Nghiên cứu vài kỹ thuật phát hiện chất liệu và ứng dụng

  • Số trang: 83 |
  • Loại file: PDF |
  • Lượt xem: 65 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ lª thÞ kim nga NGHIÊN CỨU MỘT SỐ KỸ THUẬT PHÁT HIỆN CHẤT LIỆU VÀ ỨNG DỤNG LUẬN VĂN THẠC SỸ Hà Nội – 2006 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ Lê Thị Kim Nga NGHIÊN CỨU MỘT SỐ KỸ THUẬT PHÁT HIỆN CHẤT LIỆU VÀ ỨNG DỤNG Ngành: Công nghệ Thông tin Mã số: 1.01.10 LUẬN VĂN THẠC SĨ Người hướng dẫn khoa học: TS. Đỗ Năng Toàn Hà Nội – 2006 LỜI CAM ĐOAN Tôi xin cam đoan toàn bộ nội dung bản luận văn này là do tôi tự sưu tầm, tra cứu và sắp xếp cho phù hợp với nội dung yêu cầu của đề tài. Nội dung luận văn này chưa từng được công bố hay xuất bản dưới bất kỳ hình thức nào và cũng không sao chép từ bất kỳ một công trình nghiên cứu nào. Tất cả phần mã nguồn của chương trình đều do tôi tự thiết kế và xây dựng, trong đó có sử dụng một số thư viện chuẩn và các thuật toán được các tác giả xuất bản công khai và miễn phí trên mạng Internet. Nếu sai tôi xin hoàn toàn chịu trách nhiệm. Hà nội, ngày 25 tháng 11 năm 2006 Người cam đoan Lê Thị Kim Nga LỜI CẢM ƠN Tôi xin chân thành bày tỏ lòng biết ơn đến các thầy cô giáo đã nhiệt tình giảng dạy trong suốt thời gian tôi học tập tại lớp Cao học K11T2 trường Đại học Công Nghệ và đặc biệt tôi xin được gửi lời cảm ơn sâu sắc đến TS Đỗ Năng Toàn, Viện Công nghệ thông tin, Viện Khoa học Việt Nam - Người đã tận tình chỉ bảo, hướng dẫn và giúp đỡ tôi hoàn thành bản Luận văn này. Tôi xin bày tỏ lòng biết ơn tới gia đình, đã tạo điều kiện tốt nhất về mọi mặt, động viên tôi trong suốt quá trình học tập cũng như làm tốt nghiệp. Cuối cùng, xin cảm ơn các đồng nghiệp, các bạn bè đã động viên cổ vũ để tôi hoàn thành luận văn đúng thời hạn. Hà Nội, ngày 25 tháng 11 năm 2006 MỤC LỤC DANH MỤC CÁC TỪ VIẾT TẮT .................................................................. 1 DANH MỤC CÁC BẢNG ................................................................................ 1 DANH MỤC CÁC HÌNH VẼ ........................................................................... 2 MỞ ĐẦU ........................................................................................................... 4 Chương 1 -TỔNG QUAN VỀ PHÁT HIỆN CHẤT LIỆU TRONG ẢNH ...... 7 1.1 Bài toán phát hiện chất liệu trong ảnh ......................................................... 7 1.1.1 Chất liệu trong ảnh ........................................................................... 7 1.1.2 Phát hiện chất liệu ............................................................................ 8 1.2 Các đặc trưng của chất liệu trong ảnh ......................................................... 9 1.2.1 Màu sắc............................................................................................. 9 1.2.2 Kết cấu ............................................................................................ 10 1.2.3 Hình dạng ....................................................................................... 11 1.2.4 Mối quan hệ không gian ................................................................. 11 1.3 Các độ đo sự tương tự thường sử dụng ..................................................... 12 1.4 Mô hình bài toán phát hiện chất liệu ......................................................... 15 Chương 2 – CÁC CÁCH TIẾP CẬN TRONG PHÁT HIỆN CHẤT LIỆU... 16 2.1 Phương pháp Habin cải tiến ...................................................................... 16 2.1.1 Phương pháp Habin ........................................................................ 18 2.1.2 Phương pháp Habin cải tiến ........................................................... 20 2.2 Phương pháp trừu tượng ảnh dựa trên chữ ký nhị phân ........................... 21 2.3 Phương pháp Ma trận Ordinal Co-occurrence .......................................... 25 2.3.1 Ma trận Ordinal Co-occurrence ..................................................... 25 2.3.2 Giải thuật ........................................................................................ 27 2.3.3 So sánh các đặc điểm ..................................................................... 28 2.4 Cách tiếp cận Mạng Nơron ....................................................................... 29 2.4.1 Mô hình Mạng Nơron nhân tạo ...................................................... 30 2.4.2 Hàm kích hoạt ................................................................................ 31 2.4.3 Vấn đề học ...................................................................................... 31 2.4.4 Mạng Nơron dùng cho phân tích thành phần chính ....................... 32 2.4.5 Mạng Nơron xoắn và bài toán phát hiện chất liệu ......................... 32 2.5 Cách tiếp cận mô hình Markov ẩn HMM ................................................. 37 2.5.1 Nền tảng của phương pháp ............................................................. 37 2.5.2 Mô hình HMM ............................................................................... 43 2.5.3 Vấn đề phát hiện bằng HMM ......................................................... 45 Chương 3 - ỨNG DỤNG PHÁT HIỆN CHẤT LIỆU .................................... 47 3.1 Phát hiện kính ............................................................................................ 47 3.1.1 Tính chất cơ lý của chất liệu thủy tinh ........................................... 47 3.1.2 Thuật toán ....................................................................................... 55 3.1.3 Một số kết quả thực nghiệm .......................................................... 56 3.2 Phát hiện mặt người................................................................................... 56 3.2.1 Cách tiếp cận Mạng Nơron ............................................................ 56 3.2.2 Cách tiếp cận mô hình HMM ......................................................... 64 KẾT LUẬN ..................................................................................................... 72 TÀI LIỆU THAM KHẢO ............................................................................... 74 BẢNG CÁC TỪ VIẾT TẮT Kí hiệu Từ Tiếng Anh Giải thích CCV Color Cohenrence Vector Vectơ kết dính màu CBA Constant – Bin Allocation Cấp phát các bin cố định GCH Global Color Histogram Biểu đồ màu toàn cục HMM Hidden Markov Model Mô hình Markov ẩn LCH Local Color Histogram Biểu đồ màu cục bộ VBA Variable – Bin Allocation Cấp phát các bin thay đổi DANH MỤC CÁC BẢNG Trang Bảng 2.1. Chữ ký chi tiết dựa trên CBA ......................................................... 23 Bảng 2.2. Chữ ký của ba ảnh X, Y, Z ............................................................. 24 Bảng 3.1. Thống kê một số tính chất và đặc trưng cơ bản của một vài loại thủy tinh điển hình. .......................................................................... 48 1 DANH MỤC CÁC HÌNH VẼ Trang Hình 1.1. Sơ đồ chức năng phát hiện chất liệu ............................................... 15 Hình 2.1. Hai ảnh và biểu đồ màu toàn cục của chúng ...................................16 Hình 2.2. Ví dụ chỉ ra LCH bị lỗi ................................................................... 17 Hình 2.3. Xây dựng đồ thị hai phía ................................................................. 19 Hình 2.4. Đồ thị hai phía biểu diễn mối quan hệ giữa các khối và giá trị đối sánh nhỏ nhất. ................................................................................. 19 Hình 2.5. Sử dụng giá trị đối sánh cực tiểu để tính toán khoảng cách giữa hai ảnh L và M, L và N. ........................................................................ 20 Hình 2.6. Tập các ảnh mẫu.............................................................................. 22 Hình 2.7. Ma trận Co-occurrence.................................................................... 26 Hình 2.8. Vùng lân cận 3 x 3 với 4 cặp điểm đối xứng. ................................. 27 Hình 2.9. Mã mô tả giải thuật xây dựng ma trận Ordinal Co-occurrence. ..... 28 Hình 2.10. Nơron nhân tạo j. ........................................................................... 30 Hình 2.11. Cấu trúc LeNet-5, Mạng Nơron xoắn. .......................................... 34 Hình 2.12. Đồ thị của hai hàm P(x/1) và P(x/2). ........................................ 39 Hình 2.13. Mô tả thuật toán Viterbi. ............................................................... 42 Hình 2.14. Mô hình kiểu mẫu của một HMM ba trạng thái. .......................... 43 Hình 3.1. Ảnh kết quả phát hiện chất liệu kính. ............................................. 56 Hình 3.2. Mô hình hoạt động của mạng nơron. .............................................. 57 2 Hình 3.3. Ví dụ các đầu vào và đầu ra cho huấn luyện mạng định tuyến. ..... 58 Hình 3.4. Cấu trúc mạng xác định mặt. .......................................................... 60 Hình 3.5. Ảnh gốc chứa một mặt trong ảnh. ................................................... 63 Hình 3.6. Vùng có da sau khi tách. ................................................................. 63 Hình 3.7. Những vùng tìm được của mạng. .................................................... 63 Hình 3.8. Kết quả cuối cùng sau khi sử dụng ngưỡng động. .......................... 63 Hình 3.9. Ảnh gốc với trường hợp có nhiều mặt. ........................................... 63 Hình 3.10. Vùng da sau khi được tách. ........................................................ 64 Hình 3.11. Ảnh trước khi tách ngưỡng động. ................................................. 64 Hình 3.12. Kết quả sau khi tách ngưỡng với trường hợp ảnh chứa nhiều mặt.64 Hình 3.13. Một ảnh mẫu từ tập phân phối thỏa mãn D và có năng lượng cực tiểu. ............................................................................. 69 Hình 3.14. Kết quả phát hiện da mặt bằng mô hình HMM. ........................... 71 Hình 3.15. Phát hiện nhầm màu da. ................................................................ 71 3 MỞ ĐẦU Trong cuộc sống hằng ngày, chúng ta thường xuyên cần phải phát hiện và phân biệt các sự vật hiện tượng trong thế giới thực như các đối tượng, chất liệu, thực phẩm, địa danh v.v.. và thậm chí là thời gian trong ngày. Việc phát hiện các loại sự vật hiện tượng này một cách tự động là một vấn đề hết sức thiết thực trong một xã hội hiện đại. Ngày nay, với sự phát triển mạnh mẽ của ngành Khoa học máy tính cũng như sự bùng nổ của lĩnh vực Công nghệ thông tin đã đẩy nhanh sự phát triển của nhiều lĩnh vực xã hội như quân sự, y học, giáo dục, kinh tế, giải trí v.v.. Sự phát triển của phần cứng cả về phương diện thu nhận, hiển thị, cùng với tốc độ xử lý đã mở ra nhiều hướng mới cho sự phát triển phần mềm, đặt biệt là Công nghệ xử lý ảnh cũng như Công nghệ thực tại ảo đã ra đời và phát triển nhanh. Nó có thể giải quyết được bài toán phát hiện hay nhận dạng tự động các loại đối tượng, chất liệu trong thực tế, chẳng hạn có thể tạo ra hệ thống phát hiện kẻ gian đột nhập vào các cơ quan cần được giám sát sau giờ hành chính như các Kho bạc, Ngân hàng v.v.. thay vì cần phải có những đội bảo vệ canh gác cẩn thận. Hoặc có thể phát hiện có mảnh kính vỡ trong thực phẩm hay phát hiện những tấm kính trong một khu vực cần quan tâm v.v.. thậm chí có thể phát hiện những loại thực phẩm bị hỏng không thể sử dụng được. Phát hiện mặt người trong một bức ảnh cũng đã có rất nhiều ý nghĩa trong quân sự, an ninh v.v.. Rõ ràng bài toán phát hiện đối tượng cũng như nhận dạng đối tượng ngày càng quan trọng đối với sự phát triển của xã hội, đặc biệt rất quan trọng cho xã hội Việt Nam. 4 Bài toán phát hiện đối tượng là một trong những bài toán cốt yếu trong các lĩnh vực nhận dạng mẫu hay thị giác máy, nó là cơ sở cho nhiều ứng dụng quan trọng, muốn nhận dạng thì trước hết phải phát hiện ra nó đã chứ. Nhận dạng hay phát hiện đối tượng có rất nhiều cách tiếp cận để giải quyết, mặc dù mỗi một loại đối tượng sẽ có một kỹ thuật cụ thể, song chúng vẫn có một cơ sở chung. Cách tiếp cận dựa vào chất liệu của đối tượng đang là một hướng nghiên cứu mới hiện nay, ví dụ có thể phát hiện ra khuôn mặt người nhờ vào chất liệu da mặt, hoặc phát hiện người dựa vào chất liệu vải mà người đó đang mặc, hay có thể phát hiện ô tô dựa vào chất liệu kính v.v.. Song càng quan trọng hơn nếu ta xét đến tính thiết thực của loại chất liệu cần phát hiện. Chẳng hạn, kính là một loại chất liệu được sử dụng rất phổ biến, nó có khắp mọi nơi như kính chắn gió của ô tô, các cửa bằng kính, các bóng đèn, kính làm tủ, làm bàn, làm các hộp, các chai v.v.. Có thể tạo ra các hệ thống phát hiện các toà nhà (hầu hết các tòa nhà lớn đều được làm chủ yếu là kính) trong một thành phố, phát hiện ô tô (vì ô tô luôn có kính) thông qua chất liệu kính. Tất cả các bài toán trên đều có tầm quan trọng đáng kể, đặt biệt bài toán phát hiện ô tô là bài toán đang được nhiều quan tâm ở nước ta, là một trong những bài toán giám sát tự động: phát hiện, phân loại và đếm số ô tô tại các chốt giao thông hoặc tại các trạm thu phí nhằm nâng cao tiềm năng phát triển của mỗi quốc gia. Như vậy bài toán phát hiện chất liệu là một cách tiếp cận mới trong khoa học nhận dạng hay mô hình hóa trong thực tại ảo, là cơ sở để xây dựng nhiều ứng dụng quan trọng và cần thiết. Bên cạnh đó, bài toán phát hiện chất liệu kính có thể ứng dụng cho bài toán giám sát giao thông tự động, đặt biệt ở Việt Nam hiện nay, đây chính là tính thời sự của vấn đề. 5 Mặt khác, hiện nay trên thế giới chưa có một đề cập nào về bài toán phát hiện chất liệu một cách rõ ràng, đặt biệt là chất liệu kính. Vì thế mà vấn đề này rất có ý nghĩa khoa học. Trên đây đã điểm qua tầm quan trọng của bài toán phát hiện chất liệu, đặt biệt là chất liệu kính đã cho ta thấy rõ tính cần thiết cũng như tính thời sự đồng thời là ý nghĩa khoa học và thực tiễn của vấn đề. Nhận thức được điều này, tôi đã chọn đề tài luận văn: ”Nghiên cứu một số kỹ thuật phát hiện chất liệu và ứng dụng”. Bố cục của luận văn bao gồm phần mở đầu, phần kết luận và ba chương nội dung được tổ chức như sau: Chương 1: Tổng quan về phát hiện chất liệu trong ảnh Chương này trình bày định nghĩa chất liệu của một đối tượng trong ảnh, cũng như bài toán phát hiện chất liệu và cách giải quyết. Đồng thời cũng trình bày một cách tổng quan về nội dung ảnh của chất liệu cùng với một số kỹ thuật phát hiện chất liệu cơ bản. Chương 2: Các kỹ thuật phát hiện chất liệu Các kỹ thuật được trình bày dựa vào các đặc trưng cơ bản của chất liệu và các phương pháp phát hiện dựa trên mạng nơron, mô hình xác suất Markov ẩn. Chương 3: Ứng dụng Trong phần này luận văn trình bày ứng dụng phát hiện chất liệu kính và phát hiện mặt người theo mô hình màu da dựa trên mạng nơron và mô hình Markov ẩn. 6 Chương 1 TỔNG QUAN VỀ PHÁT HIỆN CHẤT LIỆU TRONG ẢNH Chương này trình bày tổng quan về bài toán phát hiện chất liệu trong ảnh, đề cập đến hai vần đề chính là các đặc trưng ảnh của chất liệu và các độ đo tương ứng. 1.1 Bài toán phát hiện chất liệu trong ảnh 1.1.1 Chất liệu trong ảnh Theo quan điểm thông thường, chất liệu chính là những đặc trưng cho một dạng vật chất cụ thể. Theo quan điểm khoa học công nghệ nhận dạng ảnh, chất liệu của một đối tượng chính là thành phần bao phủ bên ngoài của đối tượng đó, là thành phần không thể thiếu được trong mỗi đối tượng. Có rất nhiều chất liệu khác nhau như kính, vải, gỗ, nước, tuyết v.v.. Chất liệu tồn tại khác nhau ở mỗi đối tượng khác nhau, chẳng hạn với những con vật thì chất liệu là những bộ lông; với con người chất liệu có thể là vải, da; với kính thì chất liệu cũng chính là kính, hay chất liệu của một toà nhà có thể là kính nếu tòa nhà có nhiều cửa được làm bằng chất liệu kính, chất liệu của một chiếc ô tô có thể là kính nếu ta chỉ xét ô tô với kính chắn gió v.v.. Như vậy phát hiện chất liệu cũng chính là phát hiện ảnh của chất liệu đó trong một bức ảnh. Như thế nội dung ảnh của một đối tượng chính là nội dung của chất liệu trong ảnh hay còn gọi là nội dung ảnh. Mà nội dung ảnh được thể hiện bởi các đặc trưng màu sắc, kết cấu, hình dạng. Nhưng trong hầu hết mọi chất liệu, nội dung ảnh được phản ánh bởi màu sắc và kết cấu mà thôi. 7 1.1.2 Phát hiện chất liệu Cho trước một bức ảnh có thể tĩnh hoặc động, yêu cầu xác định xem trong bức ảnh đó có loại chất liệu mà ta cần quan tâm không, thậm chí là bao nhiêu chất liệu đó nằm trong bức ảnh. Cách giải quyết bài toán Tư tưởng: Cho trước một ảnh của chất liệu, ta tìm trong ảnh cần xét (ảnh truy vấn) có ảnh của chất liệu đó hay không. Bằng cách đánh giá mức độ giống nhau của ảnh chất liệu cho trước với ảnh của chất liệu có trong ảnh. Nhưng đặc trưng của ảnh chất liệu chủ yếu là màu sắc, kết cấu, thông tin không gian, do đó giải quyết bài toán này bằng cách đối sánh các đặt trưng của ảnh chất liệu cho trước với các đặc trưng của ảnh. Một cách nôm na thì đây chính là một trường hợp đặc biệt của bài toán tra cứu ảnh dựa trên nội dung. Và cũng lưu ý rằng yếu tố thời gian thực luôn luôn được quan tâm cho mỗi bài toán, mức độ cần thiết của nó tùy thuộc vào bài toán mà ta giải quyết, yếu tố này quyết định sự thành công hay thất bại của nhiều bài toán. Như vậy, bài toán phát hiện chất liệu bằng kỹ thuật Xử lý ảnh gồm hai pha chính: - Xác định và trích chọn các đặc trưng của chất liệu (vì mỗi loại chất liệu khác nhau sẽ được đặc tả bởi các đặc trưng khác nhau). - Đánh giá độ tương tự (độ giống) của chất liệu cần xét với các đặt trưng mà ta đã biết thông qua các đặc trưng mà ta đã trích chọn ở trên. Đó cũng chính là hai bài toán lớn trong lĩnh vực nhận dạng mẫu và thị giác máy. Như đã nói ở trên, ảnh của chất liệu được ghi lại trong hình hoặc camera phần lớn được thể hiện bởi các yếu tố như: Màu sắc, kết cấu, hình dạng, thông 8 tin không gian. Tuỳ thuộc mỗi một chất liệu sẽ có một đánh giá về đặc trưng riêng cho chúng. Bên cạnh đó sẽ có những hàm đánh giá độ tương tự tương ứng cho phù hợp. 1.2 Các đặc trưng của chất liệu trong ảnh 1.2.1 Màu sắc Sự cảm nhận về màu là rất quan trọng đối với con người. Sự cảm nhận màu phụ thuộc vào cả yếu tố hai ánh sáng vật lý và việc xử lý phức tạp của thần kinh mắt (eye-brain) tức là nó phải tích hợp những thuộc tính kích thích và thực nghiệm. Con người sử dụng thông tin màu sắc để phân biệt các đối tượng, chất liệu v.v.. Mọi người đều biết màu là gì, nhưng sự mô tả chính xác và chi tiết về màu thì lại là một chuyện khác. Màu sắc luôn là chủ đề lớn trong các ngành khoa học khác nhau. Mặc dù vậy, một số vấn đề chủ yếu liên quan đến màu sắc, đặt biệt là trong cảm nhận màu của con người mà tại đó sự hoạt động của não đóng vai trò quan trọng vẫn chưa được hiểu một cách đầy đủ. Những thuộc tính cấp thấp về cảm nhận màu của con người cũng đã được mô hình hoá thành công trong khuôn khổ phạm vi của các thiết bị đo màu. Trong khuôn khổ này ta thấy rằng các phương pháp thống kê là công cụ đầy sức mạnh cho việc phân tích và mô tả dữ liệu hình ảnh. Một ảnh màu điển hình được lấy từ Camera số hoặc download từ Internet thường có ba kênh màu (ảnh xám chỉ có một kênh), những giá trị của dữ liệu ba chiều này từ ảnh màu có thể cho ta biết vị trí của điểm ảnh trong không gian màu. Những điểm ảnh có cùng giá trị ví dụ (1, 1, 1) cho những màu khác nhau trong những không gian màu khác nhau. Như vậy mô tả đầy đủ của một ảnh màu điển hình gồm thông tin không gian hai chiều với điểm ảnh trong vùng không gian này và dữ liệu màu ba chiều với điểm ảnh màu 9 trong không gian mà chúng ta đang đề cập. Ở đây giả thiết không gian màu là cố định, bỏ qua thông tin không gian, thông tin màu trong ảnh có thể coi như là tín hiệu ba chiều đơn giản. Nếu ta xem thông tin màu của ảnh là tín hiệu một, hai, hoặc ba chiều đơn giản thì việc phân tích các tín hiệu sử dụng ước lượng mật độ xác suất là một cách dễ nhất để mô tả thông tin màu của ảnh. Biểu đồ màu là công cụ đơn giản nhất, những cách khác mô tả thông tin màu gồm đại diện màu, moment màu, vector kết dính màu v.v.. 1.2.2 Kết cấu Nhưng thật không may có những ảnh có cùng phân phối màu nhưng chúng hoàn toàn khác nhau như bầu trời và nước biển hay lá cây và cỏ v.v.. Trong các trường hợp như vậy, cần phải tính toán đặc trưng kết cấu của ảnh. Kết cấu được sử dụng rộng rãi và rất trực quan nhưng không có định nghĩa chính xác bởi tính biến thiên rộng của nó. Có rất nhiều cách để mô tả kết cấu: Những phương pháp thống kê thường sử dụng tần số không gian, ma trận biến cố, tần số biên v.v.. Từ đó những đặc điểm như năng lượng, entropy, độ tương phản, độ thô, tính đồng nhất, tính tương quan, đẳng hướng, pha, độ ráp đã được nhận ra. Những phương pháp mô tả kết cấu này tính toán các thuộc tính kết cấu khác nhau và hoàn toàn phù hợp nếu cỡ của kết cấu gốc có thể được so sánh với cỡ của điểm ảnh. Một cách cơ bản, các phương pháp biểu diễn kết cấu có thể phân làm hai loại chính: phương pháp cấu trúc và phương pháp thống kê. Các phương pháp cấu trúc bao gồm các phép toán hình thái học và đồ thị liền kề, mô tả kết cấu bởi việc đồng nhất cấu trúc ban đầu và quy tắc sắp xếp của chúng. Chúng hiệu quả nhất khi áp dụng vào những kết cấu rất đều đặn. Phương pháp thống kê, gồm: Fourier power spectra, co-occurrence matrices, shift-invariant principal 10 component analysis (SPCA), Tamura feature, Wold decomposition, Markov random field, fractal model và kỹ thuật multi-resolution filtering như Gabor and wavelet transform mô tả kết cấu bằng phân phối thống kê của cường độ điểm ảnh. 1.2.3 Hình dạng Định nghĩa hình dạng của đối tượng thường là rất khó. Hình dạng thường được mô tả bằng lời nói hoặc hình vẽ, và mọi người thường sử dụng thuật ngữ như tròn, méo v.v.. Xử lý hình dạng dựa trên máy tính đòi hỏi rất phức tạp, trong khi rất nhiều phương pháp mô tả hình dạng thực tế đang tồn tại nhưng không có một phương pháp chung nào cho mô tả hình dạng. Có hai kiểu đặc điểm hình dạng chính thường được sử dụng: Đặc điểm dựa trên biên, đặc điểm dựa trên vùng. Đặc điểm dựa trên biên chỉ sử dụng đường bao ngoài của hình dạng trong khi đó đặc điểm vùng sử dụng toàn bộ vùng của hình dạng. Ví dụ những đặc điểm biên bao gồm mã xích, mô tả Fourier, những đường viền hình học như uống cong, chiều dài biên v.v.. Đặc điểm vùng như số chu trình, độ lệch tâm v.v.. 1.2.4 Mối quan hệ không gian Mối quan hệ không gian đặc trưng cho sự sắp xếp các đối tượng bên trong một bức ảnh. Mối quan hệ giữa hai đối tượng có thể được phân loại một cách rõ ràng như là hướng hoặc tô pô hình học. Mối quan hệ hướng dựa vào vị trí liên quan và khoảng cách mêtric giữa hai đối tượng trong ảnh. Mặt khác, mối quan hệ tô pô hình học không dựa vào khoảng cách thu được giữa hai đối tượng mà dựa vào khái niệm lý thuyết tập hợp như giao, hợp, kết nối v.v.. *** Một trong những vấn đề thách thức to lớn để giải quyết bài toán phát hiện hay nhận dạng đối tượng là việc chọn lựa và sự biểu diễn các đặc trưng này. 11 1.3 Các độ đo sự tương tự thường sử dụng Bên cạnh đó, những độ đo tương tự cũng là yếu tố đóng vai trò cốt yếu trong việc giải quyết bài toán được đặt ra. Những độ đo lý tưởng phải có một số thuộc tính sau: - Độ đo tự tương quan: Đặc điểm khoảng cách giữa hai ảnh là lớn chỉ khi những ảnh không tương tự và ngược lại khoảng cách giữa hai ảnh là nhỏ nếu chúng tương tự. Ảnh thường được mô tả trong không gian đặc điểm và sự tưong tự giữa các ảnh được đo bởi những độ đo khoảng cách trong không gian đặc điểm. Số thuộc tính của không gian biểu diễn ảnh và những đặc tính của những đặt điểm vectơ mô tả ảnh là rất quan trọng trong việc cải thiện một số thuộc tính độ tương tự trực quan của những độ đo tương tự được đề xuất. - Hiệu quả: Sự đo đạc cần phải được tính toán nhanh để nhanh chóng đưa ra kết quả. Vì hầu hết các ứng dụng của bài toán phát hiện đối tượng đều phải được thực hiện trong thời gian thực. Vì thế đánh giá độ phức tạp tính toán là rất quan trọng. - Hệ đo: Vấn đề khoảng cách tương tự là có nên là hệ mét hay không vẫn chưa được quyết định chính thức khi sự nhìn nhận của con người là rất phức tạp và chưa được hiểu một cách đầy đủ. Chúng ta mong muốn khoảng cách tương tự là một hệ đo khi ta xem xét những thuộc tính sau như là những yêu cầu rất tự nhiên: - Sự bất biến của tương tự với chính nó: Khoảng cách giữa một ảnh với chính nó là hằng số độc lập với ảnh d(A,A)=d(B,B). - Sự tối thiểu: Một ảnh giống với nó hơn là giống với ảnh khác d(A,A) - Xem thêm -