Đăng ký Đăng nhập
Trang chủ Nghiên cứu làm giàu u(vi) bằng hydrotalcite trong nước biển cho phân tích tỷ lệ ...

Tài liệu Nghiên cứu làm giàu u(vi) bằng hydrotalcite trong nước biển cho phân tích tỷ lệ 234u 238u bằng phổ kế alpha

.PDF
56
248
133

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH CÔNG TRÌNH NGHIÊN CỨU KHOA HỌC CẤP TRƯỜNG NGHIÊN CỨU LÀM GIÀU U(VI) BẰNG HYDROTALCITETRONG NƯỚC BIỂN CHO PHÂN TÍCH TỶ LỆ 234U VÀ 238U BẰNG PHỔ KẾ ALPHA S K C 0 0 3 9 5 9 MÃ SỐ: T-2014-46TD S KC 0 0 4 8 0 2 Tp. Hồ Chí Minh, 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC SƢ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH BÁO CÁO TỔNG KẾT ĐỀ TÀI KH&CN CẤP TRƢỜNG TRỌNG ĐIỂM NGHIÊN CỨU LÀM GIÀU U(VI) BẰNG HYDROTALCITE TRONG NƢỚC BIỂN CHO PHÂN TÍCH TỶ LỆ 234U VÀ 238U BẰNG PHỔ KẾ ALPHA Mã số: T-2014-46TD Chủ nhiệm đề tài: PGS.TS. Nguyễn Văn Sức TP. HCM, 11/2014 Bảng những chữ viết tắt và ký hiệu Chữ viết tắt và ký hiệu HT HT500 EPA SEM XRD FT-IR BET qe (mg/g) Qmax (mg/g) Co (mg/g) Ct (mg/g) KL k’1 k’2 kid Kf n A (mg/g) Nội dung Hydrotalcite Hydrotalcite được nung ở 5000C Cơ quan bảo vệ môi trường của Mỹ Quét hiển vi điện tử Nhiểu xạ tia X Biến đổi frontier hồng ngoại Phương pháp đo diện tích bề mặt Dung lượng hấp phụ Dung lượng hấp phụ cực đại Nồng độ ion ban đầu Nồng độ ion tại thời gian t Hằng số Langmuir Hằng số động học giả hấp phụ bậc 1 Hằng số động học giả hấp phụ bậc hai Hằng số khuếch tán nội hạt Hằng số Freundlich Hằng số freundlich Dung lượng hấp phụ i TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự do - Hạnh phúc ĐƠN VỊ KHOA CNHH & TP Tp. HCM, Ngày tháng năm THÔNG TIN KẾT QUẢ NGHIÊN CỨU 1. Thông tin chung: - Tên đề tài: T2014-46TĐ, “Nghiên cứu làm giàu U (VI) bằng hydrotalcite trong nước biển cho phân tích tỷ lệ 234U/238U bằng phổ kế alpha” - Mã số: T2014-46TĐ - Chủ nhiệm: Nguyễn Văn Sức - Cơ quan chủ trì: Trường Đại học Sư phạm Kỹ thuật Tp.HCM - Thời gian thực hiện: 03/ 2014 – 12/2014 2. Mục tiêu: - Điều chế hydrotalcite ở quy mô phòng thí nghiệm. - Nghiên cứu một số tính chất của hydrotalcite dựa trên phổ nhiễu xạ tia X (XRD), biến đổi Fourie quang phổ hồng ngoại (FT-IR), xác định diện tích bề mặt bằng phương pháp BET và hình thái bề mặt bằng quét hiển vi điện tử (SEM). - Xác định các tham số hấp phụ của hydrotalcite đối với ion uranyl. 1. Tính mới và sáng tạo: - Thay đổi cấu trúc của hydrotalcite bằng nhiệt độ để nâng cao khả năng hấp phụ ion uranyl. - Chứng minh được những yếu tố có thể ảnh hưởng đến khả năng hấp phụ ion uranyl. - Dựa vào phản ứng trao đổi ion CO32- để sử dụng tác nhân thích hợp tái tạo lại hydrotalcite đã bão hòa ion uranyl. 2. Kết quả nghiên cứu: - Xác định được các tham số ảnh hưởng đến quá trình hấp phụ ion uranil - Xác định được cơ chế hấp phụ của hydrotalcite đối với ion uranyl ii - Xác định được các tham số trong hai mô hình hấp phụ đẳng nhiệt Langmuir và Freundlich - Xác định được các tham số nhiệt động học của quá trình hấp phụ 3. Sản phẩm: - Sản phẩm hydrotalcite - Các số liệu động học, cân bằng hấp phụ của hydrotalctie đối với ion uranyl - Hướng dẫn 1 học viên cao học có liên quan đến hydrotalcite - 1 bài báo khoa học có chỉ số ISI 6. Hiệu quả, phƣơng thức chuyển giao kết quả nghiên cứu và khả năng áp dụng: -. Đã điều chế chất hấp phụ vô cơ có cấu tạo lớp như một số loại khoáng sét tự nhiên và có khả năng hấp phụ rất cao đối với các anion phức, các hợp chất hữu cơ độc hại. Đây là loại vật liệu có tiềm năng để xử lý, làm sạch chất ô nhiễm trong nước thải cũng như các nguồn nước bị ô nhiễm. - Do là chất hấp phụ vô cơ nên bền vững với bức xạ, nên hydrotacite được xem là vật liệu không thể thiếu trong hấp phụ các đồng vị phóng xạ có hoạt độ cao, làm sạch vết chất phóng xạ trong môi trường. - Sản xuất ra những bộ lọc nước có khả năng lọc ion NO3-, PO43-, As(V) As(III), Cr(VI), Cr(III) các hợp chất hữu cơ, các nguyên tố phóng xạ… Trƣởng Đơn vị Chủ nhiệm đề tài PGS.TS. Nguyễn Văn Sức Nguyễn Văn Sức iii INFORMATION ON RESEARCH RESULTS 1. General information: Project title: “Studying of 234 U/238U concentration in seawater by hydrotalcite using alpha spectrometry” Code number: T2014-46TĐ Coordinator: Nguyen Van Suc Implementing institution: University of Technical Education HCM City Duration: from 03/2012 to /12/2012 2. Objective(s): - Development of procedure for preparation of hydrotalcite in lab scale - The study of the properties of hydrotalcite based on X-ray diffraction spectrum (XRD), Fourier transformation infrared spectroscopy (FT-IR), determination of the surface areas of hydrotalcite by the BET method and surface morphology by scanning electron microscopy (SEM). - Determination of the parameters that effect on the U(VI) adsorption by hydrotalcite 3. Creativeness and innovativeness: - Transforming the structure of hydrotalcite with temperature to enhance the adsorption of uranyl ions. - Based on the ion-exchange reaction CO32- of hydrotalcite, it reveals that this reagent could be used to regenerate the exhausted hydrotalcite with uranyl ions. iv 4. Research results: - The parameters including pH, contact time and adsorbent dose affecting to the adsorption process of uranyl ions were obtained. - Experimental data shown the adsorption of U(VI) on hydrotalcite followed the Langmuir and Freundlich models. - The adsorption capacity of hydrotalcite increases with increasing the cancinated temperature. - The resulting hydrotalcite can be generated in U(VI) adsorption using Na2CO3. 5. Products: - Hydrotalcite product - Data of the adsorption kinetics, adsorption isotherm of hydrotalctie for the uranyl ion - 1 graduate student related to hydrotalcite - 1 article with ISI index 6. Effects, transfer alternatives of research results and applicability: - The inorganic adsorbent (Hydrotalcite -HT) with the layer structure that as some kind of natural clay minerals has been prepared in the lab conditions. HT has very high adsorption capacity for anionic complexes, toxic organic compounds and it is the potential adsorbent to use for removal of contaminants in wastewater and contaminated water sources. - Due to stable with radiation, hydrotalcite should be considered as an indispensable material in the adsorption of radioactive isotopes with high activity, in removal of traces of radioactive substances in the environment. - This product can be used in preparation of the water filter to remove ions such as NO3-, PO43-, As (V) to As (III), Cr (VI), Cr (III), organic compounds and radioactive elements. - Hydrotalcite can be used to pre-concentration uranium in the ground water, sea v water to analyze uranium nuclides for geochemistry investigation of ground water system and marine environment. vi MỞ ĐẦU Phân tích các nhân phóng xạ trong các đối tượng môi trường đang trở nên hết sức cấp thiết đối với các nhà quan trắc và nghiên cứu môi trường. Nhân phóng xạ tự nhiên đặc biệt là của urani và các nguyên tố trong chuỗi phân hạch của urani có một ý nghĩa hết sức quan trọng trong quá trình đánh giá sự biến đổi địa hóa của trái đất, Các đồng vị của urani là những chất chỉ thị tin cậy cho sự biến đổi môi trường. Ngày nay, với sự thay đổi khí hậu trái đất và tính axit tăng lên trong nước biển đã làm thay đổi một cách cơ bản về sự cân bằng của các thành phần nguyên tố trong nước biển, trong các dải san hô và trầm tích trong đại dương. Để có được những kết quả phân tích chính xác hoạt độ phóng xạ của các đồng vị U và 238U, phương pháp phân tích hiện nay chủ yếu được sử dụng là đo hoạt độ của các đồng vị này bằng phổ kế alpha. Vấn đề khó khăn thường gặp phải trong phân tích bằng phổ kế alpha là sự chuẩn bị mẫu. Giai đoạn chuẩn bị mẫu đóng vai trò quyết định cho cả quá trình phân tích vì hiệu suất tách, hiệu suất đo chiếm tỷ trọng rất lớn trong giai đoạn này. 234 Một quy trình khá phổ biến hiện nay cho việc tách 238U và 234U trong tất cả các đối tượng môi trường là mạ điện urani trên đĩa thép không rỉ. Để xác định hiệu suất thu hồi đồng vị 232U được sử dụng. Đây là một quy trình rất phức tạp, tiêu tốn nhiều thời gian và bắt buộc phải luôn luôn sử dụng vết (tracer) là 232U, cho nên giá thành phân tích cho một mẫu rất đắt và độc hại tới môi trường. Việc nghiên cứu một quy trình mới để giảm giá thành và không sử dụng vết 232U để phân tích 234U và 238U cho các phòng phân tích phóng xạ bằng phương pháp phổ kế alpha đặc biệt đối với môi trường biển là hết sức cần thiết. Được sự giúp đỡ của Trung tâm Hạt nhân Tp. HCM. Chúng tôi đã nghiên cứu tách urani từ nước biển bằng khoáng sét tổng hợp hydrotalcite, khử U(VI) thành U(IV) bằng Zn kim loại và đồng kết tủa U(IV) với LaF3. Kết quả nghiên cứu đã cho một quy trình tách 234U và 238U hết sức đơn giản nhưng đạt độ chính xác cao. Mặt khác quy trình này không sử dụng TiCl4 để khử U(VI) và vết đồng vị phóng xạ 232U là tracer là những chất độc hại cho con người và môi trường. 1 I. TỔNG QUAN VỀ TÌNH HÌNH NGHIÊN CỨU TRONG VÀ NGOÀI NƯỚC I.1.Giới thiệu chung về các đồng vị của urani và ý nghĩa của chúng trong môi trường biển. Trong số những nguyên tố kim loại chúng ta đã biết trong bảng tuần hoàn hóa học, urani và các đồng vị của nó có một vai trò quan trọng trong nghiên cứu địa hóa và môi trường. Urani có mặt trong các khoáng vật, trong đất trồng, sông hồ và đại dương.Mặc dù tồn tại ở mức hàm lượng rất nhỏ nhưng urani luôn được chú ý tới và là yếu tố không thể thiếu được trong đánh giá tuổi địa chất, nguồn gốc của khoáng vật và sự biến đổi của lớp vỏ trái đất trong hàng triệu triệu năm [1]. Nguyên tố urani có số nguyên tử 92 và trọng lượng phân từ là 238,0289 g/mol. Tỷ trọng của urani kim loại bằng 19 g/cm3, nhẹ hơn vonfram (W) nhưng lớn hơn chì (Pb). Urani tự nhiên chứa ba đồng vị phóng xạ 234U, 235U và 238U. Phần trăm của mỗi đồng vị phóng xạ theo khối lượng khoảng 0,054% 234U, 0,72% 235U và 99,27% 238U. Khoảng 48,9% hoạt độ phóng xạ là của 234U, 2,2% 235U và 48,9% 238U. Thời gian bán rã của các đồng vị urani rất dài, 24400 năm đối với 234U, 710 triệu năm đối với 235U và 4500 triệu năm đối với 238U. Phân rã của urani thành nhiều đồng vị phóng xạ được gọi là con cháu của urani, ở cuối chuỗi phân rã là đồng vị bền (không có tính phóng xạ) đó là nguyên tố chì (Pb). Do thời gian bán rã lớn so với tuổi của hệ mặt trời, urani được xem như là nguyên tố phóng xạ nguyên thủy tìm thấy trong tự nhiên. Các tính chất hạt nhân của các đồng vị urani đưa ra trong bảng 1 [2,3]. Tất cả đồng vị của urani chịu cùng các phản ứng hóa học trong tự nhiên và có những đặc tính hóa học đồng nhất, như điểm nóng chảy, điểm sôi và độ bay hơi. Tuy nhiên, tính chất phóng xạ (thời gian bán rã, hoạt độ riêng, kiểu phân rã…) của tất cả đồng vị của urani là khác nhau [4]. Địa hóa biển của urani đã được nghiên cứu trong vài thập kỷ gần đây với việc đo các thành phần của urani và sự phân bố của chúng trong đại dương,nghiên cứu các đồng vị con cháu của nó có mặt trong các quá trình tiến hóa của đại dương. Các phép đo xác 2 định urani bằng phổ kế alpha đã cho những thông tin về hành vi của urani trong môi trường biển. Xác định tuổi do mất cân bằng của dãy urani liên quan đến tính toán tuổi của chuỗi phân rã của 238U. 238U phân rã alpha thành 234U sau đó phân rã tiếp tục thành 230Th (thời gian bán rã là 75.690 năm). Có một số đồng vị con cháu trong dây truyền phân rã như 234Th và 234Pa, tuy nhiên thời gian sống của các đồng vị này không đáng kể so với các đồng vị mẹ. nếu tính cho thời gian bán rã của 238U, dãy phân rã này sẽ là cân bằng thế kỷ, hay nói một cách khác, hoạt độ của các đồng vị mẹ và đồng vị con cháu sẽ đồng nhất (và do đó tỷ số của chúng sẽ bằng 1). Do 234U chiếm trong các vị trí mạng lưới tinh thể dễ bị phá hủy bời quá trình phân rã alpha, đồng vị 234U dễ dàng thoát ra từ đá trong quá trình phong hóa tạo thành “lượng dư” của 234U trong nước bề mặt và di chuyển vào đại dương. Do vậy, tỷ lệ hoạt độ phóng xạ của 234U/238U lớn hơn 1 trong nước biển và và tỷ lệ này cũng được duy trì trong san hô. Sự gia tăng nhiệt độ của trái đất do hiện tượng nhà kính làm cho nhiệt độ và tính axit của nước biển tăng lên có thể làm mất cân bằng của các chu trình tự nhiên mà nó đã được xác lập hàng triệu năm. Để đánh giá những thay đổi này cần phải có những chỉ thị đặc biệt có khả năng cung cấp những thông tin chính xác về sự thay đổi nhiệt độ trong nước biển.Không ai hết, đó là các đồng vị phóng xạ tự nhiên trong chuỗi phân hạch của urani và tỷ số của chúng.Tuy nhiên, vì chúng tồn tại trong nước biển một lượng rất nhỏ (cỡ ppb) nên cần phải có những công cụ và phương pháp phân tích rất nhạy và chính xác để xác định chúng. Bảng 1: Đặc tính hạt nhân của các đồng vị urani Hạt nhân Thời gian bán rã Độ giàu Kiểu phân rã Sự tạo thành (%) (năm) 232 U 68,9 Vết  232 233 U 1,59.105 Vết  Phân rã  - của 233 Pa 234 U 2,46.105 0,0059-0,050  Tự nhiên 235 U 7,4.108 0,7202-0,7198  Tự nhiên 236 U 2,34.107 Vết  235 U(n,) 238 U(n,3n) Th(,4n) Phân rã  của 3 240 238 U 4,47.109 99,2752– 9,2739  Pu Tự nhiên I.2.Những nghiên cứu làm giàu urani từ nước biển Để xác định thành phần đồng vị của urani trong môi trường biển đòi hỏi phải thông qua nhiều giai đoạn . Trước hết là giai đoạn làm giàu. Đây là giai đoạn có tính quyết định của quá trình vì độ giàu của urani trong nước biển rất thấp và nồng độ muối cao nên giai đoạn làm giàu phải được sử dụng. Giai đoạn thứ hai, urani phải được tách ra từ các hợp chất hoặc là các nguyên tố sẽ ngăn cản trong phân tích urani. Giai đoạn cuối cùng là tạo ra mẫu đo dưới dạng nguồn có độ mỏng thích hợp để đo. Quy trình phân tích urani theo các giai đoạn trên đã được đưa ra trong các công trình của Amoli và Barker[5]. Jia và cộng sự[6], Jia và cộng sự [7], Huy và cộng sự [8] và Zarki và cộng sự [9].Để xác định hiệu suất làm giàu, hầu hết tất cả các quy trình làm giàu được tiến hành hiện nay đều sử dụng vết đồng vị phóng xạ 232U. Đồng vị phóng xạ 232U phát bức xạ alpha không có trong tự nhiên được thêm vào mẫu tại thời gian thu mẫu hoặc khi mẫu đưa về phòng thí nghiệm. Các quy trình tách urani tại hiện trường thường không được định lượng trừ phi đồng vị phóng xạ 232U thêm vào cân bằng với các đồng vị phóng xạ của urani trong mẫu. Nếu mẫu phân tích không được xử lý tại hiện trường, mẫu phải được axit hóa bằng axit HCl hoặc HNO3 để ngăn cản sự kết tủa của Fe dưới dạng Fe(OH)3 trong bình chứa mẫu. Lượng axit thêm vào để mẫu đủ độ axit với pH xấp xỷ bằng 1,0. Trong trường hợp mẫu nước chứa chất rắn lơ lửng, cần phải loại bỏ bằng phương pháp lọc với giấy lọc Millipore (0,45 µm). Lọc để loại bỏ kết tủa thường được sử dụng cho mẫu nước bề mặt. Dojozan và cộng sự [10] đã nghiên cứu làm giàu urani từ nước biển bằng phương pháp chiết pha rắn, sau đó urani trong mẫu làm giàu được phân tích bằng phương pháp cực phổ xung vi phân. Quá trình chiết được tiến hành sau khi U(VI) oxinate được tạo thành bởi phản ứng của U(VI) với 8-hydroxylquinoline và hấp phụ trên octylsilanre (C-8) SPE catridge. U(VI) được rửa khỏi pha rắn bằng dung dịch chloroform. Phương pháp làm giàu U(VI) bằng chiết trên pha rắn đạt đến hơn 100 lần và hiệu suất thu hồi urani là 99,8%. Một số nguyên tố ảnh hưởng trong quá trình làm giàu và phân tích như Ca(II), Mg(II) và Fe(III) được che bằng EDTA. Các tác giả Das và cộng sự [11] đã sử dụng màng sợi poly(propylene) được chức hóa phosphate để làm giàu urani. Màng có lỗ lớn poly(ethylene glycol methacrylate phosphate) được điều chế bằng cách ghép ethylene glycol methacrylate phosphate lên tấm sợi poly(propylene) sử dụng bức xạ UV và dòng electron. Sản phẩm ghép có 4 dung lượng hấp phụ cao đối với urani trong nước biển. Urani có thể giải hấp ra khỏi vật liệu hấp phụ bằng cách rửa với dung dịch Na2CO3 0,5M. Làm giàu urani từ nước biển bằng phương pháp hấp phụ trên hydrogels khâu mạch chứa poly(ethylene glycol methacrylate phosphate (EGMP), poly(2-acrylamido2methyl-1-propane sulfonate) (AMPS), poly(acrylamidoxim)(AO) và AO cùng với các axit khác nhau (acrylic axit (AA), methacrylic axit (MAA), AMPS và EGMP) và các đồng monomer baz (3-(acrylamide propyl) trimethylammonium chloride (APTAC) được điều chế bằng cách sử dụng bức xạ UV như là một tác nhân khơi mào cho quá trình polymer hóa [12]. Các tác giả đã phát hiện các hydrogel hấp phụ định lượng urani ( 9%) từ nước biển. Động học hấp phụ urani trong EGMP và AO + MAA (60:40) nhanh hơn các hydrogel khác trong điều kiện nước biển. Sự có mặt của các đồng monomer axit mạnh (-SO3H) với AO làm chập động học của quá trình liên quan đến hấp phụ U(VI) từ nước biển. Các tác giả cũng đã quan sát thấy rằng động học hấp phụ U(VI) phụ thuộc mạnh vào thành phần của axit và các nhóm AO trong hydrogel; sự hấp phụ U(VI) trừ dung dịch axit trong hydrogel AO + MAAA phụ thuộc vào độ axit và dung dịc hấp phụ; không có sự hấp phụ U(VI) từ dung dịch chứa 1 mol HNO3. Ngược lại, hydrogel EGMP có thể hấp phụ U(VI) từ dung dịch chứa nồng độ cao HNO3. Điều này cho thấy rằng hydrogel EGMP có thể sử dụng để làm giàu U(VI) từ nước thải hạt nhân. Phức của U(VI) trong hydrogel EGMP và AO + MAA có thể bị giải hấp bằng dung dịch 0,5 M Na2CO3 và 1M HCl/HNO3. Khayatian và cộng sự [13] đã phát triển phương pháp làm giàu lượng vết urani bằng cách chiết pha rắn dựa trên các hạt nano sắt oxit từ (MIONPs) được biến tính với natri dodecyl sulfat (SDS). Trong trường hợp này Oxine (8-quinolinol) được sử dụng như là tác nhân chelat và các yếu tố ảnh hưởng đến sự tạo phức và chiết U(VI) đã được tối ưu. Để giải hấp U(VI) từ pha rắn, ethanol chứa 1% (V/V) NH3 đã được sử dụng. Hiện nay một số vật liệu sinh học tự nhiên đã được nghiên cứu để hấp phụ urani.Đặc biệt là chitosan.Các tác giả Oshita và cộng sự [14] báo cáo rằng chitosan khâu mạch trong quá trình xử lý một nửa serine (kiểu nhựa chitosan) có thể sử dụng để thu lượng vết urani và tách urani ra khỏi nền nước biển trước khi phân tích ICP-MS. Một nửa serine có nhóm carboxyl và nhóm amino ở vị trí carbonβ của ethanol. Hành vi hấp phụ vết các nguyên tố và urani trên kiểu nhựa chitosan gắn với nhóm hydroxyl và nhóm amino của serine. Các tác giả đã sử dụng cột nhồi serine để hấp phụ urani trong vùng pH rất rộng (2-9). Kết quả cho thấy rằng U(VI) hấp phụ chọn lọc do tạo thành phức chelat bền với các nhóm amino và nhóm carboxyl. Để xác định urani trong nước biển bằng phương pháp kích hoạt nơtron và phổ kế alpha, Hongshan và cộng sự [15] và Vasile [16] đã đề nghị quy trình tách và đo urani theo sơ đồ (hình 1a và 1b) sau đây: 5 Thu mẫu nước biển Lọc qua phin lọc 0,45 µm Axit hóa với HNO3 0,1M Bảo quản ở 20C Điều chỉnh pH tới 5,5 Chiết Chiết ngược với HNO3 0,1M 6 1+2 3+4 HNO3 3M Lọc gạn Bay hơi cho đến khô 1 Cho mẫu lên cột 2 Rửa với 10 ml HNO3 3M 3 Rửa với 5 ml HCl 9M 4 Rửa với 20 ml HCl 5 M + oxalic 0,05 M 5 Rửa với 10 ml HCl 1M 5 Rửa các đồng vị của urani + 0,1 ml Ce3+ + 1 ml TiCl3 + 1ml HF Hòa tan trong HCl + H2O2, pH = 1, axit acorbic Kết tủa CeF3 Lắng đọng các nhân phóng xạ 208Po, 209 Po và 210Po Lọc 238U, 235U và 234 U Đo hoạt độ alpha Đo hoạt độ alpha Hình 1. Sơ đồ tách và làm giàu urani do phân tích (a) NAA và (b) phổ kế alpha Làm giàu urani từ nước biển bằng phương pháp hấp phụ trên các loại khoáng sét nhân tạo và có nguồn gốc tự nhiên cho mục đích phân tích hàm lượng urani rất ít được nghiên cứu. Lý do là các vật liệu hấp phụ phải là vật liệu siêu sạch, không chứa lượng 7 vết urani. Tuy nhiên, các loại khoáng sét được sử dụng để hấp phụ urani cho mục đích loại bỏ urani từ các nguồn nước bị ô nhiễm urani hoặc xử lý nước thải hạt nhân. Ví dụ, Khalili và cộng sự [17] đã hấp phụ U(VI) bằng bentonite sau khi tinh chế để loại bỏ quartz. Bachmaf và cộng sự [18] báo cáo khả năng hấp phụ U(VI) bằng các khoáng sét kaolinite, montmorillonite và bentonite tự nhiên. Sự hấp phụ U(VI) của các khoáng sét này phụ thuộc vào pH và dung dịch điện ly NaCl. Các loại hợp chất tương tự khoáng sét được tổng hợp trong phòng thí nghiệm có nhiều ưu điểm hơn so với khoáng sét trong tự nhiên về độ sạch và dung lượng hấp phụ. Hydrotalcite là một ví dụ, Lần đầu tiên Peterson [19] đã sử dụng kỹ thuật nhiễu xạ tia X để đưa ra bằng chứng về khả năng trao đổi các ion kim loại chuyển tiếp trong khoáng sét anion hydrotalcite. Hydrotalcite cũng được tổng hợp trong phòng thí nghiệm và thành phần của hydrotalcite thu được tương tự như thành phần của hydrotalcite trong tự nhiên (hình 2 và hình 3). Thí nghiệm về sự trao đổi các cation của kim loại chuyển tiếp với hydrotalcite tổng hợp đã được tiến hành trong điều kiện cân bằng ở nhiệt độ phòng và sử dụng các dung dịch riêng biệt của muối CuCl2, ZnCl2 [20,21]và nhiệt hóa hydrotalcite ở các khoảng nhiệt độ khác nhau để đạt được khả năng hấp phụ cation kim loại cũng đã được nghiên cứu. Ở nhiệt độ 500 0C, hydrotalcite có khả năng trao đổi rất mạnh với các caiton kim loại hóa trị 2. Khi tăng cao nhiệt độ đến 800 0C, dung tích trao đổi với các cation kim loại vẫn không thay đổi và ngược lại hydrotalcite có thể trao đổi với một số ion kim loại đa hóa trị [22]. Do khả năng bền vững về sự trao đổi ở nhiệt độ cao với các kim loại hóa trị cao, hydrotalcite đang được nghiên cứu và ứng dụng để làm vật liệu hấp phụ tạp chất trong nước làm nguội các nhà máy điện hạt nhân, làm sạch kim loại nặng trong nước khoáng tinh khiết. Đặc tính hấp thụ cation kim loại, anion, polymer anion và các hợp chất hữu cơ của hydrotalcite và khả năng tái tạo cho thấy rằng vật liệu này có một tiềm năng rất lớn trong xử lý môi trường đặc biệt là xử lý các nguồn nước bị ô nhiễm. Hấp phụ ion U(VI) bằng hydrotalcite đã được trình bày bởi Maki [23]. Tác giả đã tìm ra khả năng hấp phụ của kết tủa khi cho dung dịch NaOH vào hỗn hợp MgSO4 và Al2(SO4)3 với tỷ lệ molar từ 2-4 hoặc vào hỗn hợp dung dịch ZnSO4 và Al2(SO4)3 với tỷ lệ molar của Zn/Al bằng 2, có thể hấp phụ U(VI) dưới dạng ion phức [UO2(CO3)4- trong môi trường dung dịch carbonate. Tác giả cũng tìm được cấu trúc lý tưởng để hấp phụ ion urani khi tỷ lệ Zn/Al bằng 2 và hỗn hợp Zn-Al bằng 2, hydrotalcite tổng hợp được có công thức [Mg4Al8(OH)12]2+[SO4.3H2O]2-. Kết quả nghiên cứu cho thấy, hydrotalcite tổng hợp qua con đường kết tủa có dung lượng hấp phụ đối với urani, 10 ppm U(VI)/ 1g hydrotalcite sau hai giờ tiếp xúc. Timoshenko và cộng sự [24]đã nghiên cứu cấu trúc của hydrotalcite sau khi điều chế bằng phương pháp kết tủa và phân hủy nhiệt. Kết quả nghiên cứu thu được cho thấy sản phẩm có tính hấp phụ chọn lọc đối với ion U(VI) và tất cả các phối tử đặc trưng 8 cho các nguồn nước tự nhiên thực tế là không ảnh hưởng đến sự hấp phụ urani. Pshinko và cộng sự [25] đã tổng hợp hydrotalcite có công thức {[Zn4Al2(OH)12]CO3.nH2O} và dạng (Zn4Al2O7 xử lý nhiệt. EDTA được cố định bên trong tinh thể của HT đã làm tăng đáng kể dung lượng hấp phụ đối với ion urani. Ảnh hưởng của EDTA đến khả năng hấp phụ urani của hydrotalcite cũng đã được các tác giả trong công trình [25] nghiên cứu. chứng minh rằng sự có mặt của EDTA trong các lớp cấu trúc của EDTA làm tăng đáng kể khả năng hấp phụ U(VI) của vật liệu và không bị ảnh hưởng bởi hydrocarbonate ở pH 8. Các tác giả cho rằng hydrotalcite ,[Zn4Al2(OH)]EDTA.nH2O là vật liệu rẻ tiền nhưng có hiệu quả để loại bỏ urani ra khỏi nguồn nước bị ô nhiễm. Hình 2: Hydrotalcite Hình 3:Cấu trúc của hydrotalcite có nguồn gốc tự nhiên 9 Li và cộng sự [26] đã điều chế Ca-Al hydrotacite (Ca-AlLDHs) với sự trợ giúp của sóng siêu âm nhằm cải thiện sự đồng đều của tinh thể hydrotacite. Các tác giả đã nghiên cứu khả năng hấp phụ của vật liệu điều chế được đối với ion urani (U(VI)) có dung tích hấp phụ là 54,79 mg/g và không bị ảnh hưởng bởi các anion chloride và nitrate. I.3.Kết tủa và đồng kết tủa Hai phương pháp cổ điển nhất để tách và làm sạch các ion trong hóa học phân tích hóa phóng xạ là kết tủa và đồng kết tủa. Kết tủa được sử dụng để tách hoặc thu nhân phóng xạ từ hỗn hợp các ion khác bằng cách tạo thành hợp chất không tan [27]. Các nhân phóng xạ hoặc là tự kết tủa từ dung dịch của nó hoặc các ion lạ được kết tủa và tách khỏi các nhân phóng xạ trong dung dịch. Đôi khi các nhân phóng xạ có mặt trong dung dịch ở nồng độ dưới micro gam tức là nồng độ nhỏ đến mức nhân phóng xạ không thể tạo thành hợp chất không tan. Trong trường hợp này, nhân phóng xạ có thể được tách ra bằng cách đồng kết tủa, kết hợp với chất không tan kết tủa từ dung dịch. Để lựa chọn các điều kiện tốt nhất cho đồng kết tủa chọn lọc ion, Một số quá trình cần phải được xem xét.Quá trình thứ nhất là sự tự kết tủa và kỹ thuật thích hợp sử dụng để làm hạn chế sự kết hợp các chất bẩn.Quá trình thứ hai là cơ chế đồng kết tủa và các yếu tố kiểm soát kết hợp với nhau. Mặt khác, độ tan và tích số tan của kết tủa phải luôn được xem là yếu tố có tính quyết định cho kết tủa. mặc dù sự phân biệt giữa hai quá trình là không rõ ràng nhưng có thể cụ thể thành những điểm chính như sau: (1) xâm nhập, nghĩa là lấy một ion từ dung dịch có cùng kích thước và điện tích vào chất rắn tạo thành kết tủa để tạo thành một tinh thể hỗn hợp hoặc một dung dịch rắn; (2) hấp phụ bề mặt và (3) sự hút giữ . Xâm nhập. Nếu như đồng kết tủa được hoàn thành từ dung dịch đồng thể cho phép tinh thể tạo thành chậm thì sự xâm nhập đóng góp vào quá trình đồng kết tủa. Ở điều kiện này luật phân bố logarite được áp dụng, nó biểu diễn phương pháp đồng kết tủa hiệu quả nhất liên quan đến các tinh thể hỗn hợp: log(Ii/If) = log(Pi/Pf) (1) Trong đó Ii là nồng độ chất bẩn trong dung dịch khi bắt đầu kết tủa và If là nồng độ tại thời điểm kết thúc. P biểu diễn nồng độ tương ứng của ion ban đầu trong dung dịch. là hệ số phân bố logarit và là hằng số. Giá trị  lớn phản ánh sự loại bỏ ion lạ bởi sự xâm nhập trong quá trình đồng kết tủa. Giá trị lambda càng lớn, quá trình đối với ion riêng biệt càng chọn lọc và hiệu quả. Ngoài ra, lambda tỷ lệ nghịch với tốc độ kết tủa. Kết tủa chậm được hoàn tất bởi kết tủa đồng thể dẫn đến giá tị lambda lớn hơn và đồng kết tủa hiêu quả hơn. Ví dụ Actinit (Ac) được tách chọn lọc từ dung dịch chứa 10 sắt (Fe) và nhôm (Al) thông qua kết tủa oxalate chậm được kiểm soát bời sự thủy phân của dimethyl oxalate. Nói chung,  giảm khi nhiệt độ tăng; như vậy, đồng kết tủa bởi xâm nhập là thích hợp ở nhiệt độ thấp. Ninh kết tủa ở nhiệt độ cao trong một thời gian kéo dài là một quá trình thúc đẩy sự tái tạo tinh thể và tinh thể tinh khiết hơn và nó sẽ gây ra các tinh thể trộn lẫn bằng cơ chế thay thế (phân bố đồng thể) . Định luật phân bố cân bằng được biểu diễn như sau: (I/P)ppt = D(I/P)soln (2) D là hệ số phân bố đồng thể.Giá trị của D lớn hơn 1 phản ánh sự loại bỏ ion lạ bởi xâm nhập trong thời gian đồng kết tủa. Sự phân bố đồng thể thu được dễ dàng ở nhiệt độ bình thường bằng cách kết tinh nhanh từ dung dịch quá bão hàa với điều kiện khuấy mạnh. Ở các điều kiện như vậy, kết tủa ban đầu được tạo thành là những tinh thể mịn bị phân chia, sự tái tạo lại tinh thể của các tinh thể nhỏ xảy ra rất nhanh chóng và lặp lại trong thời gian dài giữa dung dịch và kết tủa cho đến khi cân bằng giữa hai pha đạt được, tại đó sự phát triển của tinh thể từ dung dịch có thành phần ổn định. Hấp phụ bề mặt.Trong thời gian hấp phụ bề mặt, các ion bị hấp phụ từ dung dịch lên bề mặt của các hạt kết tủa.Bề mặt của kết tủa rất hoạt động. Các ion ở bề mặt của tinh thể (không giống như các ion ở bên trong tinh thể) không kết hợp hoàn toàn, do vậy chúng tự do hấp dẫn các ion khác có điện tích trái dấu từ dung dịch. Hấp phụ liên quan đến lớp hấp phụ thứ cấp, lớp này có lực giữ rất mạnh và lớp ion tương tự có lực giữ lỏng lẻo hơn.Kết tủa của các ion thông thường là những kết tủa hấp phụ bề mặt rất mạnh để tiếp tục phát triển tinh thể. Ví dụ, trong quá trình kết tủa BaSO4, ion Ba2+ và ion SO42- là những ion hấp phụ sơ cấp. Nếu như chỉ có một trong số những ion này giữ lại trong dung dịch thì ion lạ khác có điện tích trái dấu bị hấp phụ để duy trì sự trung hòa điện tích. Khi BaSO4 được kết tủa từ dung dịch chứa lượng dư ion Ba2+, ví dụ, ion lạ là Cl-, nếu có mặt bị hấp phụ sau khi ion SO42- thiếu hụt trong quá trình kết tủa. Các ion lạ có cùng điện tích, như là Na+, bị đầy khỏi bề mặt.Hấp phụ bề mặt có thể được kiểm soát bằng cách kiểm soát nồng độ của các ion trong thời gian kết tủa hoặc bằng cách thêm các ion để sửa đổi nồng độ. Ví dụ, kết tủa AgCl trong lượng dư Ag+ sẽ đẩy ion Pb2+, nhưng trong dung dịch chứa lượng tương đương Cl- và Ag+, xấp xỉ 2% 212Pb bị hấp phụ. Ngược lại, khoảng 86% 212Pb bị hấp phụ nếu như dung dịch iodine được thêm vào để kết tủa AgI. Vì hấp phụ là hiện tượng bề mặt, diện tích bề mặt của kết tủa càng lớn, sự hấp phụ các tạp chất càng lớn.Vì thế, các tinh thể keo có sự hấp phụ cao trên bề mặt.Khi các hạt keo đông tụ bởi sự có mặt chất điện lý, chất điện ly có thể bị hấp phụ như là tạp 11 chất.Để hạn chế điều này có thể làm già hóa kết tủa, sự phát triển thành những tinh thể lớn sẽ làm giảm diện tích bề mặt. Ngoài ra các tạp chất không bay hơi có thể được thay thế trên bề mặt bằng cách rửa kết tủa keo với axit loãng hoặc bằng dung dịch muối của amoni. Khuynh hướng để các ion hấp phụ lên bề mặt phụ thuộc vào nhiều yếu tố như điện tích và kích thước ion. Các ion có kích thước và điện tích lớn biểu hiện đặc tính hấp phụ cao; điện tích ion cao làm tăng lực hấp dẫn tĩnh điện với bề mặt và ion với bán kính lớn ít bị hydrat bởi dung dịch và không bị hấp dẫn tới pha lỏng. Hấp phụ cũng phụ thuộc vào nồng độ của các ion trong dung dịch. Nồng độ cao của tạp chất làm tăng sác xuất sự tương tác của chất tan ở bề mặt chất rắn. Nói chung, phần trăm hấp phụ ở nồng độ thấp phải lớn ở nồng độ thấp so với nồng độ cao. Ở nồng độ rất cao của tạp chất, hấp phụ đạt được giá trị cực đại, hay nói một cách khác, hấp phụ đã đạt đến bão hòa. Hút giữ. Hút giữ tạp chất bên trong kết tủa là nguyên nhân khi các tạp chất bị bẫy một cách cơ học bởi các lớp liên tiếp của tinh thể. Vì lý do đó, các tạp chất bị hút giữ không thể loại bỏ một cách vật lý bằng rửa. Sự hút giữ thích hợp cho kết tủa dạng keo hơn là các tinh thể lớn vì diện tích bề mặt của các hạt keo lớn hơn.Các hydroxit và sulfit mới được điều chế thường chứa các tạp chất nhưng các tạp chất sẽ được giải phóng sau khi kết tủa được làm già. Cơ chế bẫy cơ học xảy ra một cách đặc trưng khi tác nhân kết tủa thêm trực tiếp vào dung dịch. Vì nồng độ cao của chất kết tủa tại một ví trí nào đó trong dung dịch, tạp chất bị kết tủa và bị hút giữ bằng sự kết tủa tiếp theo của chất ban đầu. Tốc độ của quá trình kết tủa cũng ảnh hưởng đến quy mô hút giữ.Sự hút giữ có thể giảm xuống bởi sự kết tủa đồng thể.Đồng kết tủa Sr bằng BaSO4 là một ví dụ, được thực hiện kết tủa đồng thể của sulfat bằng cách thủy phân dimethylsulfat (CH3)2SO4.Ninh cũng làm giảm các phần tử bám hút khi chất rắn tái tạo lại tinh thể.Ngoài ra, làm giảm tốc độ kết tinh bằng cách kết tủa ở nhiệt độ thấp và giảm số nhân tạo thành kết tủa ban đầu. Đồng kết tủa là một phương pháp làm giàu các đồng vị phóng xạ của urani trong các nguồn nước để phân tích được ứng dụng nhiều nhất trong lĩnh vực hóa học hạt nhân [ ]. Ngoài ra, đồng kết tủa còn sử dụng để chuyển trạng thái của một đồng vị phóng xạ nào đó trong pha lỏng thành pha rắn để cho thuận tiện trong quá trình phân tích. Bảng 2 dưới đây đưa ra một số tác nhân kết tủa đã được sử dụng để làm giàu urani. Bảng 2: Các tác nhân để đồng kết tủa nhân phóng xạ của urani Nhân phóng xạ Mức oxy hóa Đồng kết tủa Chất mang U +4 Cupferron, U(IV) 12 Ghi chú
- Xem thêm -

Tài liệu liên quan