Đăng ký Đăng nhập
Trang chủ Nghiên cứu một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất...

Tài liệu Nghiên cứu một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất

.PDF
47
235
123

Mô tả:

Mục lục Mở đầu 3 1 Kiến thức chuẩn bị 5 1.1 Đại số tập hợp . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 σ - đại số tập hợp . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Độ đo trên đại số tập hợp . . . . . . . . . . . . . . . . . . . 6 1.3.1 Hàm tập hợp . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Độ đo trên đại số các tập hợp . . . . . . . . . . . . . 7 1.3.3 Các tính chất cơ bản của độ đo . . . . . . . . . . . . 8 Mở rộng độ đo . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.1 Độ đo ngoài . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.2 Thác triển độ đo từ một đại số lên một σ- đại số . . 9 1.5 Độ đo Lebesgue trên đường thẳng . . . . . . . . . . . . . . . 10 1.6 Hàm đo được . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6.1 Định nghĩa và các điều kiện tương đương . . . . . . . 11 1.6.2 Các phép toán đối với hàm đo được . . . . . . . . . . 12 1.6.3 Cấu trúc của hàm đo được . . . . . . . . . . . . . . 13 1.7 Độ đo hữu hạn . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 Hàm số Borel . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8.1 σ- đại số Borel trong R . . . . . . . . . . . . . . . . . 14 1.8.2 Hàm số Borel . . . . . . . . . . . . . . . . . . . . . . 15 Tích phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.9.1 Tích phân của hàm đơn giản không âm . . . . . . . . 17 1.9.2 Tích phân của hàm đo được không âm . . . . . . . . 19 1.4 1.9 1 1.9.3 Tích phân của hàm đo được giá trị phức . . . . . . . 2 Không gian xác suất và biến ngẫu nhiên 20 21 2.1 Định nghĩa không gian xác suất và biến ngẫu nhiên . . . . . . 21 2.2 Hàm phân phối xác suất của biến ngẫu nhiên . . . . . . . . . 21 2.3 Kỳ vọng của biến ngẫu nhiên . . . . . . . . . . . . . . . . . . 26 2.4 Hàm đặc trưng của biến ngẫu nhiên . . . . . . . . . . . . . . 33 2.5 Sự độc lập của các biến ngẫu nhiên . . . . . . . . . . . . . . 35 2.6 Sự hội tụ của các biến ngẫu nhiên . . . . . . . . . . . . . . . 40 2.6.1 Hội tụ hầu chắc chắn . . . . . . . . . . . . . . . . . 40 2.6.2 Hội tụ theo xác suất . . . . . . . . . . . . . . . . . . 43 Kết luận 46 Tài liệu tham khảo 47 2 MỞ ĐẦU 1. Lí do chọn đề tài Giải tích là một trong những ngành quan trọng nhất của Toán học và mang nhiều ứng dụng trong thực tế cuộc sống. Trong hoạt động thực tiễn, con người bắt buộc phải tiếp xúc với các hiện tượng ngẫu nhiên mà không thể dự đoán trước được. Tuy nhiên con người có thể nghiên cứu và hệ thống hóa các hiện tượng ngẫu nhiên để rút ra các quy luật ngẫu nhiên và biểu diễn chúng bằng các mô hình Toán học. Từ đó một lĩnh vực của Toán học mang tên là "Lý thuyết xác suất" đã ra đời nhằm nghiên cứu các quy luật và quy tắc tính toán các hiện tượng ngẫu nhiên. Lý thuyết xác suất ra đời vào nửa cuối thế kỷ XVII. Một số nhà Toán học như Huygens, Bernoulli, De Moivre là những người có công đầu tiên tạo nên cơ sở Toán học của Lý thuyết xác suất. Chebyshev(1821 - 1894), Borel(1871 - 1956), Kolmogorov(1903 - 1987),... đã có nhiều đóng góp to lớn cho sự phát triển của Lý thuyết xác suất. Ngày nay Lý thuyết xác suất đã trở thành một ngành Toán học lớn, chiếm vị trí quan trọng cả về lý thuyết lẫn ứng dụng. Nó được ứng dụng rộng rãi trong nhiều ngành Khoa học kĩ thuật, Khoa học xã hội và Nhân văn. Từ đó Giải tích hiện đại trở thành một công cụ hữu ích trong việc nghiên cứu các vấn đề của Lý thuyết xác suất. Để tìm hiểu sâu hơn một số vấn đề về xác suất trong Giải tích hiện đại, em đã chọn đề tài: "Nghiên cứu một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất" làm khóa luận tốt nghiệp của mình. 2. Mục đích và nhiệm vụ nghiên cứu 2.1. Mục đích nghiên cứu - Trình bày một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất, từ đó nhằm cung cấp tài liệu tham khảo cho các bạn sinh viên ngành Toán trường Đại học Tây Bắc. - Rèn luyện khả năng nghiên cứu khoa học của bản thân. 3 2.2. Nhiệm vụ nghiên cứu - Hệ thống hóa một số kiến thức cơ bản về đại số và σ - đại số, độ đo trên đại số tập hợp, mở rộng độ đo, độ đo Lebesgue trên đường thẳng, hàm đo được, độ đo hữu hạn, hàm số Borel, tích phân. Từ đó làm cơ sở hình thành nên một số khái niệm và tính chất cơ bản trong xác suất. - Nghiên cứu một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất. 3. Phạm vi nghiên cứu Trong khuôn khổ của khóa luận chỉ nghiên cứu về một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất. 4. Phương pháp nghiên cứu - Sưu tầm, đọc và nghiên cứu tài liệu, phân tích, tổng hợp kiến thức. - Trao đổi, thảo luận với bạn bè, giáo viên hướng dẫn, qua đó tổng hợp kiến thức và trình bày theo đề cương nghiên cứu, thực hiện kế hoạch và hoàn thành khóa luận. 5. Những đóng góp của khóa luận Khóa luận đã tổng hợp và nghiên cứu cơ bản đầy đủ một số tính chất của biến ngẫu nhiên và hàm phân phối xác suất. 6. Cấu trúc khóa luận Khóa luận được chia thành 2 chương với những nội dung chính sau đây: Chương 1. Kiến thức chuẩn bị: Trình bày, hệ thống hóa một số kiến thức cơ bản về đại số và σ - đại số, độ đo trên đại số tập hợp, mở rộng độ đo, độ đo Lebesgue trên đường thẳng, hàm đo được, độ đo hữu hạn, hàm số Borel, tích phân. Các nội dung kiến thức chỉ phát biểu mà không chứng minh. Chương 2. Không gian xác suất và biến ngẫu nhiên: Trình bày định nghĩa không gian xác suất, biến ngẫu nhiên; tìm hiểu về hàm phân phối xác suất, kỳ vọng và hàm đặc trưng của biến ngẫu nhiên, nghiên cứu về sự độc lập và sự hội tụ của các biến ngẫu nhiên. 4 Chương 1 Kiến thức chuẩn bị Chương này trình bày một số kiến thức cơ bản về đại số và σ - đại số, độ đo trên đại số tập hợp, mở rộng độ đo, độ đo Lebesgue trên đường thẳng, hàm đo được, độ đo hữu hạn, hàm số Borel, tích phân. 1.1 Đại số tập hợp Định nghĩa 1.1. Cho X là tập tùy ý khác rỗng. Ta gọi một họ C các tập con của X là một đại số trên X nếu nó thỏa mãn các tính chất sau: a) X ∈ C, b) Nếu A ∈ C thì CA ∈ C, c) Nếu A, B ∈ C thì A ∪ B ∈ C. Bổ đề 1.2. C là một đại số các tập con của X nếu và chỉ nếu C thỏa mãn các điều kiện sau: a) X ∈ C, b) Nếu A ∈ C thì CA ∈ C, c’) Nếu A, B ∈ C thì A ∩ B ∈ C. Nhận xét 1.3. Nếu C là một đại số thì C chứa X và đóng kín đối với các phép toán hữu hạn về tập hợp (phép hợp và giao hữu hạn, phép lấy hiệu, hiệu đối xứng). Nếu {An }n∈N∗ ⊂ C là dãy các tập tùy ý trong đại số C thì tồn tại dãy các ∞ ∞ S S ∗ ∗ tập rời nhau {Bn }n∈N ⊂ C sao cho Bn ⊂ An , (∀n ∈ N ) và Bn = An . n=1 5 n=1 Bổ đề 1.4. Giao của một họ tùy ý các đại số các tập con của X là một đại số các tập con của X . Cho A là một họ tùy ý các tập con của X . Bao giờ cũng tồn tại một đại số các tập con của X chứa A, chẳng hạn đại số P(X) tất cả các tập con của X . Kí hiệu C(A) là giao của tất cả các đại số các tập con của X chứa A, khi đó C(A) là một đại số gọi là đại số các tập con của X sinh bởi A. 1.2 σ- đại số tập hợp Định nghĩa 1.5. Cho X là một tập tùy ý khác rỗng. Một họ F các tập con của X được gọi là một σ - đại số trên X nếu thỏa mãn các điều kiện: a) X ∈ F , b) Nếu A ∈ F thì CA ∈ F , ∞ S c) Nếu {An }n∈N∗ ⊂ F thì An ∈ F. n=1 Bổ đề 1.6. F là một σ - đại số các tập con của X nếu và chỉ nếu F thỏa mãn các điều kiện sau: a) X ∈ F, b) Nếu A ∈ F thì CA ∈ F, ∞ T An ∈ F. c) Nếu {An }n∈N∗ ⊂ F thì n=1 Bổ đề 1.7. Giao của một họ tùy ý các σ - đại số các tập con của X là một σ - đại số các tập con của X . Cho A là một họ tùy ý các tập con của X . Kí hiệu F(A) là giao của tất cả các σ - đại số các tập con của X chứa A, khi đó F(A) là một σ - đại số gọi là σ - đại số các tập con của X sinh bởi A. 1.3 Độ đo trên đại số tập hợp 1.3.1 Hàm tập hợp Định nghĩa 1.8. Cho X là tập tùy ý và C là họ các tập con của X chứa tập ∅. Ta gọi một hàm µ xác định trên C nhận giá trị trên R = R ∪ {−∞; +∞} 6 là một hàm tập hợp. Chúng ta quy ước rằng các phép toán viết ra dưới đây trên R đối với giá trị của hàm µ luôn có nghĩa. a) Hàm tập hợp µ gọi là cộng tính nếu với A, B ∈ C, A ∩ B = ∅, A ∪ B ∈ C thì µ(A ∪ B) = µ(A) + µ(B). b) Hàm tập hợp µ được gọi là σ - cộng tính nếu với mọi dãy tập {An }n=1,∞ ⊂ C mà ∞ [ Ai ∩ Aj = ∅, (i 6= j), An ∈ C n=1 thì µ ∞ [ ! An = n=1 ∞ X µ(An ). n=1 Nhận xét 1.9. 1) Nếu µ cộng tính thì µ hữu hạn cộng tính, nghĩa là nếu A1 , ..., Am ∈ C, Ai ∩ Aj = ∅, (i 6= j), m [ Ai ∈ C i=1 thì µ m [ ! Ai = i=1 m X µ(Ai ). i=1 2) Nếu hàm µ là σ - cộng tính và µ(∅) = 0 thì µ hữu hạn cộng tính. Tuy nhiên điều ngược lại không đúng. 1.3.2 Độ đo trên đại số các tập hợp Định nghĩa 1.10. Một hàm tập hợp µ xác định trên đại số C các tập con của tập hợp X được gọi là một độ đo trong X nếu µ thỏa mãn các điều kiện sau: a) 0 6 µ(A) 6 +∞ với mọi A ∈ C, b) µ(∅) = 0, c) µ là σ - cộng tính . Định nghĩa 1.11. Cho µ là một độ đo trên đại số các tập con của X . Ta nói: a) Độ đo µ là hữu hạn nếu µ(X) < +∞; 7 b) Độ đo µ là σ - hữu hạn nếu tồn tại một dãy {Xn }n=1,∞ ⊂ C sao cho ∞ S X= Xn và µ(Xn ) < +∞ với mọi n ∈ N∗ . n=1 1.3.3 Các tính chất cơ bản của độ đo Định lý 1.12. Giả sử µ là một độ đo trên đại số C các tập con của X . Khi đó a) Nếu A, B ∈ C, A ⊂ B thì µ(A) 6 µ(B); b) Nếu A, B ∈ C, B ⊂ A, µ(B) < +∞ thì µ(A\B) = µ(A) − µ(B); +∞ ∞ P S µ(An ); An thì µ(A) 6 c) Nếu {An }n∈N∗ ⊂ C, A ∈ C, A ⊂ n=1 n=1 d) Nếu {An }n∈N∗ ⊂ C, Ai ∩ Aj 6= ∅, (i 6= j), A ∈ C, +∞ P ∞ S An ⊂ A thì n=1 µ(An ) 6 µ(A). n=1 Hệ quả 1.13. Nếu µ là độ đo σ - hữu hạn trên X thì mọi tập A ∈ C đều biểu diễn được dưới dạng hợp đếm được các tập thuộc C có độ đo hữu hạn. Định lý 1.14. Giả sử µ là độ đo trên đại số C . Khi đó  S  ∞ ∞ S ∗ a) Nếu {An } ⊂ C, µ(An ) = 0, (∀n ∈ N ), An ∈ C thì µ An = 0; n=1 n=1 b) Nếu A, B ∈ C, µ(B) = 0 thì µ(A ∪ B) = µ(A). Định lý 1.15. Cho µ là độ đo trên đại số C . Khi đó ∞ S a) Nếu {An }n∈N∗ ⊂ C, A1 ⊂ A2 ⊂ ... ⊂ An ⊂ ..., An ∈ C thì n=1  µ lim An  n→∞ ∞ [  =µ An = lim µ(An ). n=1 n→∞ b) Nếu {An }n∈N∗ ⊂ C, A1 ⊃ A2 ⊃ ... ⊃ An ⊃ ..., thì  µ lim An n→∞  ∞ T An ∈ C và µ(A1 ) < +∞ n=1 ∞ \  =µ An = lim µ(An ). n=1 n→∞ Định lý 1.16. Cho µ là hàm tập hợp không âm, cộng tính trên đại số C sao cho µ(∅) = 0. Khi đó µ là một độ đo nếu nó thỏa mãn một trong hai điều kiện sau: 8 a) Nếu {An }n∈N∗ ⊂ C, A1 ⊂ A2 ⊂ ... ⊂ An ⊂ ...,  µ lim An ∞ S An ∈ C thì n=1 ∞ [  =µ An = lim µ(An ).  n→∞ n→∞ n=1 b) Nếu {An }n∈N∗ ⊂ C, A1 ⊃ A2 ⊃ ... ⊃ An ⊃ ..., ∞ T An = ∅ thì n=1 lim µ(An ) = 0. n→∞ 1.4 1.4.1 Mở rộng độ đo Độ đo ngoài Định nghĩa 1.17. Hàm tập hợp µ∗ xác định trên σ - đại số P(X) tất cả các tập con của X được gọi là một độ đo ngoài nếu µ∗ thỏa mãn các điều kiện: a) µ∗ (A) ≥ 0 với mọi A ⊂ X ; b) µ∗ (∅) = 0; c) µ∗ là σ - cộng tính dưới, nghĩa là nếu A ⊂ ∞ S An thì µ∗ (A) ≤ n=1 ∞ P µ∗ (An ). n=1 Từ điều kiện c) ta thấy nếu A ⊂ B thì µ∗ (A) ≤ µ∗ (B). Định lí sau cho phép xây dựng một độ đo qua độ đo ngoài. Định lý 1.18. (Carathéodory) Cho µ∗ là một độ đo ngoài trên X và L là họ tất cả các tập con A của X thỏa mãn: µ∗ (E) = µ∗ (E ∩ A) + µ∗ (E \ A) với mọi E ⊂ X . Khi đó: a) L là một σ - đại số; b) µ = µ∗ |L là một độ đo trên L. Độ đo µ = µ∗ |L tức là µ(A) = µ∗ (A) với mọi A ∈ L, được gọi là độ đo cảm sinh bởi độ đo ngoài µ∗ và các tập A ∈ L được gọi là các tập µ∗ - đo được. 1.4.2 Thác triển độ đo từ một đại số lên một σ- đại số Định lý 1.19. Nếu m là một độ đo trên đại số C các tập con của tập X thì hàm tập hợp µ∗ xác định trên P(X) bởi công thức: 9 ∗ µ (A) = inf ∞ nX ∞ [ m(An )|{An }n∈N∗ ⊂ C, n=1 o An ⊃ A (1.1) n=1 là một độ đo ngoài trên X và µ∗ (A) = m(A), ∀A ∈ C . Hơn nữa, mọi tập thuộc σ - đại số F(C) sinh bởi C đều là µ∗ - đo được. Định nghĩa 1.20. Ta nói một độ đo µ trên σ - đại số F là độ đo đủ nếu mọi tập con của một tập bất kì thuộc F có độ đo không đều thuộc F và do đó có độ đo không. Định lý 1.21. Nếu m là một độ đo trên đại số C các tập con của X thì tồn tại một độ đo µ trên σ - đại số L ⊃ F(C) ⊃ C sao cho: a) µ(A) = m(A) với mọi A ∈ C ; b) µ là độ đo hữu hạn nếu m hữu hạn, µ là σ - hữu hạn nếu m là σ - hữu hạn; c) µ là độ đo đủ; d) Tập A thuộc họ L khi và chỉ khi A có thể biểu diễn dưới dạng A = B\N hoặc A = B ∪ N với B ∈ F(C), N ⊂ E ∈ F(C), µ∗ (E) = µ(E) = 0, µ∗ là độ đo ngoài xác định từ độ đo m trên đại số C bởi công thức (1.1). 1.5 Độ đo Lebesgue trên đường thẳng Ta trang bị một độ đo m trên R xác định trên đại số C sinh bởi lớp J các khoảng trên R mà độ đo m trên các khoảng hữu hạn trùng với khái niệm độ dài đoạn thẳng đã biết, từ đó xây dựng một độ đo cảm sinh bởi độ đo ngoài xác định từ độ đo m gọi là độ đo Lebesgue trên đường thẳng. Với mỗi khoảng I với các mút trái a và mút phải b (hữu hạn hoặc vô hạn), ta đặt    0 nếu I = ∅,    m(I) = b − a nếu a, b ∈ R,     +∞ nếu a hoặc b vô hạn . 10 Nếu A ∈ C(J) thì A có thể viết dưới dạng: A = n S Ii với Ii là các khoảng i=1 rời nhau. Đặt: m(A) = n X m(Ii ). (1.2) i=1 Ta thấy số m(A) ∈ [0, +∞] xác định bởi công thức trên không phụ thuộc vào cách biểu diễn A dưới dạng hợp các khoảng rời nhau. Định lý 1.22. Hàm tập hợp m xác định bởi công thức (1.2) là một độ đo trên đại số C = C(J) sinh bởi họ tất cả các khoảng trên R. Bây giờ áp dụng Định lý 1.21 đối với độ đo m trên đại số C = C(J), ta thu được độ đo µ mở rộng của độ đo m tới σ - đại số L ⊃ F(C) ⊃ C . Từ đó ta gọi tập A ∈ L là tập đo được Lebesgue trên R hay gọn hơn là L- đo được. Vì F(J) là σ - đại số Borel trong R mà F(J) ⊂ F(C) ⊂ L nên mọi tập Borel là L- đo được. Ta có định lý tiêu chuẩn đo được Lebesgue trên R: Định lý 1.23. Tập con A ⊂ R là đo được Lebesgue khi và chỉ khi A thỏa mãn một trong hai điều kiện sau: a) Với mỗi ε > 0 đều tồn tại tập mở G ⊃ A sao cho µ∗ (G\A) < ε. b) Với mỗi ε > 0 đều tồn tại tập đóng F ⊂ A sao cho µ∗ (A\F ) < ε. Trong đó, µ∗ là độ đo ngoài xác định bởi độ đo m cảm sinh độ đo µ. Định lý 1.24. Mọi tập con A ⊂ R là đo được Lebesgue khi và chỉ khi A sai khác một tập Borel bởi một tập có độ đo không, tức là A có dạng A = B ∪ N , với B là tập Borel và N là tập có độ đo không. 1.6 1.6.1 Hàm đo được Định nghĩa và các điều kiện tương đương Định nghĩa 1.25. Ta gọi là không gian độ đo một bộ ba (X, F, µ), trong đó X là tập tùy ý khác rỗng, F là σ - đại số các tập con của X và µ là độ đo xác định trên σ - đại số F . Mỗi tập A ∈ F được gọi là tập đo được theo độ đo µ. 11 Định nghĩa 1.26. Hàm f : A → R được gọi là đo được trên tập A ∈ F đối với σ - đại số F hay là µ- đo được nếu: (∀a ∈ R), {x ∈ A | f (x) < a} ∈ F. Khi X = Rk và µ là độ đo Lebesgue trên σ - đại số L thì ta nói hàm f đo được Lebesgue hay gọn hơn là đo được (L). Khi F = B (σ - đại số Borel trên Rk ) thì f được gọi là đo được theo nghĩa Borel và ta gọi f là một hàm số Borel. Như vậy, mọi hàm số liên tục đều đo được (L) trên R. Mệnh đề 1.27. Hàm f đo được trên A khi và chỉ khi một trong các điều kiện sau thỏa mãn: (∀a ∈ R), {x ∈ A | f (x) > a} ∈ F. (∀a ∈ R), {x ∈ A | f (x) 6 a} ∈ F. (∀a ∈ R), {x ∈ A | f (x) > a} ∈ F. Hệ quả 1.28. 1) Nếu f đo được trên A thì f đo được trên mọi tập con đo được của A. 2) Nếu f đo được trên A thì với mọi a ∈ R, {x ∈ A | f (x) = a} ∈ F. 3) Nếu (∀x ∈ A)f (x) = c (c là hằng số) thì f đo được trên A. 4) Nếu f đo được trên A thì với mọi hằng số k ∈ R, hàm kf đo được trên A. 1.6.2 Các phép toán đối với hàm đo được Định lý 1.29. 1) Nếu f đo được trên A thì với mọi α > 0 hàm |f |α cũng đo được. 2) Nếu f, g đo được trên A thì các hàm f ± g, f g, max(f, g), min(f, g) cũng đo được. Ngoài ra nếu (∀x ∈ A) g(x) 6= 0 thì 12 f cũng đo được. g Định lý 1.30. Nếu {fn }n∈N∗ là dãy hàm số đo được và hữu hạn thì các hàm sup fn , inf fn , limfn , limfn , lim fn (nếu có) n n n n→∞ n cũng đo được. 1.6.3 Cấu trúc của hàm đo được Cho không gian độ đo (X, F, µ) và A ⊂ X . Ta gọi hàm số χA : X → R cho dưới đây là hàm đặc trưng của tập A được xác định bởi χA (x) =   1 nếu x ∈ A  0 nếu x ∈ /A Với mỗi a ∈ R ta có:    X    {x ∈ X | χA (x) > a} = A     ∅ nếu a 6 0 nếu 0 < a 6 1 nếu a > 1 Vì vậy hàm đặc trưng χA đo được trên X khi và chỉ khi A đo được, nghĩa là A ∈ F. Định nghĩa 1.31. Hàm số f : X → R được gọi là hàm đơn giản trên tập A ⊂ X nếu nó hữu hạn, đo được và chỉ nhận hữu hạn giá trị. Giả sử f là hàm đơn giản trên A và f (A) = {a1 ; a2 ; ...; an }, (ai ∈ R). Ta đặt Ai = {x ∈ A | f (x) = ai }, (i = 1, n). n P Suy ra các tập Ai đo được và f = a i χAi . i=1 Định lý 1.32. Mọi hàm đo được f : A → R là giới hạn điểm của dãy các hàm đơn giản {fn }n∈N∗ . Nếu f bị chặn trên A thì giới hạn này là giới hạn hội tụ đều. Hơn nữa, nếu f > 0 trên A thì có thể chọn dãy {fn }n∈N∗ là dãy hàm đơn điệu tăng. 13 1.7 Độ đo hữu hạn Định nghĩa 1.33. Một độ đo hữu hạn trên không gian độ đo (X, F, µ) là một ánh xạ µ : F −→ [0, ∞) thỏa mãn  S  P ∞ ∞ µ An = µ(An ) n=1 n=1 với A1 , A2 , . . . là dãy bất kì các tập rời nhau trong F. Mệnh đề 1.34. Cho µ là độ đo hữu hạn trên F . Khi đó ta có i) µ(∅) = 0; ii) Nếu A1 , . . . , An ∈ F , với Ai ∩ Aj = ∅, i 6= j thì µ(A1 + A2 + . . . + An ) = µ(A1 ) + µ(A2 ) + . . . + µ(An ); iii) Nếu A, B ∈ F với A ⊆ B thì µ(A) ≤ µ(B); S  iv) Nếu A1 ⊆ A2 ⊆ . . . với An ∈ F, n = 1, 2, . . . thì µ(An ) ↑ µ Am khi m n → ∞; v) Nếu A1 ⊇ A2 ⊇ . . . với An ∈ F, n = 1, 2, . . . thì µ(An ) ↓ µ T  Am khi m n → ∞. Mệnh đề 1.35. Giả sử µ : F → [0, ∞), µ(A ∪ B) = µ(A) + µ(B) với mọi A, B ∈ F, A ∩ B = ∅ (tức µ là hữu hạn cộng tính). Khi đó µ là σ - cộng tính nếu và chỉ nếu µ(En ) ↓ 0 với mỗi dãy (En ) trong F thỏa mãn T E1 ⊇ E2 ⊇ . . . và En = ∅. n 1.8 1.8.1 Hàm số Borel σ- đại số Borel trong R Định nghĩa 1.36. Giả sử C là tập hợp các tập con mở trong R. Khi đó F(C) được gọi là σ - đại số Borel trong R, thường được viết tắt là B(R). Các tập nằm trong B(R) được gọi là các tập Borel. Như vậy B(R) là σ - đại số sinh bởi các tập con mở trong R. Mệnh đề 1.37. Các tập con sau đây trong R thuộc B(R): i) C1 = (a, b)với bất kì a < b; 14 ii) C2 = (−∞, a) với bất kì a ∈ R; iii) C3 = (a, ∞) với bất kì a ∈ R; iv) C4 = [a, b] với bất kì a ≤ b; v) C5 = (−∞, a] với bất kì a ∈ R; vi) C6 = [a, ∞) với bất kì a ∈ R; vii) C7 = (a, b] với bất kì a < b; viii) C8 = [a, b) với bất kì a < b; ix) Tập con đóng bất kì trong R. Mệnh đề 1.38. Cho F (đóng) là σ - đại số các tập con trong R sinh bởi các tập con đóng trong R và F (compact) là σ - đại số các tập con trong R sinh bởi các tập con compact trong R. Khi đó ta có F (đóng) = F (compact) = B(R). 1.8.2 Hàm số Borel Định nghĩa 1.39. Cho (X, F) là một không gian đo, f : X → R là một hàm số. Khi đó f được gọi là hàm Borel nếu f −1 (G) ∈ F với G là tập mở trong R. Mệnh đề 1.40. Hàm f : X → R là hàm Borel nếu và chỉ nếu f −1 (A) ∈ F với mỗi A ∈ B(R). Mệnh đề 1.41. Cho C là tập hợp các tập con trong R thỏa mãn F(C) = B(R) và hàm f : X → R. Khi đó f là hàm Borel nếu và chỉ nếu f −1 (A) ∈ F với mọi A ∈ C . Nhận xét 1.42. Ta có thể chọn C là một tập bất kì trong Mệnh đề 1.37. Ví dụ như ta có thể nói rằng f là hàm Borel nếu và chỉ nếu f −1 ((−∞, a]) ∈ F với mỗi a ∈ R. Mệnh đề 1.43. Cho f : X → R là hàm Borel và g : R → R là hàm số liên tục. Khi đó g ◦ f : X → R là hàm Borel. 15 Mệnh đề 1.44. Giả sử f : X → R và g : X → R là các hàm Borel. Khi đó tập E = {x ∈ X : f (x) < g(x)} đo được. Mệnh đề 1.45. Cho (X, F) là không gian đo và f : X → R, g : X → R là các hàm Borel. Khi đó i) af + b là hàm Borel với bất kì a, b ∈ R; ii) f + g là hàm Borel; iii) |f |α là hàm Borel với bất kì α ≥ 0; iv) Nếu f không bị triệt tiêu thì 1 f là hàm Borel; v) f g là hàm Borel; vi) |f |, max{f, g}, min{f, g} là các hàm Borel. Định lý 1.46. Cho (X, F) là không gian đo và {fn } là dãy các hàm Borel trên X . Giả sử tồn tại f (x) = lim fn (x) với mỗi x ∈ X . Khi đó f là hàm n Borel. Định nghĩa 1.47. Cho (X, F) là không gian đo và f : X → C. Ta nói rằng f là hàm Borel nếu Re f và Im f là các hàm Borel. Mệnh đề 1.48. Cho f : X → C là hàm Borel. Khi đó |f | là hàm Borel và tồn tại hàm Borel α : X → C với |α(x)| = 1, ∀x ∈ X thỏa mãn f (x) = α(x)|f (x)|. Định nghĩa 1.49. Với E ∈ F ta có hàm chỉ tiêu IE của E được xác định bởi IE (x) =   1 nếu x ∈ E  0 nếu x ∈ /E là một hàm Borel. Một hàm s : X → R được gọi là hàm đơn giản nếu nó hữu hạn, đo được và chỉ nhận hữu hạn giá trị. 16 Như vậy nếu s là hàm đơn giản với các giá trị α1 , α2 , . . . , αn nào đó và Aj = {x ∈ X : s(x) = αj , j = 1, n} thì ta có s(x) = n P αj IAj (x). j=1 s là hàm Borel đơn giản nếu và chỉ nếu các Aj đo được. Định lý 1.50. Cho f : X → R là hàm Borel không âm. Khi đó tồn tại một dãy các hàm Borel đơn giản không âm {sn } sao cho i) 0 ≤ s1 ≤ s2 ≤ . . . ≤ f, ii) sn (x) → f (x) khi n → ∞, ∀x ∈ X . Định nghĩa 1.51. Một tập hợp M các tập con của X là một lớp đơn điệu nếu i) A1 ⊆ A2 ⊆ . . . là dãy tăng trong M thì ∞ S Ai ∈ M. i=1 ∞ T ii) B1 ⊇ B2 ⊇ . . . là dãy giảm trong M thì Bi ∈ M. i=1 Giao của một họ bất kì các lớp đơn điệu cũng là lớp đơn điệu. Cho C là tập hợp các tập con của X , khi đó M(C) là lớp đơn điệu sinh bởi C , và đó lớp đơn điệu "nhỏ nhất" chứa C . Định lý 1.52. Cho A là một đại số các tập con của X . Khi đó M(A) = F(A). 1.9 1.9.1 Tích phân Tích phân của hàm đơn giản không âm Định nghĩa 1.53. Giả sử s = n P αi IAi là một hàm đơn giản. Với E ∈ F , i=1 ta định nghĩa tích phân của s trên E theo µ là Z s dµ = E n X αi µ(Ai ∩ E). i=1 17 Đặc biệt với A ∈ F , tích phân của hàm chỉ tiêu của A trên X chính là độ đo của A: Z IA dµ = µ(A). X Nếu µ là độ đo Lebesgue trên [0, 1] và A = [a, b] với 0 ≤ a ≤ b ≤ 1 thì ta có Z I[a,b] dµ = b − a [0,1] thường gọi là tích phân của I[a,b] trên [0, 1]. Nếu X = R và µ là độ đo Lebesgue - Stieltjes trên R sinh bởi hàm Zx F (x) = ρ(t)dt −∞ với ρ là hàm khả tích Riemann không âm, khi đó với a < b ta có Z I[a,b] dµ = µ([a, b]) = F (b) − F (a) = Zb ρ(t)dt. a R Định nghĩa 1.54. Cho hàm f : X → R đo được và giả sử f ≥ 0. Với bất kì E ∈ F , ta định nghĩa Z Z f dµ = sup E s dµ E với s là hàm đơn giản không âm thỏa mãn 0 ≤ s(x) ≤ f (x), ∀x ∈ X . Nếu vế phải không hữu hạn, ta nói rằng f không khả tích trên E . Mệnh đề 1.55. Giả sử f, g là các hàm đo được và E ∈ F . Khi đó i) Nếu 0 ≤ f ≤ g thì Z f dµ ≤ E Z g dµ. E ii) Nếu A ⊆ B, A, B ∈ F, f ≥ 0 thì Z Z f dµ ≤ f dµ. A B 18 iii) Nếu f (x) = 0 với mọi x ∈ E thì Z f dµ = 0. E iv) Nếu f ≥ 0, c ≥ 0, c là hằng số thì Z Z cf dµ = c f dµ. E E v) Nếu µ(E) = 0, f ≥ 0 thì Z f dµ = 0. E vi) Nếu f ≥ 0 thì Z Z f dµ = E IE f dµ. X Mệnh đề 1.56. Cho s, t là các hàm đơn giản bất kì với s ≥ 0, t ≥ 0. Với R mỗi E ∈ F , đặt ϕ(E) = s dµ. Khi đó ϕ là độ đo hữu hạn trên không gian E đo (X, F). Hơn nữa ta có Z Z Z (s + t)dµ = s dµ + t dµ. X 1.9.2 X X Tích phân của hàm đo được không âm Định lý 1.57. (Định lý Lebesgue về sự hội tụ đơn điệu). Cho fn là một dãy các hàm đo được trên X và giả sử i) 0 ≤ f1 (x) ≤ f2 (x) ≤ . . . với x ∈ X , ii) fn (x) → f (x) khi n → ∞, với x ∈ X . Khi đó f đo được và Z fn dµ → X Z f dµ X khi n → ∞. Hệ quả 1.58. Giả sử f ≥ 0 và g ≥ 0, f và g khả tích. Khi đó f + g khả tích và Z Z (f + g)dµ = X Z f dµ + X 19 g dµ. X 1.9.3 Tích phân của hàm đo được giá trị phức Định nghĩa 1.59. Hàm giá trị phức f trên X được gọi là khả tích (Lebesgue) theo µ nếu |f | khả tích. Tập hợp tất cả các hàm f như thế được kí hiệu là L1 (X, µ). Với f = u + iv ∈ L1 (X, µ), ta có Z Z Z Z Z f dµ = u+ dµ − u− dµ + i v+ dµ − i v− dµ. X X X X X 1 Định lý 1.60. Nếu f, g ∈ L (X, µ) và a, b ∈ C, khi đó af + bg ∈ L1 (X, µ) và Z Z Z (af + bg)dµ = a X f dµ + b X g dµ. X 1 Định lý 1.61. Với f ∈ L (X, µ) bất kì ta có Z Z f dµ ≤ |f | dµ. X X Định lý 1.62. (Định lý Lebesgue về sự hội tụ bị chặn). Cho (fn ) là dãy các hàm đo được giá trị phức trên X thỏa mãn i) fn (x) → f (x) khi n → ∞ với mọi x ∈ X , ii) Tồn tại g ∈ L1 (X, µ) sao cho |fn (x)| ≤ g(x) với mọi n ∈ N và x ∈ X . Khi đó f ∈ L1 (X, µ) và Z fn dµ → X Z f dµ X khi n → ∞. Hơn nữa, Z |fn − f | dµ → 0 X khi n → ∞. Định lý 1.63. Giả sử f là một hàm đo được bị chặn. Khi đó f ∈ L1 (X, µ) (µ là độ đo hữu hạn trên X ). Định lý 1.64. (Bất đẳng thức Schwarz). Giả sử |f |2 ∈ L1 (X, µ) và |g|2 ∈ L1 (X, µ). Khi đó f g ∈ L1 (X, µ) và Z Z  12 Z  12  Z 2 2 |g| dµ . |f | dµ f g dµ ≤ |f g| dµ ≤ X X X 20 X
- Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất