học bài toán phẳng kết cấu hệ dây liên hợp cầu dây văng. Nội dung của luận án Nội dung của luận án bao gồm phần mở đầu, 04 chương và phần kết luận. Phần mở đầu: Nêu lên tính cấp thiết và lý do chọn đề tài, mục tiêu, phạm vi, phương pháp nghiên cứu và nội dung của luận án. Chương 1: Trình bày lịch sử phát triển kết cấu hệ dây liên hợp, đặc điểm cấu tạo và làm việc của các bộ phận, phương pháp tính toán cầu dây văng. Chương 2: Trình bày kết quả nghiên cứu áp dụng phương pháp nguyên lý cực trị Gauss xây dựng và giải bài toán tính dây đơn chịu các tác động tĩnh theo các sơ đồ dây khác nhau và xây dựng chương trình tính dây đơn. Chương 3: Trình bày phương pháp xây dựng bài toán phẳng phân tích tĩnh học cầu dây văng bằng cách sử dụng phương pháp nguyên lý cực trị Gauss phối hợp hai bài toán là bài toán dây đơn và bài toán dầm chịu uốn có xét biến dạng trượt ngang; xây dựng chương trình phân tích tĩnh học cầu dây văng theo sơ đồ phẳng. Chương 4: Thực hiện các khảo sát số kiểm tra tính đúng đắn của chương trình đã lập và khảo sát một số bài toán phẳng cầu dây văng. Phần kết luận: Nêu lên các kết quả đạt được của luận án và các vấn đề cần nghiên cứu tiếp theo. 4 Chương 1 TỔNG QUAN KẾT CẤU HỆ DÂY LIÊN HỢP Kết cấu hệ dây liên hợp bao gồm dây liên hợp với tấm, dầm, dàn, vòm, nối với nhau bằng các liên kết để cùng tham gia chịu lực. Trong kết cấu hệ dây liên hợp, dây chủ yếu chịu kéo thường làm bằng cáp cường độ cao; tấm, dầm chủ yếu chịu uốn, vòm chủ yếu chịu nén, dàn chủ yếu chịu kéo nén và tấm dàn, vòm thường làm bằng kết cấu bê tông cốt thép, kết cấu thép. Như vậy, kết cấu hệ dây liên hợp có ưu điểm tận dụng hợp lý khả năng làm việc của vật liệu, do vậy vượt được nhịp lớn và có tính kinh tế. Kết cấu hệ dây liên hợp được sử dụng rộng rãi trong ngành xây dựng, giao thông. Trong ngành xây dựng, kết cấu hệ dây liên hợp là kết cấu mái treo dùng trong các sân vận động, nhà triển lãm, ga hàng không.... Trong ngành giao thông, kết cấu hệ dây liên hợp là cầu treo, cầu dây văng. Trong chương này trình bày lịch sử phát triển kết cấu hệ dây liên hợp; đặc điểm cấu tạo; các phương pháp phân tích, tính toán kết cấu cầu dây văng để làm căn cứ sáng tỏ sự lựa chọn vấn đề nghiên cứu, xác định phạm vi nội dung thực hiện của đề tài luận án. 1.1 Lịch sử phát triển kết cấu hệ dây liên hợp 1.1.1 Lịch sử phát triển cầu treo Từ thời xa xưa, con người đã biết sử dụng cầu treo, những cầu treo cổ có dạng cơ bản giống với cầu treo hiện đại nhưng được làm từ các vật liệu tự nhiên thô sơ xuất hiện ở Trung Quốc, Nhật Bản, Ấn Độ và Tây Tạng. Loại cầu treo đơn giản này cũng được sử dụng bởi người Aztec của Mexico, người Inca của Peru và người dân địa phương ở các vùng khác của Nam Mỹ. Thời gian đầu, cầu treo được làm từ dây xích sắt rèn như cầu treo qua sông Oder Glorywitz của quân đội Saxon năm 1734. Về sau, cầu treo bằng dây được xây dựng như ở Galashiels, Scotland, cầu qua sông Schuylkill ở Philadelphia, Mỹ năm 1816. Trong thế kỷ XIX, nước Mỹ là nơi xây dựng nhiều cầu treo nhịp dài nhất. Cầu Brooklyn (1883) bắc ngang sông New York East được coi là cầu dây võng hiện đại đầu tiên được xây dựng. Trong năm 1937, ở Mỹ, đã xây dựng cầu Golden Gate với 5 nhịp giữa 1280m, tháp bằng thép cao 227m; dây chủ dùng hai bó cáp mỗi bó cáp có đường kính 90cm. Hình 1.1 Cầu Golden Gate ở San Francisco (Mỹ) xây dựng từ năm 1934, nhịp chính dài 1280 m Cầu treo có nhịp chính lớn nhất thế giới là cầu Akashi Kaikyo ở Nhật Bản hoàn thành năm 1998 với nhịp chính 1991m, thể hiện sự tích lũy kinh nghiệm xây dựng cầu treo từ trước đến nay. 1.1.2 Lịch sử phát triển cầu dây văng Cầu dây văng xuất hiện muộn hơn cầu treo. Năm 1784 có thể xem là năm xuất hiện cầu dây văng khi một thợ mộc người Đức tên là Löscher thiết kế một cây cầu nhịp dài 32m, sử dụng các thanh gỗ đặt xiên làm “dây văng”. Sự phát triển của cầu dây văng phụ thuộc vào phát triển của vật liệu, công nghệ thi công và lý thuyết tính toán. Thời kỳ đầu, cầu dây văng chủ yếu dùng dây văng dưới dạng các thanh thép thẳng liền khối hoặc gãy khúc nối khớp với nhau dạng dây xích. Về sau, dây văng được sử dụng dưới dạng cáp nhưng chưa được căng trước. Trong một số trường hợp, các dây văng cũng có thể được dùng trong cầu treo nhằm tăng cường độ cứng cho cầu treo. Cầu dây văng trong thế kỷ XIX và đầu thế kỷ XX hầu như không phát triển và giai đoạn này cầu treo chiếm ưu thế. Nguyên nhân là xảy ra một loạt các sự cố như 6 các vụ sập cầu đi bộ vượt sông Tweed ở Anh năm 1818 do gió, sập cầu qua sông Saale ở Đức năm 1824 với giả thiết là do quá tải. Năm 1823, kỹ sư nổi tiếng người Pháp C.L.M.H. Navier xuất bản một tác phẩm trong đó nêu ra các ý kiến bình luận tiêu cực của mình về sự thất bại của một số cầu dây văng và gần như lên án việc sử dụng cầu dây văng. Sự vắng bóng của các cầu dây văng trong thế kỷ XIX và đầu thế kỷ XX có thể có nguyên nhân do thiếu các lý thuyết phân tích tin cậy để xác định nội lực cho toàn bộ hệ kết cấu. Thêm vào đó, công nghệ vật liệu của giai đoạn đó vẫn chưa đáp ứng được cho việc xây dựng cầu dây văng. Đánh dấu cho sự tái sinh cầu dây văng là vào năm 1955, khi Dischinger thiết kế nên cầu Strömsund ở Thụy Điển, đó được xem là cầu dây văng hiện đại đầu tiên. Từ đó, cầu dây văng đã phát triển nhanh chóng trên toàn thế giới. Cho đến nay đã thống kê trên 600 cầu dây văng lớn nhỏ được xây dựng ở hầu hết các nước trên thế giới với đầy đủ thể loại. Các nhà thiết kế cầu luôn cố gắng vươn tới các nhịp lớn hơn (Bảng 1.1). Ngày 2/7/2012, Nga đã khánh thành cây cầu dây văng dài nhất thế giới nối thành phố cảng Vladivostok với đảo Russky sau 43 tháng thi công với nhịp chính dài tới 1,104 m (Hình 1.2). Bảng 1.1 Các cầu dây văng có nhịp dài nhất thế giới TT Tên cầu - Quốc gia Chiều dài nhịp Năm hoàn chính (m) thành 1 Cầu Vladivostok - Russky- Nga 1104 2012 2 Suttong, sông Trường Giang, Jiangsu-Trung Quốc 1088 2009 3 Stonecutte, Hồng Kông - Trung Quốc 1018 2007 4 Tatara - Nhật Bản 890 1999 5 Normandi – Pháp 856 1995 6 Cầu thứ 2 sông Dương Tử Nam Kinh- Trung Quốc 628 2001 7 Cầu thứ 3 sông Dương Tử Vũ Hán- Trung Quốc 618 2000 8 Cầu sông Minjiang Qingzhou- Trung Quốc 605 2003 9 Dương Phố, Thượng Hải - Trung Quốc 602 1993 10 Xupu, Thượng Hải - Trung Quốc 590 1997 11 Meiko Cental - Nhật Bản 590 1998 12 Skarnsundet – Nauy 530 1991 7 Hình 1.2 Cầu Vladivostok – Russky, Liên bang Nga, 2012 Trong lịch sử phát triển chưa có loại cầu nào có sức hấp dẫn, tập trung trí tuệ, gây được niềm say mê và cảm xúc sáng tạo cho các nhà khoa học, các kiến trúc sư như cầu dây văng. Nhiều cây cầu với kiến trúc độc đáo đã trở thành những biểu tượng kiến trúc, những di sản văn hoá của thời đại. Hình dạng và chiều cao của tháp tạo cho công trình có đủ tầm cao, tầm xa để thể hiện được hoài bão và trí tưởng tượng của con người. Do đó cầu dây văng đang trở thành các công trình trọng điểm của nhiều nước trên thế giới và cũng trở thành công trình đặc trưng của thế kỷ XX. Hình 1.3 Sự phổ biến của cầu dây văng ở thế kỷ 20 [53]
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất