Nghiên cứu tổng hợp vật liệu Mof-199 và khảo sát hoạt tính xúc tác trên phản ứng ghép C-N

  • Số trang: 81 |
  • Loại file: PDF |
  • Lượt xem: 42 |
  • Lượt tải: 0
tailieuonline

Đã đăng 27690 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH  KHÓA LUẬN TỐT NGHIỆP CỬ NHÂN HÓA HỌC Chuyên ngành: Hóa Hữu cơ ĐỀ TÀI TP. HỒ CHÍ MINH, THÁNG 5 NĂM 2012 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH  KHÓA LUẬN TỐT NGHIỆP CỬ NHÂN HÓA HỌC Chuyên ngành: Hóa Hữu cơ ĐỀ TÀI Người hướng dẫn khoa học: PGS. TS. PHAN THANH SƠN NAM Sinh viên thực hiện: HOÀNG MINH TÂM TP. HỒ CHÍ MINH, THÁNG 5 NĂM 2012 LỜI CẢM ƠN Để hoàn thành luận văn tốt nghiệp, xin gửi lòng tri ân sâu sắc đến quý thầy cô trong khoa Hóa, trường Đại Học Sư Phạm Thành Phố Hồ Chí Minh đã tận tình truyền đạt kiến thức trong suốt quá trình học tập tại trường. Xin chân thành cảm ơn đến thầy hướng dẫn PGS.TS. Phan Thanh Sơn Nam đã hướng dẫn, giúp đỡ và tạo điều kiện thuận lợi trong quá trình thực hiện luận văn tốt nghiệp. Xin chân thành cảm ơn anh Nguyễn Thanh Tùng, anh Nguyễn Văn Chí, và anh Nguyễn Đăng Khoa đã hướng dẫn, giúp đỡ từ những ngày đầu vào phòng thí nghiệm và trong suốt quá trình thực hiện luận văn tốt nghiệp. Xin cảm ơn các thầy cô, các anh chị trong bộ môn kỹ thuật hóa hữu cơ, trường Đại Học Bách Khoa Thành Phố Hồ Chí Minh đã tạo mọi điều kiện thuận lợi về cơ sở vật chất để hoàn thành luận văn tốt nghiệp. Sau cùng, xin cảm ơn gia đình là những người đã dạy dỗ và nuôi khôn lớn, là những người luôn bên cạnh và chia sẽ những khó khăn trong cuộc sống. Xin chân thành cảm ơn! TPHCM, tháng 5 năm 2012 Hoàng Minh Tâm MỤC LỤC DANH MỤC HÌNH MINH HỌA ........................................................................................i DANH MỤC SƠ ĐỒ VÀ BIỂU ĐỒ ................................................................................. iii DANH MỤC BẢNG BIỂU ................................................................................................iv DANH MỤC CÁC TỪ VIẾT TẮT .....................................................................................v LỜI MỞ ĐẦU .....................................................................................................................1 CHƯƠNG 1. TỔNG QUAN ..............................................................................................2 1.1. Khung hữu cơ kim loại (MOFs) ...........................................................................2 1.1.1. Giới thiệu về MOFs ......................................................................................2 1.1.1.1. Định nghĩa .............................................................................................3 1.1.1.2. Đơn vị cấu trúc thứ cấp SBUs ...............................................................3 1.1.1.3. Một số phối tử carboxylic dùng để tổng hợp MOFs .............................4 1.1.1.4. Sự kết hợp của các đơn vị thứ cấp tạo nên MOFs .................................6 1.1.2. Tính chất của MOFs .....................................................................................6 1.1.2.1. Độ xốp cao và diện tích bề mặt riêng lớn..............................................6 1.1.2.2. Khả năng bền nhiệt ................................................................................7 1.1.3. Phương pháp tổng hợp MOFs.......................................................................8 1.1.3.1. Phương pháp nhiệt dung môi ................................................................8 1.1.3.2. Phương pháp vi sóng .............................................................................9 1.1.3.3. Phương pháp siêu âm ............................................................................9 1.2. Ứng dụng của vật liệu MOFs .............................................................................10 1.2.1. Lưu trữ khí ..................................................................................................11 1.2.1.1. Lưu trữ khí hiđro .................................................................................11 1.2.1.2. Lưu trữ khí CO 2 ..................................................................................12 1.2.1.3. Lưu trữ khí CH 4 ..................................................................................13 1.2.2. Khả năng hấp phụ chọn lọc đối với các loại khí độc ..................................14 1.2.3. Khả năng xúc tác ........................................................................................15 1.2.3.1. Xúc tác trên cơ sở nhóm chức của phối tử hữu cơ ..............................15 1.2.3.1.1. Phản ứng Knoevenagel ................................................................16 1.2.3.1.2. Phản ứng aza-Micheal ..................................................................17 1.2.3.2. Xúc tác trên cơ sở tâm kim loại ...........................................................18 1.2.3.3. Vị trí kim loại mở ................................................................................20 1.2.3.4. Chọn lọc phân tử .................................................................................20 1.3. Phản ứng ghép C-N ............................................................................................21 1.4. Mục tiêu đề tài ....................................................................................................23 1.4.1. Nghiên cứu tổng hợp vật liệu MOF-199 từ các phối tử 1,3,5-tricarboxylic với muối Cu(NO 3 ) 2 . 3 H 2 O bằng phương pháp nhiệt dung môi ở điều kiện việt Nam ......23 1.4.2. Xác định tính chất của vật liệu bằng các phương pháp phân tích hiện đại 23 1.4.3. Khảo sát hoạt tính xúc tác ...........................................................................23 Chương 2. THỰC NGHIỆM...........................................................................................24 2.1. Nghiên cứu tổng hợp MOF-199 .........................................................................24 2.1.1. Dụng cụ và hóa chất ...................................................................................24 2.1.1.1. Dụng cụ ...............................................................................................24 2.1.1.2. Hóa chất ...............................................................................................24 2.1.2. Phương pháp tổng hợp MOF-199 ...............................................................24 2.1.2.1. Giới thiệu MOF-199 ............................................................................24 2.1.2.2. Tổng hợp MOF-199 ............................................................................25 2.1.2.2.1. Chuẩn bị tổng hợp tinh thể MOF-199..........................................25 2.1.2.2.2. Rửa và trao đổi dung môi.............................................................26 2.1.2.2.3. Hoạt hóa .......................................................................................26 2.1.3. Các thiết bị để phân tích MOF ....................................................................28 2.1.3.1. Thiết bị đo diện tích bề mặt riêng........................................................28 2.1.3.2. Thiết bị đo nhiễu xạ XRD ...................................................................28 2.1.3.3. Thiết bị đo phổ FT-IR .........................................................................28 2.1.3.4. Thiết bị đo TGA ..................................................................................28 2.1.3.5. Thiết bị đo TEM và SEM ....................................................................28 2.2. MOF-199 làm xúc tác dị thể cho phản ứng ghép C-N .......................................28 2.2.1. Dụng cụ và hóa chất ...................................................................................28 2.2.2. Tính chất của một số chất liên quan đến phản ứng ghép C-N ....................29 2.2.3. Quy trình phản ứng ghép C-N ....................................................................32 2.2.3.1. Quy trình phản ứng ghép C-N .............................................................32 2.2.3.2. Thuyết minh quy trình .........................................................................33 2.2.3.3. Tiến hành phản ứng ở điều kiện cụ thể ...............................................33 Chương 3. KẾT QUẢ VÀ THẢO LUẬN ......................................................................35 3.1. Tổng hợp và phân tích cấu trúc MOF-199 .........................................................35 3.1.1. Tổng hợp MOF-199 ....................................................................................35 3.1.2. Phân tích cấu trúc........................................................................................36 3.1.2.1. Phân tích XRD.....................................................................................36 3.1.2.2. Phổ FT-IR ............................................................................................37 3.1.2.3. Kết quả chụp TEM, SEM ....................................................................38 3.1.2.4. Kết quả đo diện tích bề mặt riêng và kích thước lỗ xốp .....................40 3.1.2.5. Kết quả đo TGA và phân tích nguyên tố AAS ....................................42 3.2. Khảo sát phản ứng ..............................................................................................43 3.2.1. Phản ứng ghép C-N.....................................................................................43 3.2.2. Khảo sát các yếu tố ảnh hưởng ...................................................................43 3.2.2.1. Ảnh hưởng của nhiệt độ ......................................................................43 3.2.2.2. Khảo sát tỉ lệ mol tác chất ...................................................................45 3.2.2.3. Khảo sát hàm lượng xúc tác ................................................................47 3.2.2.4. Khảo sát dung môi ...............................................................................49 3.2.2.5. Khảo sát tính dị thể (Leaching) của MOF-199 ...................................51 3.2.2.6. Khảo sát thu hồi và tái sử dụng ...........................................................53 3.2.2.6.1. Phổ FT-IR thu hồi của MOF-199.................................................53 3.2.2.6.2. Phổ XRD thu hồi của MOF-199 ..................................................54 3.2.2.6.3. Khảo sát khả năng thu hồi và tái sử dụng của MOF-199 ............55 3.2.2.7. Khảo sát một số dẫn xuất ....................................................................57 3.2.2.7.1. Dẫn xuất của Benzylamin ............................................................57 3.2.2.7.2. Dẫn xuất của axit Benzenboronic ................................................60 KẾT LUẬN VÀ KIẾN NGHỊ .........................................................................................63 TÀI LIỆU THAM KHẢO ...............................................................................................64 PHỤ LỤC .......................................................................................................................... 70 DANH MỤC HÌNH MINH HỌA Hình 1.1. Số lần xuất bản MOFs trong thập niên qua .........................................................2 Hình 1.2. Một vài SBUs trong 131 SBUs được miêu tả tại Cambridge Structure Database [13] .......................................................................................................................................4 Hình 1.3. Một số axit được sử dụng tổng hợp MOF [15] ....................................................5 Hình 1.4. Sự trùng hợp của các SBUs tạo nên khung MOFs ..............................................6 Hình 1.5. Diện tích bề mặt của các mảnh graphit. a) Mảnh graphen từ cấu trúc graphit b) Chuỗi poly liên kết ở vị trí para của mảnh graphit c) Liên kết ở vị trí 1,3,5 của vòng d) diện tích bề mặt tối đa ..........................................................................................................7 Hình 1.6. Giản đồ phân tích TGA của MOF-5 ....................................................................8 Hình 1.7. JUC-32 mạng lưới ba chiều dưới tác dụng nhiệt loại phân tử H 2 O tạo micropores..........................................................................................................................10 Hình 1.8. Phân bố ứng dụng của MOFs ............................................................................10 Hình 1.9. Các đường đẳng nhiệt hấp phụ H 2 trên các MOFs khác nhau...........................11 Hình 1.10. Đường cong hấp phụ đẳng nhiệt của các MOFs khác nhau ............................12 Hình 1.11. Khả năng lưu trữ khí CO 2 của MOF-177 ........................................................13 Hình 1.12. So sánh khả năng hấp phụ khí CO 2 trên các MOFs khác nhau .......................13 Hình 1.13. Đường hấp phụ đẳng nhiệt Langmuir của khí CH 4 .........................................14 Hình 1.14. Phản ứng Knoevenagel với điều kiện xúc tác IRMOF-3 (0,06 mmol) và anilin (0,02mmol) [42] .................................................................................................................16 Hình 1.15. a. SBU Cu carboxylat – đơn vị cấu trúc vuông. b. Phối tử trục nước được loại bỏ. c. MOF-199 vật liệu xốp [34] ......................................................................................20 Hình 1.16. Phản ứng Knoevenagel. a) Cấu trúc tinh thể với các kênh zít zác 3.3 Å và 3.6 Å, b) Phản ứng ngưng tụ Knoevenagel giữa benzaldehit và các chất nền [4] ...................21 Hình 2.1. Cấu trúc tinh thể MOF-199 và sự thay đổi lại cấu trúc khi liên kết với nước [43] .....................................................................................................................................25 Hình 3.1. Phản ứng tổng hợp MOF-199 ............................................................................35 Hình 3.2. Sự thay đổi màu của MOF-199 khi hấp phụ và nhả hấp phụ ............................36 Hình 3.3. Kết quả phân tích XRD của MOF-199 ..............................................................37 i Hình 3.4. Phổ FT-IR của MOF-199 (đường biểu diễn màu xanh) và axit 1,3,5tricarboxylic (đường biểu diễn màu đỏ) ............................................................................38 Hình 3.5. Kết quả chụp TEM của MOF-199 .....................................................................39 Hình 3.6. (a) và (b): Kết quả chụp SEM của MOF-199 (c): SEM của MOF-199 tham khảo từ nhóm tác giả P.chowdhury [44] ............................................................................39 Hình 3.7. Kích thước lỗ xốp của MOF-199 .......................................................................40 Hình 3.8. Diện tích bề mặt riêng của MOF-199 tính theo BET ........................................41 Hình 3.9. Diện tích bề mặt riêng của MOF-199 tính theo langmuir .................................41 Hình 3.10. Giản đồ phân tích TGA của MOF-199 ............................................................42 Hình 3.11. FT-IR thu hồi của MOF-199 ............................................................................54 Hình 3.12. Phổ XRD thu hồi của MOF-199 ......................................................................54 Hình 3.13. Một số dẫn xuất của Benzylamin .....................................................................59 Hình 3.14. Một số dẫn xuất của axit Benzenboronic .........................................................62 ii DANH MỤC SƠ ĐỒ VÀ BIỂU ĐỒ Sơ đồ 2.1. Quy trình tổng hợp MOF-199 ..........................................................................27 Sơ đồ 2.2. Quy trình phản ứng ...........................................................................................32 Biểu đồ 3.1. Ảnh hưởng của nhiệt độ lên độ chuyển hóa ..................................................45 Biểu đồ 3.2. Ảnh hưởng của tỉ lệ mol tác chất lên độ chuyển hóa ....................................47 Biểu đồ 3.3. Kết quả khảo sát ảnh hưởng của hàm lượng xúc tác .....................................49 Biểu đồ 3.4. Kết quả khảo sát ảnh hưởng của dung môi ...................................................51 Biểu đồ 3.5. Khảo sát tính dị thể của MOF-199 ................................................................53 Biểu đồ 3.6. Khả năng thu hồi và tái sử dụng của MOF-199 ............................................57 Biểu đồ 3.7. Độ chuyển hóa của một số dẫn xuất Benzylamin .........................................59 Biểu đồ 3.8. Độ chuyển hóa của một số dẫn xuất axit Benzenboronic .............................62 iii DANH MỤC BẢNG BIỂU Bảng 1.1. Hấp phụ chọn lọc các loại khí độc hại của vật liệu MOFs (g chất bị hấp phụ/g chất hấp phụ) ......................................................................................................................15 Bảng 1.2. So sánh ảnh hưởng của xúc tác trên các chất khác nhau [38] ...........................18 Bảng 1.3. Khảo sát khả năng xúc tác của ion Al ...............................................................19 Bảng 1.4. Xúc tác rắn trong phản ứng oxy hóa hợp chất benzylic ....................................19 Bảng 1.5. Vòng thơm của N có tính Nu khác nhau khi tác dụng với axit benzenboronic bằng xúc tác Cu(OAc) 2 .H 2 O/[bmim][BF4] [35] ...............................................................22 Bảng 2.1. Danh mục hóa chất tổng hợp MOF-199 ............................................................24 Bảng 3.1. Kết quả khảo sát ảnh hưởng của nhiệt độ..........................................................44 Bảng 3.2. Kết quả khảo sát ảnh hưởng của tỉ lệ mol tác chất ............................................46 Bảng 3.3. Khảo sát hàm lượng xúc tác ảnh hưởng đến độ chuyển hóa sản phẩm.............48 Bảng 3.4. Khảo sát ảnh hưởng của dung môi lên độ chuyển hóa sản phẩm .....................50 Bảng 3.5. Khảo sát tính dị thể của MOF-199 ....................................................................52 Bảng 3.6. Kết quả thu hồi và tái sử dụng xúc tác ..............................................................56 Bảng 3.7. Độ chuyển hóa của một số dẫn xuất Benzylamin .............................................58 Bảng 3.8. Độ chuyển hóa của một số dẫn xuất axit Benzenboronic .................................61 iv DANH MỤC CÁC TỪ VIẾT TẮT MOFs Metal Organic Frameworks IRMOFs Isoreticular Metal Organic Frameworks SBUs Secondary Building Units TGA Thermogravimetric analysis EtOH Etanol MeOH Metanol THF Tetrahidrofuran DEF N,N-Dietylformamit DMF N,N-Dimetylformamit TEA Trietylamin H 3 BTC Axit 1,3,5-Benzentricarboxylic FT Fuorier Transform Infrared Spectroscopy XRD X-Ray Diffraction SEM Scaning Election Microscopy TEM Tranmission Electron Microscopy TGA Thermal Gravimetric Analysic AAS Atomic Absorption spectrophotometric TBHP tert-Butylhidroxiperoxit GC-MS Gas chromatographic – mass spectrometry v LỜI MỞ ĐẦU Phản ứng ghép C-N trước đây đã được nghiên cứu rất nhiều, đặt biệt là phản ứng dùng xúc tác đồng thể với lượng lớn (20 % mol) khó thu hồi, khó tách sản phẩm, khó tái sử dụng và lượng chất thải ra môi trường lớn. Vì vậy, việc thay thế xúc tác đồng thể bằng xúc tác dị thể trong tổng hợp hữu cơ là hướng nghiên cứu đã và đang thu hút sự quan tâm của nhiều nhà khoa học trong và ngoài nước. Bởi vì xúc tác dị thể có những ưu điểm như dễ thu hồi và tái sử dụng nhiều lần, dễ tách, dễ tinh chế, và đặt biệt là hạn chế được chất thải ra môi trường. Vật liệu khung hữu cơ – kim loại ( Metal Organic Frameworks – MOFs) là vật liệu mới được GS. Omar M. Yaghi lần đầu tiên phát triển vào năm 1996 và được nghiên cứu trong vòng ba thập kỉ trở lại đây. Với đặt tính nổi bật như diện tích bề mặt riêng lớn, tính trật tự nghiêm ngặt và đặt biệt là sự đa dạng nhờ khả năng thay đổi cấu trúc của phối tử nên vật liệu MOFs được ứng dụng để tách khí, lưu trữ khí, hấp phụ khí có chọn lọc, xúc tác và nhiều ứng dụng khác. Vì vậy, vật liệu MOFs đã thu hút được nhiều công trình nghiên cứu và đăng trên các tạp chí up tín hàng đầu thế giới như: Nature, science, Journal of American Chemical Society... Ở luận văn này, tác giả chọn đề tài: “Nghiên cứu tổng hợp vật liệu MOF-199 và khảo sát hoạt tính xúc tác trên phản ứng ghép C-N”. Tổng hợp MOF-199 bằng phương pháp nhiệt dung môi ở điều kiện Việt Nam. Sử dụng các phương pháp phân tích XRD, FT-IR, AAS, TGA, SEM, TEM để xác định các tính chất của vật liệu. Sử dụng phổ GCMS và máy sắc kí GC-solution để xác định phản ứng ghép C-N. SVTH: Hoàng Minh Tâm GVHD: PGS.TS. PhanThanh Sơn Nam Khóa luận tốt nghiệp - 2012 CHƯƠNG 1. TỔNG QUAN 1.1. Khung hữu cơ kim loại (MOFs) 1.1.1. Giới thiệu về MOFs Năm 1965, trong cuốn học thuyết chất rắn của Tomic đã đề cập đến 1 loại vật liệu như là polyme hữu cơ kim loại, các axit carboxylic thơm hóa trị hai hoặc ba dùng tạo khung với các kim loại như Zn, Al, Fe, Ni, Ur... [1]. Đầu năm 1990, nhóm nghiên cứu của GS Omar M. Yaghi thuộc Trường Đại Học UCLA đã tìm ra MOFs là vật liệu cấu trúc tinh thể, có bề mặt riêng lớn. MOFs được xây dựng trên cơ sở khung hữu cơ - kim loại, có không gian ba chiều như những giàn giáo làm tăng diện tích bề mặt [2]. Không giống các vật liệu rắn xốp khác như zeolit, than hoạt tính, MOFs có tính linh động do chỉ cần thay đổi tỉ lệ kim loại: phối tử, nhiệt độ tổng hợp hay độ phân cực của dung môi tổng hợp thì có thể thu được một loại MOFs mới [3],[4]. MOFs được xác định là vật liệu có cấu trúc tinh thể đồng đều nhất, do cấu trúc vách ngăn ở dạng phân tử khác biệt với những vách ngăn dày trong cấu trúc vật liệu xốp vô cơ thông thường. MOFs đã thu hút sự quan tâm lớn trong thập niên qua, có thể thấy được từ sự gia tăng số lượt xuất bản về các ứng dụng tích trữ khí, tách khí, xúc tác chọn lọc đồng phân đối ảnh, vật liệu phát quang và huỳnh quang [4]. Hình 1.1. Số lần xuất bản MOFs trong thập niên qua SVTH: Hoàng Minh Tâm Khóa luận tốt nghiệp - 2012 GVHD: PGS.TS. PhanThanh Sơn Nam Việc sử dụng MOFs làm xúc tác là điều đặc biệt thú vị do tính xốp và cấu trúc tinh thể có thể điều chỉnh qua các phản ứng khác nhau [4]. Mặc dù xúc tác là một trong những ứng dụng đầy hứa hẹn của vật liệu MOFs, thì chỉ một vài trong số chúng được báo cáo cho đến ngày nay [4],[6]. 1.1.1.1. Định nghĩa Khung cơ-kim (metal-organic frameworks) là cấu trúc của những vật liệu xốp được xây dựng từ một phần của vô cơ và một phần của hữu cơ. Cả khung cơ-kim và khung vô cơ truyền thống đều được xây dựng từ những đơn vị cấu trúc thứ cấp SBU (secondary building unit) [7]. Liên kết giữa khớp và thanh chống được gọi là đơn vị cấu trúc thứ cấp [8],[9]. Các SBU vô cơ chỉ là sự kết hợp của những khối tứ diện như SiO 4 , PO 4 , AsO 4 , SO 4 liên kết với bốn, năm hoặc sáu cation kim loại, còn SBU cơ-kim thì các khối tứ diện được thay thế bởi những cầu nối hữu cơ. Theo Omar M. Yaghi thì MOFs là những cấu trúc xốp được mở rộng bao gồm những ion kim loại chuyển tiếp ( hoặc ở dạng những cluster) liên kết với nhau bằng những cầu nối hữu cơ. Chúng là những tinh thể được điều chế bởi dung dịch phản ứng giữa muối ion kim loại và các phối tử hữu cơ [10]. Cụ thể cấu trúc MOFs có hai thành phần chính: cầu nối hữu cơ và ion kim loại. Các tâm kim loại như là “khớp”, còn liên kết hữu cơ thực hiện vai trò như “thanh chống” làm cầu nối các tâm kim loại [7]. 1.1.1.2. Đơn vị cấu trúc thứ cấp SBUs Trong quá trình nghiên cứu vật liệu MOFs, SBUs là thuật ngữ “đơn vị cấu trúc cơ bản”, được xem như là những “nút” và phối trí cho cầu nối hữu cơ, mô tả cấu trúc không gian hình học của các đơn vị được mở rộng trong cấu trúc vật liệu như các nhóm cation kim loại và nhóm carboxylat [11]. Hay có thể hiểu chúng là sự kết hợp của phối tử với kim loại trong điều kiện thuận lợi để có thể chuyển những mảnh thành mạng lưới khung xốp mở rộng bằng cách sử dụng cầu nối đa axit (poli axit carboxylic) như: axit 1,4 benzendicarboxylic, axit 1,3,5-tricarboxylic, axit 4,4’-biphenyldicarboxylic… [12]. Nhóm tác giả Michael O’Keeffe, Omar M. Yaghi miêu tả hình học của 131 SBU, thành phần và liên kết của chúng (bảng 1.1) [13]. SVTH: Hoàng Minh Tâm GVHD: PGS.TS. PhanThanh Sơn Nam Khóa luận tốt nghiệp - 2012 Hình 1.2. Một vài SBUs trong 131 SBUs được miêu tả tại Cambridge Structure Database [13] SBUs Tam giác Lăng trụ tam giác Zn-xanh, C-đen, O- Co-xanh, C-đen, O- đỏ đỏ, S-vàng Kim loại (Fe, Cr, Kim loại (W, Nb, Ru, Mn, V, Ni, Sc,…)-cam, C-đen, Fe-đa diện vàng, Cđen, O-đỏ, S-vàng Mo-hồng, C-đen, O- Mo)-xám, C-đen, O- đỏ, Br:-nâu, P-xám đỏ O-đỏ Bát diện Kim loại (Zn, Co, Kim loại (Er, Yb, Be)- xanh, C-đen, Nd), C-đen, O-đỏ Tb-tía, C-đen, O-đỏ O-đỏ Khi xem xét cấu trúc của MOFs, điều quan trọng là xác định cấu trúc của đơn vị thứ cấp SBU, vì từ đó có thể dự đoán được cấu trúc hình học của MOFs [4]. 1.1.1.3. Một số phối tử carboxylic dùng để tổng hợp MOFs Phối tử carboxylic chính là các cầu nối hữu cơ, đơn vị thứ cấp tạo nên các SBUs. Kích thước, hình dạng và tính chất của lỗ xốp được quyết định bởi phối tử sử dụng. Bên cạnh những dicarboxylic thông dụng, Yaghi còn sử dụng tricarboxylic để tổng hợp MOFs. [14]. Một số phối tử hữu cơ thường được sử dụng để tổng hợp MOFs [15]. SVTH: Hoàng Minh Tâm GVHD: PGS.TS. PhanThanh Sơn Nam Khóa luận tốt nghiệp - 2012 HO HO O O O O HO OH N O O OH axit terephtalic OH HO HO O O OH axit piridin-2,5-dicarboxylic axit isophtalic O axit benzen-1,3,5-tricarboxylic O N O N O N OH HO HO OH OH OH N O O N O axit 2H-imidazol-4,5-dicarboxylic axit pyrazin-2,3-dicarboxylic O HO HO O O O HO O axit pyridin-3,5-dicarboxylic OH axit naptalen-2,6-dicarboxylic OH HO O axit 4,4',4''-metantriyltribenzoic O axit biphenyl-4,4'-dicarboxylic Hình 1.3. Một số axit được sử dụng tổng hợp MOF [15] SVTH: Hoàng Minh Tâm OH Khóa luận tốt nghiệp - 2012 GVHD: PGS.TS. PhanThanh Sơn Nam 1.1.1.4. Sự kết hợp của các đơn vị thứ cấp tạo nên MOFs Các đơn vị thứ cấp là sự trùng hợp của các nhóm carboxylat đối xứng trên phối tử và các ion kim loại. Ba thành phần chính cho phản ứng trùng hợp là kim loại-oxi-carbon viết tắt là M-O-C. Sự lặp lại của các thành phần này tạo nên khung cơ - kim có hình học xác định [12]. Hình 1.4. Sự trùng hợp của các SBUs tạo nên khung MOFs 1.1.2. Tính chất của MOFs 1.1.2.1. Độ xốp cao và diện tích bề mặt riêng lớn Khác với vật liệu xốp truyền thống, các cấu trúc cơ bản (SBUs) trong vật liệu MOFs liên kết với nhau không phải bằng các vách ngăn dày như cacbon hoạt tính hay zeolit mà bằng các cầu nối hữu cơ. Do đó vật liệu khung cơ kim, diện tích bề mặt riêng có thể lên tới trên 3000 m2/g [16]. Với MOF-200, diện tích bề mặt riêng có thể lên tới 8000 m2/g [17]. Bề mặt riêng cao nhất của cacbon vô định hình đạt được chỉ là 2030 m2/g [18], Vật liệu zeolit thì có bề mặt riêng lớn nhất là 904 m2/g. Để khảo sát bề mặt riêng Omar M. yaghi đã tiến hành cắt lớp graphit thành những mảnh nhỏ để tính toán. Theo đó thì diện tích bề mặt của một lượng lớn các vòng đơn liên kết với nhau có diện tích 2965 m2/g, nếu chúng chỉ nối nhau ở vị trí para thì diện tích SVTH: Hoàng Minh Tâm Khóa luận tốt nghiệp - 2012 GVHD: PGS.TS. PhanThanh Sơn Nam 5683 m2/g, còn nếu liên kết ở vị trí 1,3,5 của vòng thì diện tích lên tới 6200 m2/g và khi các vòng này nằm rời rạc thì diện tích của chúng có thể lên tới 7745 m2/g (hình 1.5) [16]. Hình 1.5. Diện tích bề mặt của các mảnh graphit. a) Mảnh graphen từ cấu trúc graphit b) Chuỗi poly liên kết ở vị trí para của mảnh graphit c) Liên kết ở vị trí 1,3,5 của vòng d) diện tích bề mặt tối đa 1.1.2.2. Khả năng bền nhiệt Tính ổn định hay nói cách khác là độ bền của vật liệu MOFs có thể biết đến thông qua độ bền nhiệt. Ví dụ độ bền nhiệt của cấu trúc MOF-5. Độ bền nhiệt của MOF-5 sau khi hoạt hóa trong môi trường chân không được nghiên cứu bằng phương pháp phân tích nhiệt trọng lượng TGA (Thermal Gravimetric Analysis) có sự giảm trọng lượng nhỏ khi lên tới 400oC, đến 500oC vật liệu bắt đầu bị phân hủy. Sau quá trình phân hủy còn khoảng 49,14 % oxit kim loại. Cấu trúc MOF-5 gồm các đơn vị Zn 4 O nối với các cầu nối hữu cơ 1,4-benzendicarboxylat hình thành SVTH: Hoàng Minh Tâm Khóa luận tốt nghiệp - 2012 GVHD: PGS.TS. PhanThanh Sơn Nam mạng lưới lập phương thông qua liên kết cộng hóa trị bền vững. Vì thế, MOF-5 có độ bền nhiệt độ cao, nhiệt độ phân hủy của MOF-5 trên 500oC, chứng tỏ có thể ứng dụng trong khoảng nhiệt độ rộng [19]. Hình 1.6. Giản đồ phân tích TGA của MOF-5 1.1.3. Phương pháp tổng hợp MOFs Có nhiều phương pháp tổng hợp MOFs như phương pháp nhiệt dung môi, phương pháp truyền ánh sáng, phương pháp vi sóng và phương pháp siêu âm [20],[21]. 1.1.3.1. Phương pháp nhiệt dung môi Đặc điểm của phương pháp này là sư kết hợp của muối và phối tử trong nước hay trong các dung môi hữu cơ như EtOH, THF, DEF, DMF, TEA,… Ở nhiệt độ thấp (nhỏ hơn 300oC) [4],[22]. Khi nước là dung môi thì gọi là phương pháp thủy nhiệt [23]. Các dung môi như là một bazơ có khả năng khữ proton H+ của phối tử nhằm làm tăng khả năng hòa tan của hỗn hợp phản ứng tạo điều kiện thuận lợi để hình thành tinh thể. Theo SVTH: Hoàng Minh Tâm
- Xem thêm -