Phân lập tuyển chọn vi sinh vật sinh enzyme phytase

  • Số trang: 125 |
  • Loại file: PDF |
  • Lượt xem: 42 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN *************** Phan Thị Thu Mai PHÂN LẬP TUYỂN CHỌN VI SINH VẬT SINH ENZYME PHYTASE LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – Năm 2012 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN *************** Phan Thị Thu Mai PHÂN LẬP TUYỂN CHỌN VI SINH VẬT SINH ENZYME PHYTASE Chuyên ngành: Vi sinh vật học Mã số: 60 42 40 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. ĐÀO THỊ LƯƠNG Hà Nội – Năm 2012 MỤC LỤC MỞ ĐẦU .....................................................................................................................1 CHƯƠNG I. TỔNG QUAN .....................................................................................14 1.1 AXIT PHYTIC VÀ PHYTATE ..................................................................14 1.1.1 Cấu trúc của axit phytic ........................................................................14 1.1.2 Sự phân bố phytate trong tự nhiên và chức năng của phytate ..............15 1.1.3 Đặc tính kháng dinh dưỡng của axit phytic ..........................................17 1.1.4 Ảnh hưởng của phytic tới môi trường ..................................................21 1.2 PHYTASE ...................................................................................................21 1.2.1 Chức năng của phytase .........................................................................21 1.2.2 Các đặc tính sinh lý, sinh hóa của phytase ...........................................22 1.2.3 Nguồn phytase trong tự nhiên ...............................................................23 1.2.4 Phân loại phytase .................................................................................24 1.2.4.1 Histidine axit phosphatase (HAP) ..................................................25 1.2.4.2 ß-propeller phytase (BPPhys) ........................................................26 1.2.4.3 Purple axit phosphatase (PAP) phytases ........................................27 1.2.5 Gen mã hóa phytase ..............................................................................27 1.2.6 Các yếu tố ảnh hưởng đến quá trình sản xuất phytase từ vi sinh vật....29 1.2.6.1 Các yêu tố vật lý.............................................................................29 1.2.6.2 Các yếu tố dinh dưỡng ...................................................................30 1.2.7 Điều khiển sinh tổng hợp phytase .........................................................31 1.2.8 Các ứng dụng của phytase ....................................................................33 1.2.8.1 Ứng dụng của phytase là phụ gia thức ăn chăn nuôi và nuôi trồng thủy sản… .......................................................................................................33 1.3 1.2.8.2 Ứng dụng của phytase trong công nghiệp thực phẩm....................35 1.2.8.3 Ứng dụng của phytase trong cải tạo đất .........................................36 1.2.8.4 Ứng dụng của phytase trong dược phẩm .......................................36 1.2.8.5 Bán tổng hợp peroxydase ...............................................................37 TÌNH HÌNH NGHIÊN CỨU PHYTASE....................................................37 1.3.1 Nghiên cứu làm tăng tính bền nhiệt của phytase ..................................37 1.3.2 Nghiên cứu về thay đổi pH hoạt động tối ưu của phytase ....................38 1.3.3 Nghiên cứu về khả năng bền axit và enzyme protease của phytase .....39 1.3.4 Nghiên cứu về tăng hiệu suất của quá trình sản xuất phytase ..............40 1.3.5 Nghiên cứu về động vật và thực vật chuyển gen phytase .....................41 1.3.6 Những nghiên cứu về phytase ở Việt Nam ...........................................41 1.4 LÊN MEN XỐP...........................................................................................43 1.4.1 Khái niệm về lên men xốp ....................................................................43 1.4.2 Những ưu điểm và nhược điểm của lên men xốp .................................44 1.4.3 Các ứng dụng của lên men xốp .............................................................46 1.4.3.1 Sản xuất các axit hữu cơ ................................................................47 1.4.3.2 Sản xuất các hợp chất tạo hương và tạo vị.....................................47 1.4.3.3 Sản xuất enzyme ............................................................................47 1.4.3.4 Sản xuất Fructooligosaccharides ....................................................47 1.4.3.5 Sản xuất các hợp chất hoạt tính sinh học .......................................48 1.4.3.6 Sản xuất thuốc trừ sâu sinh học .....................................................48 1.4.3.7 Sản xuất cồn sinh học.....................................................................48 1.5 CHI BACILLUS VÀ PHÂN LOẠI TRONG CHI BACILLUS ....................48 1.6 THU HỒI ENZYME ...................................................................................53 1.6.1 Chiết rút enzyme ...................................................................................53 1.6.2 Cô đặc enzyme – tủa enzyme ...............................................................53 1.6.2.1 Tủa enzyme bằng muối ammonium sulfate ...................................53 1.6.2.2 Tủa bằng dung môi hữu cơ ............................................................54 CHƯƠNG II. NGUYÊN LIỆU VÀ PHƯƠNG PHÁP .............................................56 2.1 CHỦNG VI SINH VẬT, MÔI TRƯỜNG, THIẾT BỊ VÀ HÓA CHẤT NGHIÊN CỨU ......................................................................................................56 2.1.1 Chủng vi sinh vật ..................................................................................56 2.1.2 Môi trường nghiên cứu .........................................................................56 2.1.2.1 Môi trường sàng lọc chủng ưa nhiệt và môi trường nhân giống ...56 2.1.2.2 Môi trường sàng lọc chủng sinh phytase (PSM – phytase screening media)……………..........................................................................................56 2.1.2.3 Môi trường dịch thể kích thích sinh phytase..................................56 2.1.2.4 Môi trường nuôi xốp ......................................................................57 2.1.3 Thiết bị ..................................................................................................58 2.1.4 Hóa chất ................................................................................................58 2.2 CÁC PHƯƠNG PHÁP NGHIÊN CỨU ......................................................59 2.2.1 Phương pháp xác định hoạt tính enzyme phytase.................................59 2.2.2 Tuyển chọn chủng .................................................................................61 2.2.3 Phương pháp xác định khả năng sinh trưởng .......................................61 2.2.4 Phương pháp phân loại .........................................................................61 2.2.4.1 Phương pháp phân loại vi khuẩn dựa vào đọc trình tự ADN.........61 2.2.4.2 Quan sát hình thái ..........................................................................65 2.2.5 Nghiên cứu điều kiện nuôi cấy thích hợp cho khả năng sinh phytase của chủng vi sinh vật nghiên cứu .......................................................................66 2.2.5.1 Nghiên cứu điều kiện nuôi cấy giống thích hợp cho khả năng sinh trưởng ở chủng nghiên cứu .............................................................................66 2.2.5.2 Nghiên cứu các điều kiện nuôi cấy xốp thích hợp cho khả năng tổng hợp phytase ở chủng nghiên cứu ............................................................67 2.2.6 Thu hồi enzyme ....................................................................................68 2.2.6.1 Chiết xuất enzyme ..........................................................................68 2.2.6.2 Thu hồi enzyme bằng các dung môi hữu cơ ..................................68 2.2.7 Nghiên cứu enzyme phytase .................................................................69 2.2.7.1 Gen mã hóa phytase .......................................................................69 2.2.7.2 Các đặc tính của enzyme ................................................................70 CHƯƠNG III. KẾT QUẢ VÀ THẢO LUẬN ..........................................................72 3.1 KẾT QUẢ TUYỂN CHỌN .........................................................................72 3.1.1 Lựa chọn chủng ưa nhiệt.......................................................................72 3.1.2 Lựa chọn chủng có hoạt độ phytase cao ...............................................72 3.1.3 Lựa chọn chủng sinh tổng hợp phytase bền nhiệt ................................73 3.2 PHÂN LOẠI ................................................................................................74 3.2.1 Xác định trình tự ADNr 16S .................................................................74 3.2.2 Đặc điểm hình thái ................................................................................77 3.3 NGHIÊN CỨU ĐIỀU KIỆN NUÔI CẤY...................................................78 3.3.1 Nghiên cứu điều kiện nuôi cấy giống ...................................................78 3.3.2 Nghiên cứu điều kiện nuôi cấy xốp ......................................................81 3.4 THU HỒI ENZYME ...................................................................................88 3.4.1 Thu hồi enzyme bằng các dung dịch chiết khác nhau ..........................88 3.4.2 Tủa enzyme bằng các dung môi khác nhau ..........................................89 3.5 NGHIÊN CỨU ENZYME PHYTASE CỦA CHỦNG SP1901 .................90 3.5.1 Phân tích trình tự gen phytase và so sánh với các loài có quan hệ gần gũi……… ...........................................................................................................90 3.5.2 Đặc tính enzyme phytase thô……… ....................................................90 DANH MỤC TÀI LIÊU THAM KHẢO ..................................................................93 DANH MỤC BẢNG, HÌNH Tên bảng Trang Bảng 1. Hàm lượng phosphor và phytate ở một số loại thức ăn gia cầm phổ biến... 6 Bảng 2. Các loại môi trường dùng cho lên men xốp………………………………. 47 Bảng 3. Trình tự mồi dùng cho phản ứng khuếch đại 5 gen gyrA, rpoB, purH, polC, groEL………………………………………………………………………… 53 Bảng 4. Trình tự mồi dùng cho phản ứng đọc trình tự ADNr 16S………………… 54 Bảng 5. Hoạt tính phytase của 2 chủng SP1901 và D15 trong lên men xốp và lên men dịch thể............................................................................................................... 63 o Bảng 6. Độ bền nhiệt của 2 chủng SP1901 và D15 ở 60 C………………………… Tên hình 64 Trang Hình 1. Cấu trúc của axit phytic được đề xuất bởi Neuberg, 1908 (A) và Anderson, 1914 (B)…………………………………………………………………………………. 5 Hình 2. Sự tương tác của các ion kim loại với IP6……………………………………… 8 Hình 3. Sự liên kết của IP6 với protein và tinh bột trực tiếp (A) hoặc gián tiếp (B)……. 10 Hình 4. Phytase xúc tác cho phản ứng thủy phân phytate………………………………. 12 Hình 5. Cấu trúc không gian của phyA từ A. niger NRRL 3135……………………….. 16 Hình 6. Mô hình cấu trúc phytase β-propeller…………………………………………... 17 Hình 7. Lên men xốp trong các túi nilon………………………………………………... 34 Hình 8. Đồ thị chuẩn xác định hàm lượng Pvc…………………………………………. 50 Hình 9. Sinh trưởng và vòng phân giải phytase của chủng SP1901 (trái) và D15 (phải) trên PSM………………………………………………………………………..……….. 62 Hình 10. Cây phát sinh chủng loại của chủng vi khuẩn SP1901 và các loài Bacillus có quan hệ họ hàng gần dựa vào trình tự AND r16S………………………………………. 65 Hình 11. Cây phát sinh chủng loại của chủng vi khuẩn SP1901 và các loài thuộc nhóm Bacillus subtilis dựa vào trình tự kết nối 6 gen gyrA, rpoB, purH, polC, groEL và 16S rRNA……………………………………………………………………………………. 66 Hình 12. Hình thái tế bào (trái) và khuẩn lạc (phải) của chủng SP1901……………….. 67 Hình 13. Môi trường nhân giống thích hợp chủng SP1901…………………………….. 68 Hình 14. pH thích hợp cho sinh trưởng chủng SP1901…………………………………. 69 Hình 15. Nhiệt độ thích hợp cho sinh trưởng chủng SP1901…………………………… 69 Hình 16. Thời gian thích hợp cho sinh trưởng chủng SP1901………………………….. 70 Hình 17. Chế độ thông khí thích hợp cho sinh trưởng chủng SP1901………………….. 70 Hình 18. Cơ chất thích hợp cho lên men xốp của chủng SP1901……………………… 71 Hình 19. Độ ẩm thích hợp cho lên men xốp của chủng SP1901……………………….. 72 Hình 20. Ảnh hưởng của tỷ lệ cấy giống cho lên men xốp của chủng SP1901………… 72 Hình 21. Ảnh hưởng của thời gian nuôi cấy lên sinh khối và hoạt tính phytase của chủng SP1901…………………………………………………………………………… 74 Hình 22. Nguồn các bon thích hợp cho lên men xốp của chủng SP1901 (Đối chứng âm: không bổ sung nguồn các bon)…………………………………………………….. 75 Hình 23. Nguồn nitơ thích hợp cho lên men xốp của chủng SP1901 (Đối chứng âm: không bổ sung nguồn nitơ)……………………………………………………………… 75 Hình 24. Ảnh hưởng của các ion kim loại đến khả năng sinh tổng hợp phytase của chủng SP1901…………………………………………………………………………… 76 2+ Hình 25. Ảnh hưởng của hàm lượng Ca đến khả năng sinh tổng hợp phytase của chủng SP1901…………………………………………………………………………… 77 Hình 26. Chiết xuất enzyme bằng các dung môi khác nhau……………………………. 78 Hình 27. Tủa enzyme bằng cồn và aceton………………………………………………. 80 Hình 28. Cây phát sinh chủng loại của chủng vi khuẩn SP1901 và các loài Bacillus có quan hệ họ hàng gần dựa vào trình tự gen phytase……………………………………... 81 Hình 29. Ảnh hưởng của nhiệt độ đến độ bền của phytase chủng SP1901…………….. 82 Hình 30. pH hoạt động thích hợp của phytase chủng SP1901………………………….. 84 Hình 31. Nhiệt độ hoạt động thích hợp của phytase chủng SP1901……………………. 84 Hình 32. Ảnh hưởng của các ion kim loại đến hoạt tính của phytase chủng SP1901….. 85 2+ Hình 33. Ảnh hưởng của Ca đến độ bền nhiệt của phytase chủng SP1901 xử lý ở 60oC (trái), xử lý ở 70oC (phải)…………………………………………………............. 86 Hình 34. Khả năng bền nhiệt của phytase trên cơ chất được sấy khô ở 50oC trong 24h.. 87 Hình 35. Ảnh hưởng của enzyme tiêu hóa đến hoạt động của phytase chủng SP1901… 88 DANH MỤC CÁC KÍ HIỆU VIẾT TẮT ANFs Anti-nutritional factors BPP ß-propeller phytase DNA Deoxyribonucleic acid EDTA Ethylene diamine tetracetic acid GRAS Generally regarded as safe GIT Gastro intestinal tract- ống dạ dày ruột HAP Histidine acid phosphatase phytase IP1, IP2, IP3,IP4,IP5 Inositol mono-, bis-, tris-, tetrakis-, pentakis-phosphate IP6 Phytic acid/ myo-inositol hexakisphosphate IUB International Union of Biochemistry IUPAC International Union of Pure and Applied Chemistry NCBI National Center for Biomedical Informatics PAP Purple acid phosphatase phytase PDB Protein database bank Pi Phosphate vô cơ Tm Nhiệt độ biến tính ppm Một phần triệu MỞ ĐẦU Phospho (P) là một nguyên tố thiết yếu cho sự sinh trưởng và phát triển của sinh vật, phospho chủ yếu được tìm thấy trong các loại đá phốtphat vô cơ và trong các cơ thể sống. Ở các cơ thể sống, phospho vô cơ dưới dạng phốtphat PO43- tham gia vào cấu trúc các đại phân tử sinh học như ADN và ARN (hình thành liên kết phosphoeste giữa gốc 3’OH và 5’phosphate của 2 nu kế tiếp, tham gia cấu thành “đồng tiền năng lượng” trong các cơ thể sống ATP (adenosin triphosphate), là thành phần chủ yếu trong màng tế bào (phospholipid), muối canxi phốtphat làm cứng xương động vật…. Do độ hoạt động hóa học cao, không bao giờ người ta tìm thấy nó ở dạng đơn chất trong tự nhiên và vì thế các cơ thể sống không thể hấp thụ P ở dạng các hợp chất này. Axit phytic (myo-inositol hexakisphosphate) là dạng dự trữ chủ yếu của phospho trong tự nhiên, có mặt nhiều trong các loại ngũ cốc, hạt của các cây họ đậu và hạt lấy dầu (Axit phytic chiếm hơn 80% lượng P trong các thực vật này) và đây là nguồn dinh dưỡng quan trọng cho người và động vật. Axit phytic có khả năng tạo phức chặt chẽ với các ion kim loại tạo nên các muối (phytate: muối của axit phytic với Na+, phytin: muối của axit phytic với Ca2+, Mg2+) và các hợp chất khác như axit amin, protein, làm ức chế các enzyme tiêu hóa, ngăn cản sự hấp thu các chất này của các cơ thể sống. Vì thế axit phytic được coi là một yếu tố kháng dinh dưỡng (an anti-nutrient compound) trong thức ăn và thực phẩm. Phytase là một enzyme đóng vai trò quan trọng trong công nghiệp chế biến thực phẩm và thức ăn chăn nuôi. Phytase xúc tác cho phản ứng thủy phân các muối của axit phytic (phytate, phytin) giải phóng ra orthophosphate và myo-inositol-6phosphate và các cấp độ thấp hơn của phản ứng phosphoyl hóa. Việc sử dụng phytase không chỉ làm tăng khả năng hấp thu phospho vô cơ mà còn tăng khả năng hấp thu các nguyên tố khoáng và khả năng tiêu hóa các hợp chất khác. Do đó dùng phytase để thủy phân, loại bỏ axit phytic trong thành phần thức ăn là rất cần thiết. Ở các động vật nhai lại, axit phytic được phân giải bởi các phytase do khu hệ vi sinh vật kị khí như nấm và vi khuẩn sống trong dạ cỏ sinh ra. Nhưng những động vật dạ dày đơn như lợn, gia cầm và cá không thể sử dụng muối phytate vì trong đường tiêu hóa của chúng thiếu hụt enzyme quan trọng này. Bởi vậy, người ta thường bổ sung phốt pho vô cơ (Pi) vào trong thức ăn để đáp ứng nhu cầu P cho cơ thể, nhằm đảm bảo cho động vật sinh trưởng, phát triển bình thường. Tuy nhiên, bổ sung Pi không làm giảm được hiệu ứng kháng dinh dưỡng của axit phytic mà còn gây ô nhiễm môi trường do P dư thừa thải qua phân động vật. Đồng thời làm tăng chi phí khẩu phần thức ăn. Vì vậy, giải pháp tốt nhất thay thế cho việc bổ sung Pi là thêm phytase vào thức ăn của vật nuôi, nhằm phân giải phytate thực vật sẵn có trong thức ăn, giải phóng Pi dễ hấp thụ cho vật nuôi cũng như các yếu tố dinh dưỡng và khoáng khác. Ngoài ứng dụng vào trong thức ăn chăn nuôi, phytase còn được sử dụng cho thực phẩm ở người, trong điều chế các dẫn xuất myo-inositol phosphate cho ngành dược phẩm, ứng dụng trong công nghiệp giấy và cải tạo đất trồng. Bởi thế, việc nghiên cứu sản xuất phytase đã và hiện đang là mối quan tâm của nhiều nhà khoa học. Với tầm quan trọng trong ứng dụng cho ngành chăn nuôi, Bộ Nông nghiệp và Phát triển Nông thôn đã đưa phytase vào danh mục thức ăn chăn nuôi được nhập khẩu theo Quyết định số 88/2008/QĐ-BNN ngày 22/8/2008. Chính vì vậy, những nghiên cứu về sản xuất phytase giá thành thấp thay thế phytase nhập khẩu đang được nhiều nhà khoa học trong nước quan tâm. Chúng ta đã biết đến phytase từ Aspergillus niger với rất nhiều ưu điểm như: bền nhiệt, khả năng hoạt động ở pH axit; hoạt tính cao; chống chịu được tác động của các proteinase trong hệ tiêu hóa của vật nuôi. Tuy nhiên việc tìm kiếm các loài vi sinh vật khác có khả năng sinh enzyme phytase cũng là một việc rất cần thiết. Với đặc điểm là một đất nước có khí hậu nhiệt đới gió mùa, có sự đa dạng lớn về địa hình và hệ sinh thái tạo nên sự đa dạng phong phú của các loài vi sinh vật, cũng như do nhu cầu và tầm quan trọng của các sản phẩm phytase thương mại, chúng tôi đã tiến hành đề tài nghiên cứu “Phân lập tuyển chọn vi sinh vật sinh enzyme phytase” nhằm tìm kiếm các loài vi sinh vật có khả năng sinh enzyme phytase cao và là các chủng an toàn, đáp ứng nhu cầu trong công nghiệp chế biến thức ăn chăn nuôi và thực phẩm. Những đóng góp của đề tài - Lần đầu tiên ở Việt Nam sử dụng trình tự đa gen (gyrA, rpoB, purH, polC, groEL và ADNr 16S) để phân loại chính xác đến dưới loài của chi Bacillus. - Là đầu tiên ở Việt Nam nghiên cứu về phytase bền nhiệt ở loài Bacillus amyloliquefaciens. - Chủng vi khuẩn nghiên cứu là chủng an toàn, nên có thể được sử dụng trực tiếp trong thức ăn chăn nuôi để cung cấp phytase và là nguồn probiotic cho động vật. CHƯƠNG I. TỔNG QUAN 1.1 AXIT PHYTIC VÀ PHYTATE Các thuật ngữ axit phytic, phytate và phytin lần lượt để chỉ axit phytic tự do, muối của axit phytic với Na+ và muối của axit phytic với Ca2+, Mg2+. Trong nhiều tài liệu, thuật ngữ axit phytic và phytate, phytin được sử dụng lẫn nhau và phần lớn phospho tổng số trong các loại hạt tồn tại dưới dạng phytate, đây là dạng dự trữ chính của phospho trong ngũ cốc, hạt đậu và các mô thực vật khác [111]. 1.1.1 Cấu trúc của axit phytic Axit phytic lần đầu tiên được Hartig tìm thấy năm 1855-1856 ở dạng hạt nhỏ, không phải là tinh bột trong các hạt của một số loài thực vật [43, 44]. Sau Hartig, cũng đã có nhiều nhà nghiên cứu tìm thấy phytate dưới dạng “globoid” (dạng cầu) và khẳng định thành phần hóa học chính của nó là C, P và các ion kim loại. Năm 1897 Winterstein đưa ra tên là axit inositol-phosphoic và sau đó năm 1968 được duyệt lại là ‘myo-inositol 1, 2, 3, 4, 5, 6 hexakis (dihydrogen) phosphate (IP6) bởi IUPAC-IUB [44, 110]. Cấu trúc của phytic axit là đối tượng tranh cãi của ngành hóa học trong nhiều năm ở thế kỷ 20 và cuối cùng 2 cấu trúc do Neuberg và Anderson đề xuất được chấp thuận nhiều nhất [87, 88]. Nhiều ý kiến khác nhau cho rằng chúng là dạng đồng hình và có hay không 3 phân tử nước gắn kết trong cấu trúc này, thì sau đó với những phân tích về nguyên tử, chuẩn độ natri phytate với các ion kim loại, tinh thể học tia X và cộng hưởng từ hạt nhân đã dẫn đến kết luận rằng cấu trúc do Anderson đề xuất là dạng chiếm ưu thế hơn được tìm thấy trong các loài thực vật [43]. (A) (B) Hình 1. Cấu trúc của axit phytic được đề xuất bởi Neuberg, 1908 (A) và Anderson, 1914 (B) [4, 87, 88] 1.1.2 Sự phân bố phytate trong tự nhiên và chức năng của phytate Phytate là một hợp chất có mặt ở nhiều loại thực vật khác nhau, chúng chiếm đến 1-5% khối lượng các cây họ đậu, ngũ cốc, các hạt chứa dầu và hạnh nhân. Hầu hết các loại thức ăn có nguồn gốc thực vật chứa 50-80% hàm lượng phospho tổng số dưới dạng phytate. Ở thực vật, phytate được tìm thấy đầu tiên ở các loại hạt tuy nhiên vị trí của chúng trong hạt lại khác nhau ở các loài thực vật khác nhau, ở ngô tới 90% phytate tập trung ở phần mầm của hạt, trong khi đó ở lúa mỳ và gạo, phytate tập trung chủ yếu ở lớp vỏ aleurone của hạt và cám bên ngoài [43, 44, 91, 92, 109]. Phytate trong các hạt chứa dầu và hạt các cây họ đậu thường liên kết với các protein và tập trung chủ yếu trong các thể cầu (globoid), các thể vùi phân bố trong toàn bộ hạt, ngược lại phytate ở hạt đậu nành lại có mặt ở những vị trí không đặc trưng [109]. Ngoài ra phytate có thể được tìm thấy ở rễ, thân, quả, lá…và hạt phấn của một số loài thực vật [10, 42, 51, 108, 122]. Trong số các loài thực vật được sử dụng làm thức ăn gia súc, cây vừng, bí ngô, lanh có hàm lượng IP6 cao nhất tính theo khối lượng khô, có thể lên đến 3,7-4,7% [66]. Các loại thức ăn gia súc khác IP6 chiếm 1-3% trọng lượng khô [18]. Bảng 1. Hàm lượng phospho và phytate ở 1 số loại thức ăn gia cầm phổ biến (Tyagi và cộng sự, 1998) Thành phần P tổng số (%) P dạng phytate (%) Ngũ cốc Ngô 0,39 0,25 Gạo 0,15 0,09 Lúa mỳ 0,44 0,27 Lúa miến 0,3 0,22 Đại mạch 0,33 0,2 Bajra 0,31 0,23 Hạt chứa dầu Lạc 0,6 0,46 Đỗ tương 0,88 0,56 Hạt bông 0,93 0,786 Hạt hướng dương 0,9 0,45 Phân tử IP6 có chứa 28,2% phospho, trong đó thường tồn tại dưới các dạng muối khác nhau như muối của magie trong gạo, lúa mỳ, đậu tằm và hạt vừng, muối Ca-Mn-K trong hạt đậu nành [5, 67, 92, 93, 103, 134, 135]. Phytate được tích lũy trong hạt trong suốt quá trình chín và trưởng thành, cùng với các hợp chất khác như tinh bột, protein và lipid [46, 94, 105]. Năm 1980, Cosgrove và Irving đã đưa ra những vai trò của phytate trong các loại hạt là: (i) là nguồn dự trữ phospho, (ii) là nguồn dự trữ năng lượng, (iii) là chất cạnh tranh với adenosine triphosphate trong suốt quá trình sinh tổng hợp phytin trong thời gian trưởng thành của hạt khi quá trình trao đổi chất của hạt bị ức chế và trạng thái tiềm sinh, (iv) như là một chất bất hoạt các ion hóa trị II cần cho sự điều khiển các quá trình của tế bào và được giải phóng trong suốt quá trình nảy mầm dựa trên hoạt động của enzyme phytase sẵn có trong thực vật, (v) là chất điều chỉnh hàm lượng Pi sẵn có trong hạt [22]. Ngoài ra, axit phytic còn đóng vai trò là chất kháng nấm trên các cánh đồng, ngăn ngừa sự sản sinh aflatoxyn ở các hạt đậu nành nhờ sự gắn kết với Zn2+ [39]. IP6 có thể được tìm thấy trong nhân hồng cầu ở các loài chim, cá nước ngọt và rùa, cũng như được tìm thấy trong các loại đất hữu cơ [17, 27]. Ngoài ra, các phân tử dưới IP6 trong quá trình phosphoyl hóa như IP5, IP4, IP3, IP2 và cả IP6 cũng tham gia vào quá trình truyền tín hiệu tế bào và hệ thống vận chuyển phosphate có mặt ở hầu hết các mô động và thực vật [79]. Ở thực vật quá trình tổng hợp IP6 diễn ra thường xuyên tuy nhiên đã có những bằng chứng chứng minh rằng ở người đôi khi có sự tổng hợp IP6 từ D-glucose nhờ hoạt động của enzyme phosphoylase đối với inositol-phosphate từ sự đóng vòng của glucose-6- phosphate. Một số loại mô của động vật có vú như tinh hoàn, tuyến vú, não, gan, thận có thể tổng hợp 4g IP6 mỗi ngày [41, 112]. 1.1.3 Đặc tính kháng dinh dưỡng của axit phytic IP6 là một cấu trúc tích điện âm ở dải pH rộng nên dễ dàng kết hợp với các ion tích điện dương như các ion kim loại, các hợp chất tích điện âm hình thành các phức khó tan làm giảm khả năng tiêu hóa và hấp thụ các chất này trong ruột non. Do đó phytate được coi là một hợp chất kháng dinh dưỡng (an anti-nutritional compound) [138]. Trong các điều kiện trung tính hoặc kiềm nhẹ, các ion kim loại thiết yếu như Ca2+, Zn2+, Fe2+ có mặt trong thức ăn có thể liên kết với axit phytic và hình thành nên các phức IP6-kim loại kết tủa xuống. Độ bền vững của các kết tủa này theo thứ tự: Zn2+> Cu2+>Co2+> Mn2+> Ca2+, trong khi đó ở pH 7,4 thứ tự này có thể là là: Cu2+> Zn2+> Ni2+> Co2+> Mn2+> Fe2+> Ca2+ [69, 150]. Các ion kim loại có thể tương tác với các nhóm OH- của cùng một nhóm phosphate hoặc các nhóm phosphate khác nhau trong phân tử IP6, thậm chí ion kim loại có thể liên kết với các nhóm phosphate của các phân tử IP6 khác nhau. Sự không hòa tan của các phức này cũng là nguyên nhân chính gây ra giảm khả năng hấp thu các ion kim loại trong các khẩu phần ăn có chứa hàm lượng axit phytic cao. Ngoài ra, sự có mặt đồng thời của 2 ion kim loại khác nhau làm tăng quá trình kết tủa của các phức IP6-kim loại [126]. Sự ảnh hưởng của IP6 tới khả năng hấp thụ các ion kim loại này còn phụ thuộc vào các yếu tố khác như cách thức chế biến thức ăn, các loại IP6 khác nhau, sự có mặt của các yếu tố khác cũng có tương tác với ion kim loại (yếu tố cạnh tranh với IP6) như cellulose, axit oxalic, tannin, sự có mặt của phytase trong ruột hoặc phytase vi khuẩn hay quá trình thích nghi trao đổi chất của cá thể với khẩu phần ăn giàu phytate [138]. Hình 2. Sự tương tác của các ion kim loại với IP6 Sự hình thành phức giữa IP6 và canxi gây ra hiện tượng kháng vôi hóa (anticalcifying) dẫn đến loãng xương (hình thành các vách trống trong xương) ở chó và người [78, 151]. Tuy nhiên theo các nghiên cứu năm 1951 của Walker và cộng sự, dưới cùng một điều kiện, hàm lượng axit phytic trong khẩu phần ăn có ảnh hưởng đến sự hấp thụ Ca2+ nhưng sự ảnh hưởng này không phải là mãi mãi, con người có thể thích nghi với các khẩu phần ăn có hàm lượng phytate cao và tự điều chỉnh sau một thời gian ngắn nên hàm lượng canxi hấp thụ được không có sự khác biệt giữa chế độ ăn thông thường và chế độ ăn khi thí nghiệm [151]. Một báo cáo cũng đã nêu ra tình trạng suy dinh dưỡng ở quần thể dân cư ở vùng bắc Ấn Độ, Pakistan, Iran và trong số những người Ả-rập du cư có liên quan đến loại thức ăn chính làm từ ngũ cốc không lên men là chapatis (1 loại bánh mỳ không có men) có chứa 1 lượng lớn phytate [113, 154]. Sự thiếu hụt magie liên quan tới khẩu phần ăn có hàm lượng phytate cao cũng đã được đề cập tới ở gà và chuột [77, 117]. Bên cạnh đó các triệu chứng sự thiếu hụt kẽm do khẩu phần ăn có hàm lượng phytate cao cũng đã được nghiên cứu ở người, gà, lợn và chuột [23, 30, 68, 69, 89, 90]. Do các phức IP6-Ca-Zn ít hòa tan hơn so với các phức IP6-Zn tương ứng nên sự hình thành của phức IP6-Ca-Zn thậm chí còn kích thích các triệu chứng của sự thiếu hụt kẽm [15,138]. Ngoài ra khi bổ sung natri phytate vào bánh mỳ trắng hoặc sữa cũng làm giảm sự hấp thụ sắt ở người xuống 15 lần [127]. Đã có rất nhiều nghiên cứu chỉ ra rằng phytate không có ảnh hưởng tới sự hấp thu sắt ở động vật mặc dù protein đậu nành (có chứa hàm lượng lớn phytate) được cho là nguồn thức ăn giàu sắt [131]. Sau này những nghiên cứu của các nhà khoa học đã tìm ra rằng dạng tồn tại chính của sắt ở trong cám lúa mỳ và đậu nành là dạng mono, có khả năng sử dụng được trực tiếp cao, tương tự như khẩu phần ăn có bổ sung sắt vô cơ hoặc ammoni sulfate sắt [82]. Sự bổ sung 1% phytate vào chế độ ăn có albumin trứng làm giảm đáng kể khả năng hấp thụ đồng và mangan ở chuột [24]. IP6 là một cấu trúc tích điện âm nên IP6 còn có khả năng tương tác trực tiếp với các nhóm tích điện dương hoặc gián tiếp với các nhóm tích điện âm của các protein tích điện dương có mặt trong thức ăn thông qua các ion kim loại tích điện dương như Ca2+ để hình thành nên các phức IP6- protein tích tụ lại và kết tủa xuống, do đó làm giảm khả năng tiếp xúc với protease, dẫn đến giảm hiệu quả tiêu hóa protein [14, 18, 58, 111, 130, 138, 146]. Bên cạnh đó, tính tan kém của protein còn do bị axit phytic bao phủ điện tích dương làm thay đổi điểm đẳng điện của protein [59, 111]. IP6 có thể tạo phức với một số protein trong lúa mỳ, cám yến mạch, đậu, mầm ngô, vỏ đậu nành, bột vừng, đậu nành, lạc cũng như hạt bong [31, 92]. Sự hình thành phức giữa IP6-ion kim loại- protein dưới điều kiện trung tính hoặc kiềm khá kém bền nhưng có thể dẫn tác động đồng thời gây thiếu hụt khoáng và giảm hiệu quả tiêu hóa protein. Tuy nhiên cũng đã có những nghiên cứu in vivo và nghiên cứu in vitro ở động vật và người cho kết quả âm tính về tác động của IP6 với khả năng tiêu hóa protein, do đó ảnh hưởng của IP6 đối với khả năng tiêu hóa protein vẫn còn nhiều tranh cãi. Ngoài khả năng tương tác với các ion kim loại, protein, IP6 còn có khả năng tạo phức trực tiếp (nhờ sự hình thành liên kết hydro) hoặc gián tiếp với tinh bột (thông qua các phân tử protein) để hình thành nên các phức IP6- tinh bột làm giảm hiệu quả tiêu hóa tinh bột, gây ra sự giảm đường huyết [137]. Ngoài ra sự tạo phức đồng thời giữa IP6 và protein, tinh bột có thể làm giảm sự tiêu hóa những chất này từ khẩu phần ăn [5]. Tuy nhiên, sự tương tác giữa IP6 và tinh bột vẫn chưa chi tiết và vẫn cần rất nhiều các nghiên cứu invivo. (A) (B) Hình 3. Liên kết của IP6 với protein và tinh bột trực tiếp (A) hoặc gián tiếp (B) Bằng cách liên kết với các ion kim loại, protein IP6 gián tiếp làm suy giảm hoạt tính của một số các enzyme như protease, các enzyme tiêu hóa khác mà cần các ion kim loại cho sự hoạt động cũng như tính bền vững của chúng. Một số các metalloenzyme như cacboxypeptidase, leucine aminopeptidase, amylase, phosphates kiềm và aminopeptidase chứa kẽm hoặc canxi có mặt một lượng nhỏ trong ruột và cần thiết cho quá trình phân giải thức ăn. Phức IP6-Cu có thể làm giảm tới 95% hoạt tính của cacboxypeptidase A do thay thể Cu2+ bằng Zn2+ trong phân tử enzyme ở pH 7,5 [75, 124, 147]. IP6 và EDTA có khả năng làm giảm hoạt tính của α-amylase ở mức độ tương đương nhau [52]. Canxi là yếu tố tham gia vào quá trình tự xúc tác của trypsinogen thành trypsin và sự bền vững của trypsin. Do đó, khi IP6 liên kết với Ca2+ thì sự sản sinh và tính bền vững của trypsin bị ảnh hưởng. Sự suy giảm của enzyme phosphatase kiềm trong ruột và phytase trong ống dạ dày-ruột của các động vật dạ dày đơn là do chế độ ăn nhiều canxi trong đó có sự hình thành phức IP6-Ca [71]. Ngoài ra, các enzyme thymidinine kinase cũng bị ức chế mạnh mẽ bởi sự liên kết IP6-Zn trong chế độ ăn chứa hàm lượng phytate cao [102]. 1.1.4 Ảnh hưởng của phytic tới môi trường Thực vật cần phospho vô cơ (Pi) cho sự sinh trưởng của chúng và thực vật tích trữ phytate trong hạt, rễ và các mô trong suốt thời gian chín. IP6 cần được phân giải trở lại thành dạng Pi cung cấp cho đất và do đó khép kín chu trình phospho. Tuy nhiên, sự có mặt quá nhiều của Pi, đặc biệt là khu vực nước bề mặt có thể gây ra hiện tượng phú dưỡng (eurotrophication), đây là một dạng mất cân bằng sinh trưởng của tảo và các thực vật thủy sinh khác dẫn tới sự thất thoát oxy, gây ảnh hưởng đến các môi trường nước hiếu khí khác. Vì vậy, sự mất cân bằng hệ sinh thái nước là tác động chính về mặt môi trường khi hàm lượng phospho được giải phóng vào nước quá giới hạn [149]. Phytate có mặt trong khẩu phần ăn của người, lợn, gia cầm và các động vật dạ dày đơn khác, thường được thải ra ngoài qua phân. Ngày nay cùng với sự phát triển rộng của các nông trại nuôi gia cầm, gia súc, vấn đề phân thải ngày càng được quan tâm. Con người và các động vật dạ dày đơn không có enzyme phytase trong ruột và do đó sự thủy phân phytate trong ống ruột-dạ dày là nhờ hoạt động không đặc hiệu của enzyme phosphatase ở ruột hoặc vi khuẩn ở ruột [24, 41, 70]. Vì thế mà việc cung cấp Pi vào trong khẩu phần ăn nhằm đáp ứng nhu cầu dinh dưỡng là một việc phổ biến, tuy nhiên việc làm này lại làm tăng giá thành thức ăn và tăng lượng IP6, Pi giải phóng ra môi trường. Các vi sinh vật có mặt trong đất, nước có các loại enzyme thủy phân phytate khác nhau góp phần vào sự thủy phân phytate trong rác thải chăn nuôi [128, 148, 149]. Khi IP6 và Pi trở lại các thủy vực sẽ gây ra hiện tượng tảo nở hoa, sự giảm oxy và sự chết của các thủy sinh vật, bên cạnh đó là vấn đề ô nhiễm về mùi cũng khá phổ biến [72]. 1.2 PHYTASE 1.2.1 Chức năng của phytase Phytase (myo-inositol hexakisphosphate hydrolases) là một nhóm enzyme đặc biệt trong số các enzyme phosphatase, có khả năng xúc tác cho phản ứng thủy phân từng bước axit phytic thành myo-inositol, các nhóm phosphate (Pi) và các myoinositol phosphate trung gian (IP5, IP4, IP3, IP2, IP1) [149].
- Xem thêm -