Nghiên cứu giải pháp phân tập không gian và thời gian trong wcdma pptx

  • Số trang: 71 |
  • Loại file: PDF |
  • Lượt xem: 12 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

CHƯƠNG 1 HỆ THỐNG MẠNG DI ðỘNG WCDMA Giới thiệu chung Trong những năm gần ñây, công nghệ không dây là chủ ñề ñược nhiều chuyên gia quan tâm trong lĩnh vực máy tính và truyền thông. Trong thời gian này công nghệ này ñược rất nhiều người sử dụng và ñã trải qua rất nhiều thay ñổi. Quá trình thay ñổi thể hiện qua các thế hệ:  Thế hệ không dây thứ nhất là thế hệ thông tin tương tự sử dụng công nghệ ña truy cập phân chia theo tần số (FDMA).  Thế hệ thứ 2 sử dụng kỹ thuật số với công nghệ ña truy cập phân chia theo thời gian (TDMA) và phân chia theo mã (CDMA).  Thế hệ thứ 3 ra ñời ñánh giá sự nhãy vọt nhanh chóng về cả dung lượng và ứng dụng so với các thế hệ trước ñó, và có khả năng cung cấp các dịch vụ ña phơng tiện gói. 1.1 Hệ thống thông tin di ñộng thế hệ 1 Hệ thống thông tin di ñộng thế hệ 1 chỉ hổ trợ các dịch vụ thoại tương tự và sử dụng kỹ thuật ñiều chế tương tự ñể mang dữ liệu thoại của mỗi người, và sử dụng phương pháp ña truy cập phân chia theo tần số (FDMA). Với FDMA, khách hàng ñược cấp phát một kênh trong tập hợp có trật tự các kênh trong lĩnh vực tần số. Sơ ñồ báo hiệu của hệ thống FDMA khá phức tạp, khi MS bật nguồn ñể hoạt ñộng thì nó dò sóng tìm ñến kênh ñiều khiển dành riêng cho nó. Nhờ kênh này, MS nhận ñược dữ liệu báo hiệu gồm các lệnh về kênh tần số dành riêng cho lưu lượng người dùng . Trong trường hợp số thuê bao nhiều hơn số lượng kênh tần số có thể, thì một số người bị chặn lại không ñược truy cập. Phổ tần số quy ñịnh cho liên lạc di ñộng ñược chia thành 2N dải tần số kế tiếp, và ñược cách nhau bởi một dải tần số phòng vệ . Mỗi dải tần số ñược gán cho một kênh liên lạc. N dải kế tiếp dành riêng cho liên lạc hướng lên, sau một dải tần phân cách là N dải kế tiếp dành riêng cho liên lạc hướng xuống. ðặc ñiểm : - Mỗi MS ñược cấp phát một ñôi kênh liên lạc trong suốt thời gian thông tuyến. - Nhiễu giao thoa do các kênh lân cận là ñáng kể. - BTS phải có bộ thu phát riêng làm việc với mỗi MS. Hệ thống FDMA ñiển hình là hệ thống ñiện thoại di ñộng AMPS (Advanced Mobile Phone System). Hệ thống di ñộng này sử dụng phương pháp ña truy cập ñơn giản. Tuy nhiên, hệ thống không thoả mãn nhu cầu ngày càng tăng của người dùng về cả dung lượng và tốc ñộ. Vì thế, hệ thống di ñộng thứ 2 ra ñời ñược cải thiện về cả dung lượng và tốc ñộ. 1.2 Hệ thống thông tin di ñộng thế hệ 2 Với sự phát triển nhanh chóng của thuê bao, hệ thống thông tin di ñộng thế hệ 2 ñược ñưa ra ñể ñáp ứng kịp thời số lượng lớn các thuê bao di ñộng dựa trên công nghệ số. 1 Tất cả hệ thống thông tin di ñộng thế hệ 2 sử dụng phương pháp ñiều chế số và sử dụng 2 phương pháp ña truy cập : - ða truy cập phân chia theo thời gian TDMA. - ða truy cập phân chia theo mã CDMA. ða truy cập phân chia theo thời gian TDMA: Phổ quy ñịnh cho liên lạc di ñộng ñược chia thành các dải tần liên lạc, mỗi dải tần liên lạc này ñược dùng cho N kênh liên lạc, mỗi kênh liên lạc là một khe thời gian trong chu kì một khung. Các thuê bao khác nhau dùng chung kênh nhờ cài xen khe thời gian, mỗi thuê bao ñược cấp phát cho một khe thời gian trong cấu trúc khung. ðặc ñiểm: - Tín hiệu của thuê bao ñược truyền dẫn số . - Liên lạc song công mỗi hướng thuộc các dải tần liên lạc khác nhau, trong ñó một băng tần ñược sử dụng ñể truyền tín hiệu từ trạm gốc ñến các máy di ñộng và một băng tần ñược sử dụng ñể truyền tín hiệu từ máy di ñộng ñến trạm gốc. Việc phân chia tần số như vậy cho phép các máy thu và máy phát có thể hoạt ñộng cùng một lúc mà không có sự can nhiễu lẩn nhau. - Giảm số máy thu ở BTS. - Giảm nhiểu giao thoa. Hệ thống TDMA ñiển hình là hệ thống di ñộng toàn cầu GSM. Máy di ñộng kỹ thuật số TDMA phức tạp hơn FDMA. Hệ thống xử lý số ñối với tín hiệu trong MS tương tự có khả năng xử lý không quá 106 lệnh trong 1 giây, còn trong MS số TDMA phải có khả năng xử lý 50.106 lệnh trong 1 giây. ða truy cập phân chia theo mã CDMA: Trong thông tin di ñộng CDMA sử dụng kỹ thuật trải phổ cho nên nhiều người sử dụng có thể chiếm cùng kênh vô tuyến ñồng thời tiến hành các cuộc gọi mà không sợ gây nhiễu lẫn nhau. Những người sử dụng nói trên ñược phân biệt với nhau nhờ mã trải phổ giả ngẫu nhiên PN, ñược cấp phát khác nhau cho mỗi người sử dụng. ðặc ñiểm - Dải tần tín hiệu rộng . - Sử dụng kỹ thuật trải phổ phức tạp. - Kỹ thuật trải phổ cho phép tín hiệu vô tuyến sử dụng có cường ñộ trường rất nhỏ và chống fading hiệu quả hơn TDMA và FDMA. - Việc các thuê bao trong cùng cell dùng chung tần số khiến cho thiết bị truyền dẫn ñơn giản và việc thay ñổi, chuyển giao, ñiều khiển dung lượng cell thực hiện rất linh hoạt. 1.3 Hệ thống thông tin di ñộng thế hệ 3: ðể ñáp ứng kịp thời các dịch vụ ngày càng phong phú và ña dạng của người sử dụng, từ ñầu thập niên 90 người ta ñưa ra hệ thống thông tin di ñộng tổ ong thế hệ thứ 3. Hệ thống thông tin di ñộng thế hệ 3 với tên gọi ITM-2000 ñưa ra các muc tiêu chính sau: - Tốc ñộ truy nhập cao ñể ñảm bảo các dịch vụ băng rộng như truy cập Internet nhanh hoặc các dịch vụ ña phương tiện. 2 - Linh hoạt ñể ñảm bảo các dịch vụ mới như ñánh số cá nhân và ñiện thoại vệ tinh. Các tính năng này sẽ cho phép mở rộng ñáng kể tầm phủ sóng của các hệ thống thông tin di ñộng. - Tương thích với các hệ thống thông tin di ñộng hiện có ñể ñảm bảo sự phát triển liên tục của thông tin di ñộng. 3G hứa hẹn tốc ñộ truyền dẫn lên tới 2.05 Mbps cho người dùng tĩnh, 384 Kbps cho người dùng di chuyển chậm và 128 Kbps cho người dùng trên moto. Công nghệ 3G dùng sóng mang 5MHz chứ không phải là sóng mang 200KHz như của CDMA nên 3G nhanh hơn rất nhiều so với công nghệ 2G và 2,5G. Nhiều tiêu chuẩn cho hệ thống thông tin di ñộng thế hệ 3 ITM-2000 ñã ñược ñề xuất, trong ñó 2 hệ thống WCDMA và cdma-2000 ñã ñược ITU chấp thuận và ñang ñược áp dụng trong những năm gần ñây. Các hệ thống này ñều sử dụng công nghệ CDMA, ñiều này cho phép thực hiện tiêu chuẩn toàn thế giới cho giao diện thông tin vô tuyến. 1.4 Lộ trình phát triển từ hệ thống thông tin di ñộng thế hệ 2 (GSM) lên WCDMA Hình 1.1. Các giải pháp nâng cấp hệ thống 2G lên ðể ñảm bảo ứng dụng ñược các dịch vụ mới về truyền thông máy tính và hình ảnh ñồng thời ñảm bảo tính kinh tế , hệ thống thông tin di ñộng thế hệ 2 sẽ ñược chuyển ñổi sang thế hệ 3. Quá trình ñó ñược tổng quát trên hình 1.1. Lộ trình phát triển từ GSM lên WCDMA như sau: GSM HSCSD GPRS WCDM Hình 1.2 Lộ trình phát triển từ GSM lên WCDMA Ký hiệu:  GSM: Global System for Mobile Communication: Hệ thống thông tin di ñộng toàn cầu.  HSCSD: Hight Speed Circuit Switched Data: Số liệu chuyển mạch kênh tốc ñộ cao.  GPRS: General Packet Radio Services: Dịch vụ gói vô tuyến chung.  WCDMA: Wideband Code Division Multiple Access: ða truy cập phân chia theo mã băng rộng. 3 1.5 Tổng quan về mạng WCDMA WCDMA (Wideband Code Division Multiple Access: ða truy cập phân chia theo mã băng rộng) là một trong những hệ thống thông tin di ñộng thế hệ 3, sử dụng công nghệ CDMA. Công nghệ CDMA ( Code Division Multiple Access: ða truy cập phân chia theo mã), là một công nghệ không dây, số sử dụng kỹ thuật trải phổ ñể phân tần tín hiệu vô tuyến trong một dãi tần số rộng. Trong công nghệ CDMA, nhiều người sử dụng chung một thời gian và tần số. Mã PN (giả ngẫu nhiên) với sự tương quan chéo thấp, ñược ấn ñịnh cho mỗi người sử dụng. Người sử dụng truyền tín hiệu nhờ trải phổ tín hiệu truyền có sử dụng mã PN ñã ấn ñịnh. ðầu thu tạo ra một dãy PN như ñầu phát và khôi phục lại tín hiệu dự ñịnh nhờ việc trải phổ ngược các tín hiệu ñồng bộ thu ñược. Cũng giống như TDMA, WCDMA là một trong nhiều công nghệ chủ ñạo ñể mạng thông tin di ñộng hoạt ñộng. Nó cũng ñược biết như là một giao diện vô tuyến hay công nghệ ña truy xuất. WCDMA là một giao diện vô tuyến phức tạp và tiên tiến trong lĩnh vực thông tin di ñộng. WCDMA có 2 chế ñộ khác nhau là FDD và TDD. Khả năng làm việc ñược ở cả hai chế ñộ FDD và TDD cho phép sử dụng hiệu quả phổ tần ñược cấp phát ở các vùng khác nhau. • FDD (Frequency Division Duplex): là phương pháp ghép song công trong ñó truyền dẫn ñường lên và ñường xuống sử dụng hai tần số riêng biệt. Ở FDD ñường lên và ñường xuống sử dụng hai băng tần khác nhau. Hệ thống ñược phân bố một cặp băng tần riêng biệt • TDD (Time Division Duplex): là phương pháp ghép song công trong ñó ñường lên và ñường xuống ñược thực hiện trên cùng một tần số bằng cách sử dụng những khe thời gian luân phiên. Ở TDD các khe thời gian trong các kênh vật lý ñược chia thành hai phần : phần phát và phần thu. Thông tin ñường xuống và ñường lên ñược truyền dẫn luân phiên. 1900 1920 1980 2020 2025 2110 2170 (MHz) TDD TDD FDD FDD RX/TX RX/TX Downlink Uplink t t 5MHz 5MHz ðường lên ðường xuống FDD ðường xuống Khoảng Bảo vệ ðường lên f TDD f Hình 1.3 Phân bố tần số FDD và TDD 4 Khả năng làm việc của cả hai chế ñộ FDD và TDD cho phép sử dụng hiệu quả phổ tần ñược cấp phát ở các vùng khác nhau. Ba thông số cơ bản của mạng WCDMA:  Lớp truy nhập: ñược tạo ra bởi các trạm gốc (node B) và các bộ ñiều khiển mạng vô tuyến khác nhau ñể phân tích và ñiều khiển lưu lượng vô tuyến.  Mạng lõi có hai vai trò chính :  Giải quyết việc ñịnh hướng hay ñịnh tuyến ñến nơi mà cuộc gọi hoặc số liệu gửi ñến. Phương tiện cơ bản là sử dụng hệ thống chuyển mạch ñể ñịnh tuyến thông tin qua một số máy chủ khác nhau xung quanh mạng.  Là một mạng ñường trục và giải quyết các chức năng kỹ thuật, khả năng truy nhập thuận tiện tới mạng số liệu gói khác, cung cấp một giao diện với Internet và phân loại thông tin tính cước và bảo mật.  Lớp dịch vụ ñiều khiển các ưu tiên, các ñặc tính và khả năng truy nhập cơ bản của thuê bao tới các dịch vụ nâng cao ñã làm cho 3G có một vị trí tuyệt vời. 1.5.1 Các thông số chính của W-CDMA  WCDMA là một phương pháp ña truy xuất vô tuyến phân chia theo mã trải phổ trực tiếp dải rộng, nghĩa là các bit thông tin của các user ñược trải ñều ra trên một dải thông rộng bằng việc nhân dữ liệu của user với các mã ngẫu nhiên (gọi là chip) nhận ñược trải phổ trong WCDMA.  Tốc ñộ chip 3.84Mcps ñược sử dụng cho ghép dải thông sóng mang xấp xỉ tới 5MHz. Dải thông sóng mang của WCDMA rộng như thế gắn liền với tốc ñộ dữ liệu của uesr cao và còn có hiệu quả nâng cao khả năng phân tập tần số. Các nhà quản lý mạng có thể tăng dung lượng nhờ dải thông của sóng mang là 5MHz. Khoảng cách các sóng mang có thể chọn trên những khoảng 200KHz giữa khoảng 4.4 ñến 5MHz tuỳ thuộc vào nhiễu giữa các sóng mang.  WCDMA cung cấp tốc ñộ khả biến cho các user rất cao, hiểu theo cách khác chính là dải thông theo yêu cầu cũng ñược cung cấp. Mỗi user ñược cung cấp một khung giây có chu kỳ 10ms trong khi tốc ñộ dữ liệu vẫn giữ nguyên không ñổi. Tuy nhiên dung lượng dữ liệu có thể thay ñổi từ khung này ñến khung khác.  WCDMA cung cấp hai chế ñộ hoạt ñộng cơ bản là FDD và TDD. Trong FDD các khoảng tần số sóng mang 5MHz ñược sử dụng cho sóng mang hướng lên và hướng xuống riêng rẽ, trong khi ñó TDD chỉ có một khoảng 5MHz ñược dùng cho cả hướng lên và hướng xuống.  WCDMA cung cấp hoạt ñộng bất ñồng bộ cho các trạm gốc và do ñó không giống như hệ thống ñồng bộ IS-95 CDMA, nó không cần thời gian chuẩn trên toàn cầu GPS.  WCDMA dùng tách sóng kết hợp cho hướng lên và hướng xuống nhờ các ký hiệu hoa tiêu hay kênh hoa tiêu chung, dẫn tới tăng dung lượng và vùng phủ sóng .  WCDMA ñược thiết kế ñể phát triển nâng cấp cho chuẩn GSM vì vậy có thể chuyển giao giữa mạng GSM và mạng WCDMA. 5 Phương thức ña truy xuất . Phương pháp ghép song công. ðồng bộ trạm gốc. Tốc ñộ chip. ðộ dài khung . Ghép dịch vụ. ða tốc ñộ. Tách sóng. DS-CDMA. FDD/TDD. Hoạt ñộng bất ñồng bộ. 3.84Mcps. 10ms. ða dịch vụ với yêu cầu chất lượng dịch vụ khác nhau ñược ghép trên một kết nối. Hệ số trải phổ khả biến và ña mã. Tách sóng kết hợp nhờ sử dụng kênh hoa tiêu. 1.5.2 Những ñặc ñiểm then chốt của WCDMA Giao diện vô tuyến trên cơ sở CDMA băng rộng tạo cơ hội thiết kế hệ thống có những ñặc tính ñáp ứng nhu cầu của thế hệ thứ 3. Những ñặc ñiểm chủ yếu trong hệ thống WCDMA là :  Cải thiện những hệ thống thế hệ thứ 2 bao gồm: cải thiện dung lượng, cải thiện vùng phủ sóng, bao gồm cả khả năng di chuyển những dịch vụ thế hệ thứ 2 sang thế hệ thứ 3.  Tính linh hoạt cao của dịch vụ bao gồm: Có các dịch vụ tốc ñộ bit cực ñại trên 2 Mb/s và các dịch vụ ghép song song trên một kết nối.  Thực hiện truy nhập gói hiệu quả và tin cậy.  Tính linh hoạt cao của vận hành bao gồm: Hỗ trợ hoạt ñộng không ñồng bộ giữa các trạm gốc nên triển khai thuận lợi trong nhiều môi trường. Hỗ trợ một cách có hiệu quả dạng hoạt ñộng khác chẳng hạn cấu trúc ô có bậc. Sử dụng kỷ thuật tiến bộ như phối hợp anten dàn và tách người dùng. Mô hình TDD ñược thiết kế ñể hoạt ñộng hiệu quả trong môi trường không kết hợp.  Cải thiện dung lượng: ðộ rộng băng tần lớn của WCDMA làm tăng hiệu suất vốn có trên các hệ thống tế bào trước ñó do nó làm giảm fading của tín hiệu vô tuyến. Ta biết rằng WCDMA sử dụng ñiều chế kết hợp ở ñường lên, ñây là tính năng không thể thực hiện ñược ở trong các hệ thống CDMA tế bào. ðiều khiển công suất chắc chắn ở ñường xuống sẽ có hiệu suất hoàn hảo, ñặc biệt ở môi trường trong nhà và môi trường ngoài trời có tốc ñộ thấp. Nói chung, ñối với dịch vụ thoại, sự cải thiện này là một bước tiến vì ñây là một trong hai yếu tố làm tăng dung lượng cell của WCDMA. 1.5.3 Ảnh hưởng của nhiễu lên hệ thống WCDMA Trong kênh thông tin vô tuyến lý tưởng, tín hiệu thu ñược chỉ bao gồm một tín hiệu ñến trực tiếp. Song, trong thực tế ñiều ñó là không thể xảy ra, tín hiệu sẽ bị thay ñổi trong suốt quá trình truyền, tín hiệu thu ñược sẽ là sự kết hợp các thành phần khác nhau: tín hiệu suy giảm, khúc xạ, nhiễu xạ của các tín hiệu khác…WCDMA là hệ thống di ñộng vô tuyến nên sẽ bị ảnh hưởng bởi ñiều ñó. Sau ñây là mô hình của hai loại nhiễu chính, ñó là nhiễu fadinh nhiều tia và nhiễu giao thoa. 6 Hình 1.4 Các tín hiệu ña ñường Hình 1.5 Các tín hiệu nhiễu giao thoa ðể làm giảm các ảnh hưởng của các loại nhiễu trên, trong WCDMA có nhiều kỹ thuật xử lý ñó là: mã hoá kênh, ñiều chế, trải phổ, phân tập…Trong ñồ án này ta sẽ ñi nghiên cứu các kỹ thuật phân tập tín hiệu. 1.5.4 Tính ña dạng phân tập trong WCDMA Trong hệ thống ñiều chế băng hẹp như ñiều chế FM tương tự ,sử dụng trong hệ thống thông tin di ñộng tổ ong ñầu tiên thì tính ña ñường tạo nên fading nghiêm trọng. Tính nghiêm trọng của ña ñường fading ñược giảm ñi trong ñiều chế CDMA băng rộng ,vì các tín hiệu qua các ñường khác nhau ñược thu nhận một cách ñộc lập .Nhưng hiện tượng ña ñường xảy ra một cách liên tục trong hệ thống này do fading ña ñường không thể loại trừ hoàn toàn ñược vì với các hiện tượng fading xảy ra một cách liên tục ñó thì bộ ñiều chế không thể xử lí tín hiệu thu một cách ñộc lập ñược. Phân tập là một hình thức tốt ñể làm giảm fading,có 3 loại phân tập là theo tần số ,theo thời gian và theo khoảng cách .Phân tập theo thời gian ñạt ñược nhờ sử dụng việc chèn và mã sữa sai .Phân tập theo thời gian có thể ñược áp dụng cho tất cả các hệ thống có tốc ñộ mã truyền dẫn cao mà thủ tục sửa sai yêu cầu. Hệ thống CDMA băng rộng ưứngduụngviệc phân tập theo tần số nhờ việc mở rộng khả năng báo hiệu trong một băng tần rộng và fading liên hợp với tần số thường có ảnh 7 hưởng ñến băng tần báo hiệu(200-300kHz). Nhưng với một băng tần rộng thì fading ít ảnh hưởng ñến tín hiệu hơn .Phân tập theo khoảng cách hay ñường truyền thường ñạt ñược theo 3 phương pháp sau: -Thiết lập nhiều ñường báo hiệu(chuyển vùng mềm) ñể kết nối máy di ñộng với 2 hoặc nhiều trạm gốc BTS. -Sử dụng môi trường ña ñường qua chức năng trải phổ giống như bộ thu quét thu nhận và tổ hợp các tín hiệu phát với các tín hiệu phát khác trễ thời gian. -ðặt nhiều anten tại BS (anten mảng). Phân tập theo khoảng cách có thể dễ dàng ñược áp dụng ñối với hệ thống TDMA và FDMA. Phân tập theo thời gian có thể ñược áp dụng cho tất cả các hệ thống số có tốc ñộ mã truyền dẩn cao mà thủ tục sữa sai yêu cầu. Phân tập theo tần số có thể dể dàng ñược áp dụng cho hệ thống CDMA. Bộ ñiều khiển ña ñường tách dạng sóng nhờ sử dụng bộ tương quan song song. Máy di ñộng sử dụng 3 bộ tương quan ,BTS sử dụng 4 bộ tương quan. Máy thu có bộ tương quan song song gọi là máy thu quét (Rake), nó xác ñịnh tín hiệu thu theo mỗi ñường và tổ hợp, giải ñiều chế tất cả các tín hiệu thu ñược. Fading có thể xuất hiện ở các ñường tín hiệu thu nhưng không có sự tương quan giữa các ñường tín hiệu thu.Vì vậy tổng các tính hiệu thu ñược có ñộ tin cậy cao vì rất ít có fading ñồng thời giữa cá ñường tín hiệu thu ñược. Nhiều bộ tách tương quan có thể áp dụng một cách ñồng thời cho hệ thống thông tin có 2 BTS sao cho có thể thực hiện chuyển vùng mềm cho thuê bao di ñộng. Các kỹ thuật phân tập:  Phân tập thời gian: ðây là phương pháp phân tập cơ bản nhất, dùng những khe thời gian tại những thời ñiểm khác nhau ñể truyền cùng một tín hiệu ban ñầu, như vậy tại ñầu thu ta có thể nhận ñược nhiều bản sao của một tín hiệu tại nhiều thời ñiểm. Hoặc cùng một tín hiệu thu, có thể ñược thu theo nhiều khoảng thời gian trễ khác nhau ñể chọn ra ñược tín hiệu thu tốt nhất.  Phân tập tần số: Nguyên lý cơ bản của bất kỳ loại sóng nào (cả sóng cơ và sóng ñiền từ ) thì chỉ giao thoa với nhau khi có cùng tần số hay vùng tần số lân cận. Phân tập tần số dựa vào ñặc tính này, dùng nhiều tần số khác nhau ñể truyền cùng một tín hiệu, như vậy tại ñầu thu sẽ thu ñược cùng một tín hiệu tại nhiều tần số khác nhau.  Phân tập không gian ( hay phân tập anten ): Trong kiểu phân tập này chúng ta dùng nhiều anten ñặt tại nhiều vị trí khác nhau, có ñộ phân cực khác nhau ñể truyền hay thu cùng một tín hiệu. Phương pháp này sẽ không làm mất ñộ rộng băng thông của hệ thống. Kết luận chương Chương này ñã giới thiệu tổng quan về các thế hệ thông tin di ñộng, ñặc biệt là hệ thống WCDMA, các ảnh hưởng của nhiểu trong hệ thống di ñộng. Cuối chương là phần giới thiệu về các kỹ thuật phân tập ñể giảm bớt nhiễu trong hệ thống vô tuyến. Trong chương tiếp theo sẽ ñi sâu nghiên cứu về kỹ thuật phân tập không gian và thời gian. 8 CHƯƠNG 2 PHÂN TẬP KHÔNG GIAN THỜI GIAN 2.1 Giới thiệu Dung lượng của hệ thống mạng tổ ong bị giới hạn bởi 2 yếu tố chính ñó là nhiễu fading và nhiễu giao thoa sóng (multiple access interference : MAI). Một bộ thu 2 chiều (2-D) có thể giảm ñược các nhiễu trên bằng cách xử lý tín hiệu thu ñược trên cả hai miền không gian và thời gian. Ở ñây, xử lý tín hiệu trong miền không gian là tiến hành xử lý tín hiệu bằng cách phân tập anten, còn xử lý tín hiệu trên miền thời gian là tiến hành xử lý tín hiệu thu bằng cách phân tập thời gian. Việc kết hợp 2 kỹ thuật phân tập cho tín hiệu sẽ làm tăng chất lượng của tín hiệu tại bộ thu. Tuy bộ thu 2-D này có khả năng xử lý tín hiệu ñồng thời trên miền không gian và thời gian song ñiều này ñòi hỏi phải có cấp ñộ tính toán phức tạp . Trong chương này chúng ta sẽ giới thiệu một số giải pháp ñơn giản ñể xử lý tín hiệu trong miền không gian và thời gian. Mảng anten thích nghi [3] có khả năng chống lại nhiễu fading hay MAI chỉ bằng cách xử lý không gian. Khi các thuê bao của hệ thống mạng trao ñổi thông tin từ những ñịa ñiểm khác nhau, mỗi thuê bao sẽ có một thông tin không gian duy nhất liên quan tới thuê bao ñó. Mảng anten thích nghi có thể dựa vào ñặc tính không gian của tín hiệu ñể giảm bớt nhiễu MAI. Việc xử lý này ñược thực hiện bởi bộ Beamformer .Beamformer có thể là một giải pháp hữu hiệu ñể cải thiện cho hệ thống CDMA hoạt ñộng tốt trong các kênh tín hiệu giao thoa với nhau. Dung lượng của hệ thống CDMA có thể ñược tăng lên bằng cách giảm bớt nhiễu giao thoa cochannel. 2.2 Anten Mảng Anten mảng là tập hợp gồm nhiều anten thành phần ñược bố trí tại những vị trí khác nhau trong không gian mảng .Các anten thành phần này có thể ñược sắp xếp theo các cấu trúc hình học bất kỳ .Tuỳ theo cách sắp xếp ñó mà mảng có thể là mảng ñường ,mảng tròn hay mảng phẳng . Mảng ñường và mảng tròn là trường hợp ñặc biệt của mảng phẳng .Góc phát xạ của một mảng ñược xác ñịnh dựa vào góc phát xạ của các anten thành phần , vào sự ñịnh hướng , vào vị trí của các anten , vào biên ñộ và pha của tín hiệu ñến. Nếu các anten của mảng là ñẳng hướng thì góc phát xạ của mảng sẽ chỉ phụ thuộc vào cấu trúc không gian của mảng và tín hiệu ñến mảng [3] .Trong trường hợp này góc phát xạ của mảng ñược gọi là hệ số mảng. Nếu các phần tử của mảng giống nhau nhưng không ñẳng hướng thì góc phát xạ của mảng ñược tính theo hệ số mảng và các góc phát xạ thành phần . 2.2.1 Mảng anten dãy Nếu khoảng cách giữa các phần tử trong mảng ñường thẳng bằng nhau thì mảng ñược gọi là mảng anten dãy (ULA) .Hình vẽ sau mô tả một mảng ULA gồm N phần tử .Khoảng cách giữa các phần tử trong mảng là d .Góc tín hiệu truyền ñến mảng là θ (còn gọi là góc AOA) . Tín hiệu thu ñược tại anten ñầu tiên của mảng ñược biểu diễn như sau : 9 x1 (t ) = A1 (t ) cos{2πf c t + γ (t ) + β } (2.1) Với A1(t) : Biên ñộ tín hiệu ñến anten . fc : Tần số sóng mang của tín hiệu . γ(t) : Hàm biểu thị sự biến ñổi tín hiệu. β : Góc pha tín hiệu . Ngoài ra tín hiệu thu ñược tại phần tử ñầu tiên có thể viết như sau : x1 (t ) = A1 (t )e j{γ (t )+ β } (2.2) Ta giả thiết rằng tín hiệu có dạng sóng phẳng ñược truyền ñến mảng từ một khoảng cách rất xa và trong môi trường truyền ñồng chất .Lúc này tín hiệu ñến các phần tử trong mảng sẽ có sự sai biệt về thời gian .Tín hiệu ñến phần tử thứ 2 trong mảng sẽ chậm hơn phần tử thứ nhất một Hình 2.1 Mảng anten ULA khoảng thời gian là τ ,tương tự phần tử thứ N sẽ trễ một khoảng là N τ .Như thế ta có thể biểu diễn tín hiệu thu ñược tại các phần tử khác trong mảng theo biểu thức tín hiệu thu ñược tại phần tử thứ nhất .Trong hình vẻ trên ta có thời gian trễ là : d sin θ τ= (2.3) c Với c là vận tốc truyền sóng ánh sáng . Vậy ta có biểu thức tín hiệu thu ñược tại phần tử thứ 2 là : x 2 (t ) = x1 (t − τ ) = A1 (t − τ ) cos{2πf c (t − τ ) + γ (t − τ ) + β } (2.4) Thông thường fc là rất lớn so với dãy thông của tín hiệu ,vì vậy biểu thức (2.4) có thể ñược viết như sau : x 2 (t ) = A(t ) cos{2πf c t − 2πf cτ + γ (t ) + β } (2.5) Hay x 2 (t ) = A(t )e j{−2πf cτ +γ (t )+ β } 10 = x1 (t )e j{−2πf cτ } x 2 (t ) = x1 (t )e d sin θ j { −2πf c } c (2.6) = x1 (t )e − j { 2π d λ sin θ } (2.7) Do ñó tín hiệu nhận ñược tại phần tử thứ i của mảng là (i=1:N) xi (t ) = x1 (t ).e − j { 2π d λ ( i −1) sin θ } (2.8) Ta ñịnh nghĩa một trường vector dùng ñể biểu diễn tất cả các tín hiệu thu ñược trên các phần tử của mảng .Trường vector tín hiệu ñó ñược biểu diễn như sau : x(t) =[x1(t) x2(t) ….. xn(t)]T (2.9) Ta cũng ñịnh nghĩa trường vector ñáp ứng a ( θ ) của mảng như sau : a (θ ) = [1 − j { 2π d sin θ } − j { 2π d ( N −1) sin θ } λ …… e ]T (2.10) Vector ñáp ứng của mảng là một trường các giá trị phụ thuộc vào góc tín hiệu truyền ñến mảng, vào cấu trúc hình học của mảng, cách bố trí các phần tử trong mảng và phụ thuộc vào tần số của tín hiệu ñến mảng .Chúng ta giả thiết rằng trong phạm vi thay ñổi của tần số sóng mang thì Vector ñáp ứng của mảng không thay ñổi .Khi cấu trúc của mảng không thay ñổi (ví dụ mảng ULA) và các phần tử của mảng là ñẳng hướng ,thì vector ñáp ứng của mảng chỉ phụ thuộc vào AOA (góc tín hiệu ñến mảng). Lúc này vector tín hiệu nhận ñược từ mảng có thể ñược viết như sau : x(t ) = a (θ ) x(t ) (2.11) ðể có ñược các ñiều trên thì ta phải giả thiết băng thông của tín hiệu phải nhỏ hơn nhiều lần thời gian truyền tín hiệu qua mảng .Giả thiết cho hiện tượng này ñược gọi là narrowband, tức là các tín hiệu thu ñược trong các phần tử của mảng sẽ có sự sai pha lẩn nhau ,song sự sai pha này có thể là nhỏ. Vì thế mô hình narrowband vẫn chính xác cho những tín hiệu biến thiên dạng hình sin, ñặc biệt là ở những tín hiệu có băng thông rất nhỏ so với thời gian truyền sóng qua mảng. Cũng vì lí do ñó mà khi thực hiện mô hình Beamformer ñể giảm thiểu sự giao thoa thì phải nằm trong giới hạn cho phép của hiện tượng narrowband. Trong toàn bộ luận văn này chúng ta giả thiết rằng tín hiệu W-CDMA thoả mãn narrowband . Thời gian trễ trong quá trình truyền sóng từ phần tử ñầu tiên ñến phần tử cuối cùng của mảng ñược tính như sau : ( N − 1)d sin θ (2.12) τ max = e λ c Nếu khoảng cách giữa các phần tử trong mảng là τ max = ( N − 1) 2 c c 2 fc 2 (2.13) c ( N − 1) τ max = λ λ = ( N − 1) 2 fc 11 Nếu mảng có 4 phần tử và fc =2GHz Ta có : τ max = 3 2.2000.10 6 Với hệ thống W-CDMA có băng thông tín hiệu là 5MHz. Tỉ số giữa τ thông tín hiệu ñược tính như sau : χ max = max và băng 3 × 5.10 6 =0.0037 2 × 2000.10 6 Như vậy giả thiết narrowband phù hợp với hệ thống W-CDMA. 2.3 Kỹ thuật Beamformer Beamforming là một kỷ thuật xử lý không gian chung nhất ñược thực hiện trong những anten mảng. Trong hệ thống mạng di ñộng tổ ong, tín hiệu hữu ích của một cell thường bị tín hiệu các cell khác trộn lẫn vào gây nên hiện tượng nhiễu giao thoa tín hiệu. Bộ Beamformer có thể phân tách các tín hiệu trong vùng giao thoa sóng ñể lấy ra tín hiệu mong muốn của cell ñó. Trong bộ Beamformer, tín hiệu thu ñược từ các phần tử trong mảng ñược tổng hợp lại rồi chọn ra tín hiệu có chất lượng tốt nhất. Hình dưới mô tả nguyên lý chung của một bộ Beamformer. Hình 2.2a Mô hình Beamformer Hình 2.2b Búp sóng anten dãy Nếu có tất cả K tín hiệu ñến mảng với góc tới của mỗi tín hiệu ñược xác ñịnh riêng biệt. Lúc ñó vector tín hiệu nhận ñược có dạng như sau : K x(t ) = ∑ si (t ) a (θ i ) + n(t ) (2.14) i =1 Với si (t ) là tín hiệu nhận ñược tại phần tử thứ i trong mảng ,góc tới là θ i . a (θ i ) là vector ñáp ứng của mảng ứng với góc tới θ i . n(t ) là vector tín hiệu nhiễu . ðầu ra của bộ Beamformer có dạng sau : H (2.15) y (t ) = w (t ) x(t ) T Với w=[ w1 w2 … wN] là vector trọng số của mảng . Thông thường vector trọng số ñược chọn ñể phù hợp cho từng kỷ thuật Beamformer khác nhau. Các kỹ thuật Beamformer thường có là MMSE, MSINR, MSNR, CMA, ML…sẽ ñược ñề cập ở các chương sau . 2.3.1 Ví dụ ñơn giản của bộ Beamformer với mảng ULA 12 Bây giờ ta chỉ xét một ví dụ thật ñơn giản ñể diển tả nguyên lí của Beamforming. Giả thiết rằg tín hiệu của thuê bao truyền ñến mảng ULA với góc AOA là 0o , và giả thiết rằng phần tín hiệu nhiễu do giao thoa ñược thu ở góc AOA là 45o .Vector ñáp ứng của mảng cho tín hiệu hữu ích trong trường hợp này là : 1 a desired = a (0) =   1 (2.16) Tương tự ,vector ñáp ứng của mảng ñối với tín hiệu nhiễu giao thoa là : 1    1   1  π a int = a ( ) =  − j 2π × 1 sin( π )  =  − j π  =   2 4 2 4 e  e  − 0.6057 − j 0.7957  (2.17) Bộ thu Beamformer phải tăng cao hệ số khuếch ñại ñối với tín hiệu mong muốn ñồng thời giảm thiểu tối ña hệ số khuếch ñại ñối với tín hiệu nhiễu giao thoa. Vì thế vector ñáp ứng của mảng phải thoả mãn các ñiều kiện sau : H w a desired = 1 H w a int = 0 (2.18) Từ trên ta tính ñược 0.5 − j 0.2478 w=  0.5 + j 0.2478 Hàm ñặc trưng của Beamformer tương ứng với góc θ ñược cho như sau : H g (θ ) = w a (θ ) (2.19) ðồ thị bức xạ (Beam pattern) ñược xác ñịnh bởi ñộ lớn của g (θ ) : G (θ ) = g (θ ) (2.20) ðồ thị bức xạ ñược dùng ñể mô tả mảng các hệ số khuếch ñại tín hiệu ứng với các góc ñến khác nhau, hay ñược gọi là bộ khuếch ñại có chọn lọc. ðồ thị bức xạ cho trường hợp trên ñược minh hoạ ở hình 2.3 dưới ñây. Quan sát ta thấy, hệ số khuếch ñại của tín hiệu là 1 còn của tín hiệu nhiễu giao thoa là 0. Như vậy, beamformer có thể hướng búp sóng null về phía tín hiệu nhiễu giao thoa, phương pháp này ñược gọi là phương pháp null steering beamformer. Chú ý rằng, trong phương pháp này các bộ phận của bộ Beamformer chỉ làm việc ñược khi tổng số các tín hiệu ñến phải ít hơn hay bằng số lượng các phần tử trong mảng. Khi mà số phần tử anten là N, thì có thể null steering N-1 hướng tín hiệu nhiễu khác nhau, song ñiều này thì không thể phù hợp ñược trong môi trường hệ thống mạng WCDMA ( với rất nhiều nhiễu giao thoa). Trường hợp số lượng tín hiệu ñến mảng vượt quá số phần tử của mảng gọi là overloaded .Tuy nhiên quá trình xử lý khuếch ñại tín hiệu trong bộ thu của hệ thống CDMA có sự liên kết lớn ñể chống lại sự quá tải trong mảng, ñồng thời việc bố trí không gian các phần tử của mảng cũng góp phần nâng cao khả năng xử lý của hệ thống. 13 Hình 2.3 ðồ thị bức xạ của anten dãy ñối với góc ñến tín hiệu là 0o và nhiễu giao thoa là 45o. Từ ví dụ trên ta nhận thấy rằng:  Mặc dầu có thể ñặt null trực tiếp ñến hướng ñến của tín hiệu nhiễu giao thoa, song từ ñồ thị bức xạ (hình 2.3) ta thấy ñộ lợi của anten không cực ñại tại hướng ñến của tín hiệu hữu ích. Như vậy, cần phải có nhiều sự cải tiến trong giải pháp kỹ thuật của beamformer. Trong chương sau sẽ ñề cập ñến các giải pháp kỹ thuật beamformer khác nhau ñó.  Nếu chúng ta ngầm giả thiết là ñã nhận biết ñược mảng vector ñáp ứng cho nhiều users khác nhau. Thì trong vùng một cell ñô thị, mỗi tín hiệu ña ñường sẽ ñến mảng với những góc tới khác nhau, vì thế sẽ có rất nhiều hướng giải quyết cho mỗi ñường tính hiệu này. Trong trườnghợp này, rất khó ñể xác ñịnh chính xác góc tín hiệu ñến mảng và như vậy sự ñánh giá vector ñáp ứng của mảng là rất không xác thực. ðiều ñó cho thấy sự cần thiết phải ñánh giá góc ñến AOA ñể tìm ra vector ñáp ứng của mảng. Ngoài ra kỹ thuật trên cần yêu cầu số lượng tín hiệu ñến mảng (bao gồm tín hiệu giao thoa co-channel) phải ít hơn số lượng các phần tử trong mảng. ðiều này không thể có ñược trong mạng WCDMA. Kỹ thuật Eigen-Beamforming, ñược xét ñến ở phần sau, là giải pháp thích hợp, không cần phải biết ñược vector ñáp ứng của mảng cũng như không cần phải ñánh giá rõ ràng góc tới AOA. 2.4 Nguyên tắc lấy mẫu tín hiệu trong xử lý không gian Những nguyên lý lấy mẫu trong miền thời gian có thể ñược áp dụng trong hệ thống xử lý không gian do giữa hai hệ thống này cũng có sự tương quan với nhau. Xét tín hiệu trong miền thời gian và tần số, mẫu tín hiệu lấy theo nguyên tắc lấy mẫu Nyquist. Tức là, tín hiệu ñược lấy mẫu với tần số (tốc ñộ lấy mẫu) lớn hơn 2 lần tần số lớn nhất của tín hiệu. Trường hợp tần số lấy mẫu nhỏ hơn 2f ñược gọi là aliasing .Tương tự trong miền không gian, ñể tránh hiện tượng aliasing thì khối beamformer phải thoã mãn ñiều kiện sau : 14 d≤ λ 2 (2.21) ðiều này ñược gọi là nguyên lý lấy mẫu trong miền không gian . ðiều kiện ñó giúp cho khối beamforming tránh ñược hiện tượng aliasing, khoảng cách giữa các phần tử trong mảng phải nhỏ hơn hay bằng nửa bước sóng sóng mang của tín hiệu. Tuy nhiên khoảng cách giữa các phần tử trong mảng cũng không ñược nhỏ quá ñể tránh sự tác ñộng lẫn nhau giữa các phần tử trong mảng. Vì vậy, trong thực tế khoảng cách giữa các phần tử trong mảng bằng nữa bước sóng sóng mang là tốt nhất. Trong ñồ án này ta giả thiết khoảng cách giữa các phần tử trong mảng ULA bằng nữa bước sóng sóng mang . 2.5 Lợi ích của phân tập không gian Một mãng anten thích nghi có thể có ñược nhiều cấu trúc không gian khác nhau và làm giảm ñược nhiễu fading nhiều tia. Mảng này có khả năng lái búp sóng của mảng về phía tín hiệu cần nhận và tránh hướng ñến của tín hiệu nhiễu .Tín hiệu thu ñược tại các phần tử trong mảng có rất ít sự tương quan lẫn nhau. Vì thế nếu tín hiệu tại một phần tử của mảng là tín hiệu nhiễu fading, tín hiệu này sẽ khác nhiều tín hiệu thu ñược tại các phần tử khác trong cùng thời gian ñó .Vì thế luôn có một tín hiệu tốt nhất thu ñược một trong các phần tử của mảng .Nên việc tổ hợp các tín hiệu thu ñược từ các phần tử trong mảng sẽ làm tăng tỷ số SNR và tăng ñộ trung thực của tín hiệu thu . 2.6 Phân tập thời gian: Bộ thu Rake trong CDMA Trong một kênh có chọn lọc tần số ,có nhiều bản sao tín hiệu ñược truyền ñến máy thu, chúng ñi qua nhiều ñường khác nhau. Những bản tin sao chép này ñược tổng hợp lại tại ñầu thu ñể cải thiện tỷ số tín hiệu trên nhiễu SNR. Khi các tín hiệu này ñược truyền theo nhiều ñường khác nhau, sẽ có một ñường truyền không (hoặc ít) chịu ảnh hưởng bởi nhiễu fading. ðiều này có nghĩa là nếu mỗi ñường truyền ñều bị ảnh hưởng bởi fading, các tín hiệu ñi theo các ñường khác nhau sẽ có sự khác biệt rõ rệt. Tại ñầu thu sẽ luôn thu ñược một kênh tín hiệu có ñộ trung thực chấp nhận ñược. Trong hệ thống CDMA, bộ thu tín hiệu có thể chứa nhiều thiết bị tương quan nhau ñể phân chia tín hiệu thành nhiều bản giống nhau và làm giảm nhiễu fading .Bộ thu này ñược gọi là bộ thu Rake, nó ñã ñược dùng nhiều trong hệ thống mạng thông tin di ñộng CDMA thế hệ 2 .Quá trình xử lý thời gian trong bột hu Rake giúp cho hệ thống CDMA giãm ảnh hưởng của nhiễu fading. Có nhiều kỹ thuật khác nhau ñược dùng ñể tổ hợp tín hiệu tương quan .Nếu việc kết hợp tín hiệu có những trọng số phù hợp với từng kênh riêng lẽ và có hệ số khuếch ñại tương xứng với những bộ phận nhiều ñường tương ứng ,quá trình này gọi là tổ hợp tỷ lệ tối ña (MRC). MRC gọi là một kết cấu tổ hợp . ðối với những bộ kết hợp không có kết cấu ,là tất cả những trọng số kết hợp ñều bằng nhau và ñược gọi là bộ tổ hợp cùng ñộ lợi (EGC). Cả hai MRC và EGC ñều hiệu quả ñể cải thiện tỷ số tín hiệu trên nhiễu SNR. 15 ∫ e*(t −τ 1 ) finger#2 ∫ e*(t −τ 1 ) finger#L ∫ e*(t −τ 1 ) Bộ tổ hợp RAKE finger#1 Tín hiệu ra Hình 2.4 Mô hình bộ thu Rake 2.6.1 Các kỹ thuật tổ hợp tín hiệu Có nhiều phương pháp tổ hợp tín hiệu nhiều ñường tại bộ thu, song có 3 phương pháp chính ñó là: Bộ tổ hợp tỷ lệ tối ña (MRC), Bộ tổ hợp cùng ñộ lợi (EGC) và bộ tổ hợp chọn lọc (SC). Giả thiết rằng, tín hiệu ñến ñược chia thàn L ñường thông qua L bộ thu. Và ta ký hiệu γ i ( i=1,…,L) là tỷ số năng lượng tín hiệu trên nhiễu cho ñường thứ i. Như vậy, với kênh truyền Rayleigh fading γ i , sẽ có: f γi ( x ) = 1 γc e− x / γ c (2.22) γ c giá trị trung bình năng lượng tín hiệu trên nhiễu. 2.6.1.1 Bộ tổ hợp chọn lọc (SC) Với bộ tổ hợp chọn lọc, ñường tín hiệu ñến có SNR cao luôn ñược lựa chọn. Như thế ngỏ ra của bộ tổ hợp chọn lọc là: γ scx = max{γ 1 ,...., γ L } Trong trường hợp kênh truyền Fading, có thể áp dụng hàm (2.22) cho γ ssc : [ Fγ sc ( x ) = Pr[γ 1 ≤ x,...., γ L ≤ x ] = 1 − e − x / γ c s ] L (2.22) 2.6.1.2 Bộ tổ hợp tỷ số tối ña (MRC) MRC là một bộ tổ hợp tối ưu. Trong bộ tổ hợp MRC, trọng số của các ñường tín hiệu ñược xác ñịnh bởi sự tổ hợp của các ñường fading. MRC là một bộ tổ hợp tối ưu. Ngõ ra của bộ tổ hợp MRC, γ smrc ñược ñánh giá bởi hàm cdf sau: Fγ mrc (x ) = 1 − e s −x / γ c 1 x  .∑   i = 0 i!  γ c  L i (2.23) 2.6.1.3 Bộ tổ hợp cùng ñộ lợi (EGC) Bộ tổ hợp EGC cung tương tự như bộ tổ hợp MRC, khác nhau duy nhất là trong bộ tổ hợp EGC không có sự xác ñịnh trọng số cho từng nhánh tín hiệu. Tức là, trọng 16 số cho từng nhánh tín hiệu ñều giống nhau. EGC chỉ thích hợp cho các kỹ thuật ñiều chế mà các symbol có cùng mức năng lượng như M-PSK. 2.7 Bộ thu Beamformer_Rake Beamformer_Rake là sự kết hợp giữa Beamformer với Rake ñể xử lý tín hiệu trên cả 2 miền thời gian và không gian. Hình 2.5 mô tả cấu trúc và nguyên lý hoạt ñộng của bộ thu Beamformer-Rake. Nó chứa một mảng các anten thu, tín hiệu thu ñược từ mảng ñược ñưa ñến các bộ tổ hợp không gian ñể thực hiện beamforming cho những tín hiệu ña ñường, mỗi ñường tín hiệu sẽ ñược nhân với một vector trọng số khác nhau trước khi vào bộ tổ hợp. Tín hiệu ra khỏi bộ tổ hợp không gian ñược ñưa tới các finger sau ñó ñược kết hợp lại bởi bộ tổ hợp Rake. Finger#1 Tổ hợp không gian W1 e* (t − τ 1 ) Finger#1 Tổ hợp không gian W2 e* (t − τ 2 ) ∫ Bộ tổ hợp Rake e* (t − τ 1 ) ∫ e* (t − τ 2 ) Finger#1 Tổ hợp không gian WL e (t − τ L ) ∫ * e* (t − τ L ) Hình 2.5 Bộ thu Beamformer-Rake Kết luận chương: Chương này ñã xét ñến hai kỹ thuật phân tập chính là phân tập không gian và phân tập thời gian và sự kết hợp hai kỹ thuật phân tập này thành kỹ thuật phân tập chung là kỹ thuật phân tập Không gian-Thời gian. Trong ñó, kỹ thuật phân tập không gian ñược thực hiện bởi bộ thu Beamformer, thực hiện bằng cách tổ hợp tín hiệu từ nhiều anten thu ñể có ñược tín hiệu thu tốt nhất. Kỹ thuật phân tập thời gian ñược thực hiện bởi bộ thu Rake, thực hiện bằng cách phân chia tín hiệu thu thành 17 nhiều khoảng thời gian trễ khác nhau sau ñó dùng kết cấu tổ hợp ñể tổ hợp tín hiệu chọn ra tín hiệu tốt nhất. Mục ñích của bộ thu Beamformer là làm giảm ảnh hưởng của nhiễu giao thoa còn bộ thu Rake là làm giảm ảnh hưởng của nhiễu ña ñường. Vì thế, sự kết hợp giữa hai bộ thu này tạo thành bộ thu Beamformer-Rake, là một kết cấu tốt ñể làm giảm ảnh hưởng của nhiễu giao thoa và nhiễu fading lên tín hiệu thu. Trong chương tiếp sẽ giới thiệu các kỹ thuật khác nhau ñể xử lý phân tập không gian trong bộ thu Beamformer. 18 CHƯƠNG 3 CÁC KỸ THUẬT BEAMFORMING 3.1 Giới Thiệu Trong chương này sẽ giới thiệu những kỹ thuật khác nhau có thể ñược áp dụng cho Beamforming trong hệ thống mạng thông tin di ñộng tổ ong CDMA và hệ thống OFDM. Ba kỹ thuật chính ñược giới thiệu trong chương này là: tối ưu tỉ số tín hiệu trên nhiễu (MSNR),tối ưu tỉ số tín hiệu /nhiễu giao thoa và nhiễu nhiệt (MSINR) và kỹ thuật tối thiểu trung bình bình phương sai lệch (MMSE). Mở ñầu chương với việc ñi tìm hiểu kỹ thuật MSNR với giải pháp giá trị riêng ñơn giản SE. Sau ñó xét ñến kỹ thuật MSINR với giải pháp nhóm các giá trị riêng GE. Tiếp theo sẽ nghiên cứu kỹ thuật MMSE Beamforming. Sau ñây là nội dung của chương. 3.2 Kỹ thuật MSNR Beamforming Kỹ thuật MSNR ñược dùng ñể làm cho giá trị SNR tại ñầu ra của beamformer là cực ñại. ðể làm ñược ñiều ñó, cần phải xác ñịnh ñược vector trọng lượng của anten mảng, sao cho khi nhân vector tín hiệu thu với vector trọng lượng thì sẽ có tín hiệu ñầu ra có SNR cực ñại. Vector trọng lượng cần xác ñịnh chính là là vector riêng tương ứng với giá trị riêng lớn nhất của của ma trận hiệp phương sai tín hiệu thu. ðiều kiện tốt nhất cho kỹ thuật này chính là: nhiễu giao thoa và nhiễu nhiệt là nhiễu không gian trắng . 3.2.1 Cực ñaị tỉ số tín hiệu trên nhiễu (MSNR) Trong kỹ thuật này, ñể có tỷ số tín hiệu SNR là cực ñại, ta giả thiết rằng nhiễu tác ñộng vào tín hiệu là nhiễu trắng .Khi ñó, tín hiệu thu ñược có thể viết như sau : x=s+n (3.1) Ở ñây s và n lần lượt là vector tín hiệu và vector nhiễu có kích thước N×1, với N là số anten trong mảng. Ma trận hiệp phương sai của nhiễu có dạng sau : H R nn = E[n(t )n (t )] = σ n2 I N (3.2) Với σ n2 là hệ số variance của nhiễu. Biểu thức (3.2) biểu diễn cho tín hiệu nhiễu trắng trong miền không gian. Còn nhiễu trắng trong miền thời gian là : H E n(t1 )n (t 2 ) = σ n2 I N δ (t1 − t 2 ) (3.3) ðể tìm ñược tỷ số SNR tại ñầu ra, ta cần tính công suất tín hiệu và nhiễu tại ñầu ra của bộ Beamformer. Công suất của tín hiệu tại ñầu ra của beamformer như sau (giả thiết rằng tín hiệu chưa ñược xử lý ): [ ] 2 H Ps = E  w s    = E ( w s s w) H H (3.4) = w R ss w H Ở ñây R ss = E ( s s H ) là ma trận hiệp phương sai của vector tín hiệu s , w là vector trọng lượng của mảng N anten. 19 Tương tự, công suất của nhiễu tại ñầu ra của beamformer là : 2 Pn = E ( w n ) H H = w R nn w (3.5) = σ n2 w w H Vậy tỉ số SNR tại ñầu ra của beamformer là: H SNR = w R ss w (3.6) σ n2 w H w ðể tìm giá trị vector trọng lượng của mảng sao cho tỉ số SNR cực ñại . Ta ñạo hàm vế phải của biểu thức (3.6) theo w H và gán biểu thức ñó bằng 0 ,ta ñược (w w)R H ss ( (w w) 2 H Giá trị của ) H w − w R ss w w =0  wH R w  ss ⇒ R ss w =  w H  w w  H w R ss w (3.7) giới hạn trong giá trị lớn nhất và nhỏ nhất của các giá trị riêng H w w của ma trận R ss , với giá trị riêng lớn nhất là λmax thì ta có: R ss w = λmax w (3.8) λmax chính là giá trị lớn nhất của SNR .Vector riêng w MSNR tương ứng với giá trị λmax là vector trọng số tối ưu làm cực ñại SNR tại ñầu ra của mảng . Như vậy, giải pháp MSNR ñể tìm ra vector ñáp ứng tối ưu ñược thực hiện bằng cách tìm ra vector riêng (tương xứng với giá trị riêng lớn nhất) từ chuổi các giá trị riêng ñơn giản, phương pháp này ñược gọi là phương pháp SE (simple Eigenvalue): R ss w MSNR = λ w MSNR (3.9) Kỹ thuật Beamforming thực hiện theo cách trên ñược gọi là Eigen_Beamforming. Nếu có tín hiệu ñi ñến mảng từ một góc θ d ,vector tín hiệu có thể ñược viết như sau : s(k ) = d (k )a(θ d ) (3.10) Với d ký hiệu chỉ tín hiệu ñến, k mẫu index tín hiệu bất kì và a (θ d ) là vector ñáp ứng của mảng ứng với góc tới θ d . Vì thế ta có thể viết lại như sau : ( )a(θ R ss = E d 2 )a (θ d ) H d (3.11) Từ (3.8) ta có : ( )a(θ )a E ( d )a (θ ) w Ta ñặt ζ = E d 2 2 d H (θ d ) w MSNR = λ max w MSNR (3.12) H d λ max MSNR ,vector ñáp ứng cho MSNR ñược cho như sau : 20
- Xem thêm -