Nội dung và phương pháp dạy giải toán nâng cao ở tiểu học” với phần mạch

  • Số trang: 43 |
  • Loại file: DOC |
  • Lượt xem: 37 |
  • Lượt tải: 0
nguyen-thanhbinh

Đã đăng 8358 tài liệu

Mô tả:

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO TP HƯNG YÊN TRƯỜNG TIỂU HỌC AN TẢO ------- SÁNG KIẾN KINH NGHIỆM “NỘI DUNG VÀ PHƯƠNG PHÁP DẠY GIẢI TOÁN NÂNG CAO Ở TIỂU HỌC” VỚI PHẦN MẠCH KIẾN THỨC “CÁC BÀI TOÁN TÍNH TUỔI” Môn : Toán Người thực hiện : Đỗ Thị Phấn Chức vụ : Hiệu trưởng Đơn vị công tác : Trường Tiểu học An Tảo Thành phố Hưng Yên – Tỉnh Hưng Yên Năm học : 2013 - 2014 MỤC LỤC NỘI DUNG TRANG I. 1.1 1.2 1.3 II. 2. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. III. PHẦN 1: MỞ ĐẦU Lý do chọn đề tài Mục đích nghiên cứu Phương pháp nghiên cứu Đối tượng nghiên cứu Ý nghĩa của đề tài PHẦN 2: NỘI DUNG Cơ sở lý luận và thực tiễn của đề tài Cơ sở lý luận Cơ sở thực tiễn ND và PP dạy giải toán nâng cao “Các bài toán về tính tuổi” Phương pháp giải – Ví dụ minh họa Dạng 1: Cho biết hiệu số và tỉ số của hai người Dạng 2: Cho biết tổng số tuổi và tỉ số tuổi của hai người Dạng 3: Cho biết tỷ số tuổi hai người ở hai thời điểm khác nhau Dạng 4: Cho biết tổng và hiệu số của hai người Dạng 5: Cho tỷ số của hai người ở hai thời điểm khác nhau Dạng 6: Các bài toán tính tuổi với số thập phân Dạng 7: Một số bài toán khác Hệ thống các phương pháp truyền tải trong quá trình 1 1 2 3 3 3 4 4 4 4 5 7 7 14 16 19 20 22 24 IV. 4.1. 4.2. 4.3. 4.4. hướng dẫn học sinh giải các bài toán về tính tuổi Thực trạng việc dạy và học Về học sinh Về giáo viên Về tài liệu tham khảo Những sai lầm thường mắc phải của thầy và trò trong quá trình 29 29 30 30 31 31 dạy và giải toán nâng cao tính tuổi Việc sử dụng đồ dùng trược quan và trang thiết bị Hệ thống bài tập tự luyện theo dạng Kết quả thực nghiệm Bài học kinh nghiệm và hướng phát triển PHẦN 3: KẾT LUẬN 31 31 33 35 37 I. II. III. IV. V. 4.5. V. VI. VII. PHẦN 1: MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI Giáo dục nước ta trong thập kỷ tới phát triển trong bối cảnh thế giới có nhiều thay đổi nhanh và phức tạp. Toàn cầu hóa và hội nhập quốc tế về giáo dục đã trở thành xu thế tất yếu. Cách mạng khoa học công nghệ, công nghệ thông tin và truyền thông, kinh tế trí thức ngày càng phát triển mạnh mẽ, tác động trực tiếp đến sự phát triển của các nền giáo dục trên thế giới. Chiến lược phát triển kinh tế - xã hội 2011 - 2020 đã khẳng định phấn đấu đến năm 2020 nước ta cơ bản trở thành nước công nghiệp theo hướng hiện đại; chính trị - xã hội ổn định, dân chủ, kỷ cương, đồng thuận; đời sống vật chất và tinh thần của nhân dân được nâng lên rõ rệt; độc lập, chủ quyền, thống nhất và 3 toàn vẹn lãnh thổ được giữ vững; vị thế của Việt Nam trên trường quốc tế tiếp tục được nâng cao; tạo tiền đề vững chắc để phát triển cao hơn trong giai đoạn sau. Chiến lược cũng đã xác định rõ một trong ba đột phá là phát triển nhanh nguồn nhân lực, nhất là nguồn nhân lực chất lượng cao, tập trung vào việc đổi mới căn bản, toàn diện nền giáo dục quốc dân, gắn kết chặt chẽ phát triển nguồn nhân lực với phát triển và ứng dụng khoa học, công nghệ. Sự phát triển của đất nước trong giai đoạn mới sẽ tạo ra nhiều cơ hội và thuận lợi to lớn, đồng thời cũng phát sinh nhiều thách thức đối với sự nghiệp phát triển giáo dục. Nghị quyết Đại hội Đảng toàn quốc lần thứ XI đã khẳng định "Đổi mới căn bản, toàn diện nền giáo dục Việt Nam theo hướng chuẩn hóa, hiện đại hóa, xã hội hóa, dân chủ hóa và hội nhập quốc tế, trong đó, đổi mới cơ chế quản lý giáo dục, phát triển đội ngũ giáo viên và cán bộ quản lý giáo dục là khâu then chốt" và "Giáo dục và đào tạo có sứ mệnh nâng cao dân trí, phát triển nguồn nhân lực, bồi dưỡng nhân tài, góp phần quan trọng xây dựng đất nước, xây dựng nền văn hóa và con người Việt Nam". Chiến lược phát triển kinh tế - xã hội 2011 - 2020 đã định hướng: "Phát triển và nâng cao chất lượng nguồn nhân lực, nhất là nhân lực chất lượng cao là một đột phá chiến lược". Chiến lược phát triển giáo dục 2011 - 2020 nhằm quán triệt và cụ thể hóa các chủ trương, định hướng đổi mới giáo dục và đào tạo, góp phần thực hiện thắng lợi Nghị quyết Đại hội Đảng toàn quốc lần thứ XI và Chiến lược phát triển kinh tế - xã hội 2011 2020 của đất nước. Bên cạnh đó, xuất phát từ tầm quan trọng của việc bồi dưỡng học sinh giỏi và việc dạy - học các dạng “Toán điển hình”: Dạng “Các bài toán tính tuổi” là một trong những dạng toán điển hình thuộc loại toán khó và tính đa dạng của nó ở trong chương trình môn Toán ở Tiểu học. Để giải được dạng toán này đòi hỏi học sinh phải huy động tối đa các kiến thức toán tổng hợp mà mình đã học nhất là khả năng phân tích, tổng hợp, trừu tượng hóa và khái quát hóa và sử dụng thành thạo, linh hoạt các phương pháp giải toán ở Tiểu học. Thực trạng dạy và học toán “Các bài toán điển hình” mà 4 trong đó có những “Các bài toán tính tuổi” thường gây khó khăn cho học sinh, các em còn lúng túng khi gặp phải dạng bài này. Bên cạnh đó, một số giáo viên chưa biết cách hướng dẫn cho học sinh để các em có thể nhanh chóng tìm ra hướng giải quyết. Trong việc bồi dưỡng học sinh năng khiếu tham gia thi Violympic giải toán qua mạng Internet do Bộ GD&ĐT tổ chức thì đa số giáo viên gặp khó khăn trong việc hướng dẫn học sinh giải “Các bài toán tính tuổi” . Để góp phần nâng cao năng lực giải toán nói chung, năng lực giải “Các bài toán tính tuổi” nói riêng trong môn toán ở Tiểu học và góp phần trong việc đổi mới phương pháp bồi dưỡng học sinh năng khiếu trên cơ sở kiến thức chuẩn theo chương trình để hình thành và phát triển những kiến thức nâng cao một cách phù hợp với nhận thức của học sinh. Tôi đã mạnh dạn chọn đề tài có tên “Nội dung và phương pháp dạy giải toán nâng cao ở tiểu học” với phần mạch kiến thức “Các bài toán tính tuổi”. II. MỤC ĐÍCH NGHIÊN CỨU Trên cơ sở nghiên cứu lý luận và đánh giá thực trạng dạy giải toán nâng cao ở trường Tiểu học An Tảo, TP Hưng Yên, tỉnh Hưng Yên. Tìm ra hệ thống nội dung và phương pháp dạy toán nâng cao các bài toán tính tuổi cho học sinh Tiểu học hay nhất, tốt nhất góp phần nâng cao chất lượng bồi dưỡng học sinh. III. PHƯƠNG PHÁP NGHIÊN CỨU Trong quá trình thực hiện đề tài, tôi đã thực hiện các phương pháp sau: - Phương pháp nghiên cứu lý luận (Đọc tài liệu và sách tham khảo). - Phương pháp điều tra thực trạng. - Phương pháp phân tích tổng hợp – Thực hành. - Phương pháp tổng kết kinh nghiệm. IV. ĐỐI TƯỢNG NGHIÊN CỨU 5 Trong đề tài này, tôi chỉ nghiên cứu đối với học sinh khá, giỏi trường Tiểu học An Tảo thành phố Hưng Yên nơi tôi đang công tác V. Ý NHĨA CỦA ĐỀ TÀI Làm sáng tỏ thêm về lý luận dạy học các dạng toán điển hình. Đặc biệt là dạng “Các bài toán tính tuổi”. Hình thành tri thức mới, củng cố, đào sâu, hệ thống hóa kiến thức, rèn luyện kỹ năng tính và giải toán hơn nữa, tư duy của học sinh đi từ trực quan sinh động đến tư duy trừu tượng nên giaos viên thường hình thành các biểu tượng, khái niện toán học cho học sinh thông qua việc giải toán cụ thể mà không phải bằng con đường lý luận. Nhờ áp dụng các kiến thức toán học vào thực tiễn cuộc sống , thực hiện phương châm "Học đi đôi với hành" mà học sinh có thể tự tính tuổi cho mình, người thân dựa vào một số dữ kiện cho sẵn hoặc giáo dục học sinh lòng yêu nước qua các ngày lễ trong năm. Việc giải toán sẽ giúp các em rèn luyện tư duy một cách tích cực, linh hoạt; phát triển trí thông minh, tự sáng tạo, độc lập suy nghĩ; hình thành thói quen làm việc khoa học; rèn luyện đức tính cẩn thận, chu đáo, kiên nhẫn, bình tĩnh; có ý chí vượt khó, thói quen tự kiểm tra công việc của mình,..... PHẦN 2: NỘI DUNG I. CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN CỦA ĐỀ TÀI 1.1. Cơ sở lí luận Môn Toán có tiềm năng giáo dục to lớn, nó góp phần quan trọng trong việc rèn luyện phương pháp suy nghĩ, phương pháp suy luận, phương pháp giải quyết vấn đề. Nó góp phần phát triển trí thông minh, cách suy nghĩ độc lập linh hoạt, sáng tạo; góp phần vào việc hình thành các phẩm chất cần thiết và quan trọng của con người như lao động cần cù, cẩn thận, có ý thức vượt khó khăn, làm việc có kế hoạch, có nền nếp và có tác phong khoa học. Phát hiện và bồi dưỡng nhân tài là một vấn đề mà Đảng và Nhà nước ta rất quan tâm; Xuất phát từ mục tiêu của Đảng là "Phát hiện tài năng bồi dưỡng 6 nhân tài cho đất nước" chúng ta cần phải chăm sóc thế hệ trẻ ngay từ lúc ấu thơ đến lúc trưởng thành. Vì vậy việc phát triển và bồi dưỡng ngay từ bậc tiểu học là công việc hết sức quan trọng đòi hỏi người giáo viên phải không ngừng cải tiến về nội dung, đổi mới về phương pháp để khuyến khích học sinh say mê học tập, nghiên cứu tìm tòi chiếm lĩnh tri thức mới. Việc dạy và giải các bài toán nâng cao trong môn giải toán ở Tiểu học có vị trí đặc biệt quan trọng. Thông qua dạy giải toán nâng cao giúp cho đội ngũ giáo viên nâng cao trình độ chuyên môn nghiệp vụ, rèn kỹ năng giải toán từ đó nâng cao chất lượng dạy toán Tiểu học. Cũng thông qua việc giải toán nâng cao có tác dụng thúc đấy phát triển tư duy logic, rèn luyện khả năng sáng tạo Toán học của học sinh. Muốn nâng cao chất lượng dạy bồi dưỡng học sinh giỏi toán thì trước hết phải xây dựng được một nội dung hợp lý, khoa học và những phương pháp giảng dạy phù hợp, phát triển được khả năng tư duy linh hoạt, sáng tạo của học sinh. 1.2. Cơ sở thực tiễn Qua tìm hiểu chương trình và sách giáo khoa, qua thực tế giảng dạy và bồi dưỡng học sinh có năng khiếu về môn Toán lớp 4 - 5 của trường Tiểu học An Tảo tôi thấy: Thực trạng việc dạy học và giải toán nâng cao nói chung và dạy - học các bài toán về tính tuổi nói riêng của giáo viên và học sinh tôi thấy còn nhiều vấn đề phải quan tâm. Đó là: Nội dung dạy bồi dưỡng học sinh giỏi chưa đảm bảo logic, giáo viên khi nghiên cứu tài liệu tham khảo thấy bài nào hay thì chọn để dạy cho học sinh chứ chưa phân được dạng, loại trong mỗi mạch kiến thức. Về phương pháp giảng dạy các bài toán nâng cao chưa hợp lí, có những phương pháp giải chưa phù hợp với đặc điểm tâm lý và khả năng tiếp thu của học sinh; chưa có tài liệu chỉ đạo cụ thể về nội dung và phương pháp dạy bồi dưỡng học sinh giỏi Toán để giáo viên lấy đó làm cơ sở. Học sinh chưa có một phương pháp tư duy logic để giải quyết các dạng bài tập... Chính vì vậy, chất lượng dạy bồi dưỡng học sinh giỏi chưa cao. 7 1.3. Nội dung và phương pháp dạy giải toán nâng cao “Các bài toán về tính tuổi” 1.3.1. Toán nâng cao và hệ thống phương pháp dạy giải toán nâng cao Toán nâng cao và hệ thống phương pháp dạy giải toán nâng cao này đang là một vấn đề quan tâm của nhiều người. Trong hệ thống toán nâng cao ở Tiểu học phân dạng bài toán và lựa chọn phương pháp thích hợp để giải thành 10 chuyên đề phân biết, đó là: - Chuyên đề 1: Các bài toán về số và chữ số - Chuyên đề 2: Các bài toán trồng cây - Chuyên đề 3: Các bài toán điền dấu vào phép tính - Chuyên đề 4: Các bài toán về chia hết - Chuyên đề 5: Các bài toán về phân số – số thập phân - Chuyên đề 6: Các bài toán về tính tuổi - Chuyên đề 7: Các bài toán về chuyển động - Chuyên đề 8: Các bài toán về suy luận - Chuyên đề 9: Các bài toán có nội dung hình học - Chuyên đề 10: Các bài toán vui, toán cổ. Trong 10 chuyên đề toán nâng cao dành cho học sinh Tiểu học, thì dạng toán nâng cao về “Tính tuổi” là một dạng toán điển hình rất hay, rất hấp dẫn, bổ ích, không thể thiếu được trong cẩm nang toán của các em. 1.3.2. Nội dung và phương pháp giải “Các bài toán về tính tuổi” ở Tiểu học. Các bài toán tính tuổi nâng cao là một dạng toán điển hình rất bổ ích. Qua tìm tòi cách giải, nó giúp cho học sinh tổng hợp, nâng cao toàn bộ các kiến thức được học một cách sâu sắc, toàn diện. 8 1.3.2.1. Các bài toán nâng cao về tính tuổi được thầy giáo phân dạng thành 6 dạng trong cuốn 10 chuyên đề bồi dưỡng học sinh giỏi toán sau: - Dạng 1: Cho biết hiệu và tỉ số tuổi của hai người; - Dạng 2: Cho biết tổng và tỉ số tuổi của hai người; - Dạng 3: Cho biết tỉ số tuổi cho hai người ở 2 thời điểm khác nhau; - Dạng 4: Cho biết tổng và hiệu số tuổi của hai người; - Dạng 5: Cho biết tỉ số tuổi của 2 người ở 3 thời điểm khác; - Dạng 6: Các bài toán tính tuổi với số thập phân; - Dạng 7: Một số bài toán khác. 1.3.2.2. Các kiến thức cần củng cố và bổ sung. Khi giải các bài toán nâng cao về tính tuổi, giáo viên đã giúp học sinh củng cố lại kiến thức về: - Tìm hai số khi biết tổng và hiệu (lớp 4) - Tìm hai số khi tổng và tỷ (lớp 4) - Tìm hai số khi biết hiệu và tỷ (lớp 4) - Số thập phân, phân số (lớp 5) - Cấu tạo số, các dạng biểu thức chưa hai hoặc ba chữ số… Trong quá trình tìm tòi cách giải các bài toán nâng cao về tính tuổi thì giáo viên giúp học sinh nhận biết và nắm chắc chìa khoá để giải là: - Hiệu số tuổi của hai người không thay đổi theo thời gian. - Mỗi năm mỗi người tăng thêm một tuổi. 1.3.2.3 Trong các bài toán về tính tuổi của A và B (hai người) thường gặp các đại lượng sau: + Tuổi của A và B + Hiệu số tuổi của A và B 9 + Tổng số tuổi của A và B + Các thời điểm của A và B (trước đây, hiện nay, sau này). II. PHƯƠNG PHÁP GIẢI - VÍ DỤ MINH HỌA 2.1. Dạng 1: Cho biết hiệu số tuổi và tỷ số tuổi của hai người (A và B) 2.1.1. Loại 1: Cho biết hiệu số tuổi của hai người. Cách giải: Dùng sơ đồ đoạn thẳng để biểu diễn tỷ số của hai người ở thời điểm đã cho. Giáo viên hướng dẫn cho học sinh nhận xét rút ra là: + Hiệu số tuổi của hai người bằng hiệu số phần bằng nhau trên sơ đồ đoạn thẳng. + Tìm số tuổi ứng với một phần bằng nhau trên sơ đồ. + Tìm số tuổi của mỗi người. Ví dụ 1: Hiện nay anh 11 tuổi, em 5 tuổi. Hãy tính tuổi của mỗi người khi anh gấp 3 lần tuổi em. Giải Cách 1: Tuổi em: Tuổi anh: 6 tuổi (11 – 5) Sơ đồ trên biểu thị tuổi anh và tuổi em lúc tuổi anh gấp 3 lần tuổi em. Hiệu số tuổi của anh hơn tuổi em là: 11 – 5 = 6 (tuổi) Tuổi em lúc anh gấp 3 lần tuổi là: 6 : 2 = 3 (tuổi) Tuổi anh lúc anh gấp 3 lần tuổi em là: 3 x 3 = 9 (tuổi) 10 Vậy, khi anh 9 tuổi và em 3 tuổi thì lúc đó tuổi anh gấp 3 lần tuổi em. Cách 2: Khi tuổi anh gấp 3 lần tuổi em thì số tuổi của anh là: (11 – 5) : 2 x 3 = 9 (tuổi) Lúc đó tuổi của em là: 9 : 3 = 3 (tuổi) Ví dụ 2: Cách đây 3 năm em lên 5 tuổi và kém anh 6 tuổi. Hỏi cách đây mấy năm thì tuổi anh gấp 3 lần tuổi em. Giải Tuổi em hiện nay là: 5 + 3 = 8 (tuổi) Tuổi em: 6 tuổi Tuổi anh: Sơ đồ trên biểu thị tuổi anh và tuổi em khi anh gấp 3 lần tuổi em là: Tuổi em lúc anh gấp 3 lần tuổi em là: 6 : 2 = 3 (tuổi) Thời gian cách hiện nay khi tuổi anh gấp 3 lần tuổi em là: 8 – 3 = 5 (năm) Ví dụ 3: Hiện nay anh 16 tuổi còn em 4 tuổi a) Hãy tính tuổi của mỗi người khi tuổi em bằng 2/5 tuổi anh. b) Khi tuổi em bằng 2/5 tuổi anh thì tuổi mẹ cũng gấp 2 lần tổng số tuổi của 2 anh em. Tính tuổi mẹ hiện nay? (lớp 4) Giải Tuổi anh luôn hơn tuổi em là: 16 – 4 – 12 (tuổi) 11 Khi tuổi em bằng 2/5 tuổi anh thì tuổi anh vẫn hơn em là 12 tuổi. Lúc đó ta có sơ đồ là: Tuổi anh: 12 tuổi Tuổi em: Hiệu số phần bằng nhau là: 5 – 2 = 3 (phần) Giá trị một phần là: 12 : 3 = 4 (tuổi) Tuổi em lúc đó là: 4 x 2 = 8 (tuổi) Tuổi anh lúc đó là: 4 x 5 = 20 (tuổi) Tuổi mẹ lúc đó là: (20 + 8) x 2 = 56 (tuổi) Tuổi em bằng 2/5 tuổi anh sau thời gian: 8 – 4 = 4 (năm) Tuổi mẹ hiện nay: 56 – 4 = 52 (tuổi) Đáp số: a) 20 tuổi; 8 tuổi b) 52 tuổi 2.1.2. Loại 2: Phải giải bài toán phụ tìm hiệu số tuổi của hai người. Cách giải: - Trước hết là giải bài toán phụ để tìm hiệu số tuổi giữa hai người. - Sau đó giải như loại 1. 12 Ví dụ 4: Tuổi cha năm nay gấp 4 lần tuổi con và tổng số tuổi của hai cha con cộng lại là 50. Hãy tính tuổi của hai cha con khi tuổi cha gấp 3 lần tuổi con? Giải Ta có sơ đồ sau biểu thị số tuổi của hai cha con hiện nay là: Tuổi con: 50 tuổi Tuổi cha: Tuổi con hiện nay là: 50 : (1 + 4) = 10 (tuổi) Cha hơn con là: 10 x 3 = 30 (tuổi) Khi tuổi cha gấp 3 lần tuổi con, ta có sơ đồ sau: Tuổi con: Tuổi cha: 30 tuổi Tuổi của con khi tuổi cha gấp 3 lần tuổi con là: 30 : 2 = 15 (tuổi) Tuổi của cha lúc đó là: 15 x 3 = 45 (tuổi) Đáp số: 15 tuổi và 45 tuổi Ví dụ 5: Cách đây 6 năm, tuổi mẹ gấp 7 lần tuổi con và tổng số tuổi của hai mẹ con lúc đó là 24. Hỏi sau mấy năm nữa thì tuổi mẹ gấp 2 lần tuổi con? Giải Ta có sơ đồ biểu thị số tuổi của hai mẹ con cách đây 6 năm là: 13 Tuổi con: 24 tuổi Tuổi mẹ là: Tuổi con cách đây 6 năm là: 24 : (1 + 7) = 3 (tuổi) Mẹ hơn con là: 3 x 6 = 18 (tuổi) Tuổi con hiện nay là: 3 + 6 = 9 (tuổi) Khi tuổi mẹ gấp 2 lần tuổi con ta có sơ đồ sau: Tuổi con: Tuổi mẹ là: 18 tuổi Tuổi con khi mẹ gấp 2 lần tuổi con là: 18 x 1 = 18 (tuổi) Thời gian từ nay đến khi tuổi mẹ gấp 2 lần tuổi con là: 18 – 9 = 9 (năm) Đáp số: 9 năm * Tiểu kết: Như vậy dạng 1 là dạng toán “Cho biết hiệu số tuổi và tỷ số tuổi của A và B”. Giáo viên hướng dẫn làm như sau: - Hiệu số phần bằng nhau - Tìm giá trị 1 phần: Lấy hiệu của hai số chia cho hiệu số phần bằng nhau. - Tìm tuổi người thứ nhất: Lấy giá trị 1 phần nhân với số phần của số thứ nhất. 14 - Tìm tuổi của người thứ hai: Lấy giá trị 1 phần nhân với số phần của số thứ hai. (Tuy nhiên các em có thể giải gộp) Khi hướng dẫn học sinh giải bài toán này giáo viên nên hướng dẫn học sinh giải bài toán này bằng phương pháp sơ đồ đoạn thẳng. Đây là một phương pháp giúp cho học sinh khi phân tích một bài toán cần phải biết lập được mối quan hệ và phụ thuộc giữa các đại lượng trong bài toán đó. Muốn làm việc này ta thường dùng các đoạn thẳng thay cho các số (số đã cho, số phải tìm) để minh họa các quan hệ đó, ta phải tìm độ dài của các đoạn thẳng và cần sắp xếp các đoạn thẳng đó một cách thích hợp để có thể dễ dàng thấy được mối quan hệ và phụ thuộc giữa các đại lượng tạo một hình ảnh cụ thể giúp ta suy nghĩ tìm tòi cách giải toán sao cho hợp lý khoa học. * Bên cạnh phương pháp dùng sơ đồ đoạn thẳng để giải các bài toán dạng 1 ta có thể giải các bài toán dạng 1 bằng thủ thuật. Đó là thủ thuật giải toán bằng cách tưởng tượng ra tình huống không có thật. Khi ta gặp các bài toán có những mối quan hệ và số liệu tương đối phức tạp thì ta có thể nghĩ tới một hướng giải quyết theo các hướng sau: a. Tưởng tượng ra một tình huống hoặc một bài toán mới có một số đặc điểm giống như bài đã cho, song các mối quan hệ thì đơn giản hơn, quen thuộc hơn, các số liệu dễ tính toán, do đó giúp cho học sinh dễ giải hơn. b. Giải tình huống hoặc bài toán đơn giản hơn mà ta tưởng tượng ra từ đây suy ra đáp số của bài toán khó hơn. Ví dụ 6: Hiện nay mẹ 30 tuổi, con gái 6 tuổi, con trai 3 tuổi. Hỏi sau đây bao nhiêu năm thì tuổi mẹ: a. Bằng tổng số tuổi của hai con? b. Gấp đôi tổng số tuổi của hai con? Giải 15 a. Tổng số tuổi của hai con hiện nay là: 6 + 3 = 9 (tuổi) Hiện nay, hiệu số giữa tuổi mẹ và tổng số tuổi hai con là: 30 – 9 = 21 (tuổi) Cứ sau một năm thì mẹ tăng 1 tuổi, nhưng hai con tăng 2 tuổi nên hiệu số giữa tuổi mẹ và tổng số tuổi hai con giảm đi 1 tuổi. Vậy tuổi mẹ sẽ bằng số tuổi con sau: 21 : 1 = 21 (năm) b. Giả sử rằng hiện nay người cha trong gia đình cùng 30 tuổi Thì hiệu số tuổi của cha lẫn mẹ và tuổi hai còn là: (30 + 30) – 9 = 51 (tuổi) Cứ sau 1 năm thì cả cha lẫn mẹ tăng 2 tuổi và hai con cũng tăng 2 tuổi nên hiệu trên không bao giờ thay đổi. Đến khi mẹ gấp đôi tuổi của hai con thì tuổi cả cha và mẹ gấp 4 lần tuổi hai con. Ta có sơ đồ Tuổi hai con: Tuổi cha và mẹ: 51 năm Vậy tuổi của hai con là: 51 : (4 – 1) = 17 (tuổi) Số năm sau này là: (17 – 9) : 2 = 4 (năm) Đáp số: a) 21 năm sau b) 4 năm sau Phân tích: + Ở câu a không có giả thiết tạm. + Ở câu b ta thấy việc tưởng tượng ra “thêm một nhân vật không có trong đề toán là người cha cũng 30 tuổi. Việc tưởng tượng này cho phép tạo ra một 16 hiệu số không thay đổi trong bài toán là hiệu giữa tuổi cha, mẹ và tuổi hai con”. Hiệu số không thay đổi này đóng vai trò quan trọng trong cách giải. Nếu không tưởng tượng ra “nhân vật cha” thì hiệu số giữa tuổi mẹ và tuổi hai con sẽ thay đổi theo thời gian do đó ta không đưa bài toán trở về dạng tìm hai số khi biết hiệu và tỷ được. 2.2. Dạng 2: Cho biết tổng số tuổi và tỉ số tuổi của hai người: Cách giải: - Dùng sơ đồ đoạn thẳng để biểu diễn tổng và tỉ số tuổi của 2 người ở thời điểm đã cho. - Tổng số tuổi của hai người được biểu thị bằng tổng số phần bằng nhau trên sơ đồ đoạn thẳng. - Tìm số tuổi ứng với một phần nhau trên sơ đồ. - Tìm sơ đồ của mỗi người. Ví dụ7: Hiện nay tổng số tuổi của hai bố con là 45 tuổi. Tuổi bố gấp 4 lần tuổi con. Tính số tuổi mỗi người? Giải Ta có sơ đồ: Tuổi con: Tuổi bố: 45 tuổi Tuổi con hiện nay là : 45 : (4 + 1) x 1= 9 (tuổi ) Tuổi bố hiện nay là: 9 x 4 = 36 (tuổi ) (hoặc 45 – 9 = 36 tuổi ) Đáp số: Bố 36 tuổi; Con 9 tuổi Ví dụ 8: Tổng tuổi hai chú cháu là 56 tuổi . Tuổi cháu bằng chú. Tìm tuổi mỗi người? Giải Ta có sơ đồ 17 2 5 tuổi Tuổi chú: Tuổi cháu: 56 tuổi Tổng số phần bằng nhau là: 5 + 2 = 7 ( phần ) Tuổi cháu hiện nay là 56 : 7 x 2 = 16 (tuổi ) Tuổi chú hiện nay là: 56 – 16 = 40 (tuổi ) Đáp số: Chú 40 tuổi Cháu 16 tuổi Ví dụ 9: Tổng tuổi hai cha con cách đây 3 năm là 57 tuổi. Hiện nay tuổi cha gấp 2,5 tuổi con. Tính tuổi mỗi người hiện nay? Giải Vì mỗi năm mỗi người tăng thêm một tuổi, nên tổng số tuổi hai cha con hiện nay là: 57 + 3 + 3 = 63 ( tuổi ) Ta thấy: 2,5 = 25 10 = 5 2 Ta có sơ đồ: Tuổi cha: Tuổi con: Tuổi con hiện nay là : 63 tuổi 63 : (5 + 2) x 2 = 18 (tuổi ) Tuổi bố hiện nay là: 63 - 18 = 45 tuổi ) Đáp số: Bố 45 tuổi và Con: 18 tuổi 2.3. Dạng 3: Cho biết tỷ số tuổi của hai người ở hai thời điểm khác nhau 18 Cách giải: Vẽ hai sơ đồ đoạn thẳng biểu thị mối quan hệ của hai người ở mỗi thời điểm rồi dựa vào đó phân tích để tìm ra lời giải. Ví dụ 10: Chị năm nay 24 tuổi. Trước đây khi tuổi chị bằng tuổi em hiện nay thì chị gấp 2 lần tuổi em. Hỏi năm nay em bao nhiêu tuổi? Giải Theo bài ra ta có sơ đồ biểu diễn tuổi chị và tuổi em trước đây và hiện nay là: Tuổi em trước đây: Tuổi chị trước đây: Tuổi em hiện nay: Tuổi chị hiện nay: 24 tuổi Ta nhận xét: Hiệu số phần bằng nhau giữa tuổi chị và tuổi em không thay đổi theo thời gian. Như vậy tuổi chị hiện nay bằng 3 lần tuổi em trước đây. Tuổi em hiện nay là: 24 : 3 x 2 = 16 (tuổi) Đáp số: 16 tuổi Cách 2: (Không dùng sơ đồ đoạn thẳng) Gọi tuổi em trước đây là một phần thì: - Tuổi chị trước đây là 2 phần như thế - Tuổi em hiện là 2 phần như thế Tuổi chị hiện nay là: (2 + 1) = 3 (phần như thế) Tuổi em hiện nay là: 24 : 3 x 2 = 16 (tuổi) 19 Đáp số: 16 tuổi Ví dụ 11: Năm nay tuổi bố gấp 3 lần tuổi con. Nhưng trước đây 12 năm thì bố gấp 9 lần tuổi con. Năm nay con, bố bao nhiêu tuổi? Giải Ta có sơ đồ: Tuổi con hiện nay: Tuổi cha hiện nay: Hiệu số tuổi cha và con Tuổi con trước đây 12 năm: Tuổi cha trước đây 12 năm: Hiệu số tuổi cha và con ở đây ta thấy hiệu số giữa tuổi cha và con luôn không thay đổi. Cách 2: Giải bằng phương pháp đặt ẩn số. - Năm nay tuổi con là x thì tuổi bố là 3 �x - Trước đây 12 năm thì tuổi con là: x – 12 (tuổi) tuổi bố là: (3 �x) – 12 (tuổi) Theo đầu bài ra ta có: 3 �x – 12 = 9 �(x – 12) 3 �x – 12 = 9 �x – 108 108 – 12 = 9 �x – 3 �x 96 = 6 �x x = 96 : 6 x = 16 Tuổi con hiện nay là 16 (tuổi) Tuổi cha là: 20
- Xem thêm -