Đăng ký Đăng nhập
Trang chủ Nghiên cứu giải pháp công nghệ kiểm soát phản ứng hóa nhiệt ứng dụng trong loại ...

Tài liệu Nghiên cứu giải pháp công nghệ kiểm soát phản ứng hóa nhiệt ứng dụng trong loại trừ tích tụ sáp parafin trong hệ thống đường ống vận chuyển dầu thô

.PDF
82
244
80

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI --------------------------------------NGUYỄN ĐỨC HÙNG NGHIÊN CỨU GIẢI PHÁP CÔNG NGHỆ KIỂM SOÁT PHẢN ỨNG HÓA NHIỆT ỨNG DỤNG TRONG LOẠI TRỪ TÍCH TỤ SÁP – PARAFIN TRONG HỆ THỐNG ĐƢỜNG ỐNG VẬN CHUYỂN DẦU THÔ Chuyên ngành : Kỹ thuật hóa học LUẬN VĂN THẠC SĨ KHOA HỌC CHUYỆN NGÀNH KỸ THUẬT HÓA HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC : 1. TS. ĐÀO QUỐC TÙY 2. TS.NGUYỄN VĂN NGỌ Hà Nội – Năm 2015 1 Lời Cảm Ơn Để hoàn thành khóa luận văn tốt nghiệp này, Em xin bày tỏ lòng biết ơn chân thành, sâu sắc tới TS Đào Quốc Tùy trƣởng bộ môn hữu cơ hóa dầu trƣờng Bách Khoa hà nội và TS Nguyễn Văn Ngọ nguyên giám đốc công ty nghiên cứu ứng dụng và dịch vụ kỹ thuật DMC.RT thuộc tổng công ty dung dịch khoan và hóa phẩm dầu khí. Đã trực tiếp hƣớng dẫn, tạo điều kiện để em làm tốt đƣợc luận văn trên. Em xin chân thành cảm ơn các anh chị công tác tại công ty nghiên cứu ứng dụng và dịch vụ kỹ thuật DMC.RT. Cuối cùng em xin bày tỏ lời cảm ơn đến gia đình, ngƣời than và bạn bè đã quan tâm chia sẻ những khó khăn và động viên em hoàn thành tốt luận văn tốt nghiệp này. Hà nội ngày 3 tháng 3 năm 2015 Học Viên Nguyễn Đức Hùng 2 Lời Cam Đoan Tôi xin cam đoan Luận văn này là công trình nghiên cứu thực sự của cá nhân, đƣợc thực hiện dƣới sự hƣớng dẫn khoa học của TS Đào Quốc Tùy và TS Nguyễn Văn Ngọ. Các số liệu, những kết quả nghiên cứu đƣợc trình bầy trong luận văn này trung thực và chƣa từng đƣợc công bố dƣới hình thức nào. Tôi xin chịu trách nhiệm về nghiên cứu của mình. Học viên Nguyễn Đức Hùng 3 DANH MỤC HÌNH Hình I.1. Hình ảnh minh hóa lắng đọng hữu cơ ................................................. 3 Hình I.2. Lắng đọng muối lấy từ mỏ Bạch Hổ .................................................. 7 Hình I.3.Lắng đọng muối trong ống khai thác theo Shlumbeger ...................... 7 Hình I.4. Ảnh hƣởng của nhiệt độ tới độ hòa tan của CaCO3 ........................... 10 Hình I.5. Ảnh hƣởng của áp suất riêng phần của CO2 tới độ hòa tan của CaCO3 ............................................................................................. 11 Hình I.6. Ảnh hƣởng của nhiệt độ tới độ hòa tan của muối canxi sunphat ....... 13 Hình I.7. Cơ chế hình thành tích tụ lắng đọng muối ......................................... 17 Hình I.8. Ảnh hƣởng của hợp chất hữu cơ lấy từ lắng đọng muối tới sức căng bề mặt trên ranh giới pha ...................................................... 18 Hình I.9. Ảnh hƣởng của hợp chất hữu cơ lấy từ lắng đọng muối tới động học tạo lắng đọng muối trong phòng thí nghiệm ........................... 18 Hình I.10. Khả năng hòa tan muối CaCO3 của một số hóa phẩm chelat ........... 22 Hình I.11. Khoảng pH phát huy hiệu dụng trong hòa tan và giữ các ion trong trạng thái lơ lửng của một số hóa phẩm chelat ..................... 22 Hình I.12 - Khả năng hòa tan muối canxi sunphat ............................................. 24 Hình I.13. Động học hòa tan lắng đọng từ BaSO4 của một số hóa phẩm chelat ............................................................................................... 25 Hình I.14. Động học hòa tan cặn muối SrSO4 của một số hóa chất chelat ....... 26 Hình I.15. Phân bố n-parafin trong các mẫu lắng đọng .................................... 47 Hình I.16. Biểu đồ sắc ký mẫu lắng đọng giếng 1102 ...................................... 48 Hình I.17. Phân bổ n-parafin trong các mẫu lắng đọng .................................... 48 Hình I.18. Sắc ký đồ nParamns mẫu lắng đọng GK 1102, GK 809 và mẫu dầu thô (BT) ........................................................................................................ 50 Hình II.1. Thiết bị đo pH dung dịch có bù nhiệt độ đƣợc sử dụng trong nghiên cứu ...................................................................................... 52 Hình III.1. Đồ thị mô tả sự biến thiên pH và nhiệt độ của hệ hóa phẩm theo thời gian lƣu (XT = 0,0%) ............................................................. 56 4 Hình III.2. Ảnh hƣởng của hàm lƣợng xúc tác tới biến thiên pH dung dịch và động học tạo nhiệt của hệ hóa phẩm (XT = 0,005%) ................ 58 Hình III.3. Ảnh hƣởng của hàm lƣợng xúc tác tới biến thiên pH dung dịch và động học tạo nhiệt của hệ hóa phẩm (XT = 0,01%) ................... 60 Hình III.4. Ảnh hƣởng của hàm lƣợng xúc tác tới biến thiên pH dung dịch và động học tạo nhiệt của hệ hóa phẩm (XT = 0,025%) ................. 61 Hình III.5. Ảnh hƣởng của hàm lƣợng xúc tác tới biến thiên pH dung dịch và động học tạo nhiệt của hệ hóa phẩm (XT = 0,05%) .................. 62 Hình III.6. Tập hợp kết quả ảnh hƣởng của hàm lƣợng chất xúc tác tới sự biến thiên pH của hệ hóa phẩm (trƣờng hợp nhiệt độ ban đầu, To=23oC) ......................................................................................... 63 Hình III.7. Tập hợp kết quả ảnh hƣởng của hàm lƣợng chất xúc tác tới động học tạo nhiệt và thời gian bắt đầu phản ứng .................................. 64 Hình III.8. Ảnh hƣởng của nồng độ xúc tác tới thời gian bắt đầu phản ứng toàn khối của khối hóa phẩm (với trƣờng hợp nhiệt độ ban đầu của phản ứng là 23oC) .................................................................... 64 Hình III.8. Ảnh hƣởng của nhiệt độ ban đầu của khối hóa phẩm tới động học tạo nhiệt và thời gian bắt đầu phản ứng của hệ hóa phẩm không chứa xúc tác .......................................................................... 67 Hình III.9. Ảnh hƣởng của nhiệt độ ban đầu của khối hóa phẩm tới động học tạo nhiệt và thời gian bắt đầu phản ứng của hệ hóa phẩm chứa 0,01% xúc tác ......................................................................... 68 5 DANH MỤC BẢNG Bảng I.1. Độ hòa tan của CaSO4.2H2O trong nƣớc cất (Ca2+ mg đƣợng lƣợng/Lít) ....................................................................................... 13 Bảng I.2. Khả năng hòa tan CaCO3 trong các dung dịch axit ............................ 21 Bảng I.3. Một số chất phổ biến dùng trong lắng đọng cacbonnat và sunphat .... 23 Bảng I.4. Đặc tính cơ bản của dầu thô Bạch Hổ hỗn hợp .................................. 31 Bảng I.5. Đặc tính cơ bản của dầu thô mỏ Rồng hỗn hợp ................................. 32 Bảng I.6. Thành phần các hợp chất hydrocacbon và phi hydrocacbon trong dầu thô mỏ Rồng và mỏ Bạch Hổ ................................................ 35 Bảng I.7. Thông số kỹ thuật của một số giếng mỏ Bạch Hổ có lắng đọng parafin ............................................................................................ 36 Bảng I.8. Phân bố n-parafin trong thành phần lắng đọng .................................. 37 Bảng I.9. Kết quả nghiên cứu trong phòng thí nghiệm về khả năng hòa tan lắng đọng parafin của dung môi Cxynol và hóa phẩm vi sinh ...... 38 Bảng I.10. Kết quả phân tích thành phần lắng đọng parafin và thành phần tan trong hóa phầm VDK-CSL ............................................................ 39 Bảng I.11. Một vài đặc tính hóa phẩm VDK-CSL ............................................ 40 Bảng I.12. Kết quả nghiên cứu lắng đọng parafin trên thiết bị ngón tay lạnh .... 40 Bảng I.13. Kết quả thử nghiệm công nghiệp hóa phẩm ngăn ngừa lắng đọng parafin ............................................................................................. 41 Bảng I.14. Kết quả phân tích thành phần hóa lý của mẫu lắng đọng ................ 42 Bảng I.15. Kết quả phân tích dải phân bố n-Paraffin ......................................... 43 Bảng I.16. Kết quả phân tích dải phân bố n-Paraffin ......................................... 46 Bảng III.1. Thành phần thiết kế dung dịch phản ứng ........................................ 54 Bảng III.2. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm (XT=0%) ............................................................. 55 6 Bảng III.3. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm (XT=0,005%) ...................................................... 57 Bảng III.4. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm (XT=0,01%) ........................................................ 59 Bảng III.5. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm ( XT=0,025% ) .................................................... 60 Bảng III.6. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm (XT=0,05%) ......................................................... 62 Bảng III.7. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm (XT= 0,0%) ......................................................... 66 Bảng III.8. Biến thiên pH dung dịch và nhiệt độ khối hóa phẩm theo thời gian thí nghiệm (XT = 0,01%) ...................................................... 66 7 MỤC LỤC LỜI NÓI ĐẦU .......................................................................................................... 1 Phần I: TỔNG QUAN VỀ LẮNG ĐỌNG SÁP-PARAFIN VÀ PHƢƠNG PHÁP XỬ LÝ LOẠI TRỪ ....................................................................................... 3 I.1. Khái niệm về lắng đọng sáp-parafin và cơ chế gây lắng đọng ........................... 3 I.1.1. Khái niệm chung về lắng đọng sáp-parafin ..................................................... 3 I.1.1.1Khái liệm về lắng đọng hữu cơ ....................................................................... 3 I.1.1.2 Khái liệm về lắng đọng vô cơ ........................................................................ 5 I.1.1.3 Cơ chế gây lắng đọng hữu cơ ....................................................................... 8 I.1.1.4 Cơ chế gây lắng đọng vô cơ........................................................................... 9 I.1.2.Ảnh hƣởng của một số yếu tố tới quá trình tích tụ lắng đọng muối ................. 15 I.1.2.1 Ảnh hƣởng của điều kiện dòng chảy tới tích tụ lắng đọng muối .................. 15 1.1.2.2.Ảnh hƣởng của thành phần dầu tới tích tụ lắng đọng muối .......................... 16 I.1.3.Phƣơng pháp ngăn ngừa lắng đọng vô cơ......................................................... 19 I.1.3.1.Xử lý loại trừ tích tụ lắng đọng chứa muối cacbonat .................................... 20 I.1.3.2.Xử lý loại trừ lắng đọng chứa muối sunphat ................................................. 23 I.1.3.3 Các phƣơng pháp công nghệ ứng dụng cho xử lý tích tụ sáp-parafin trong đƣờng ống vận chuyển dầu thô. ....................................................................... 27 I.1.3.3.1. Phƣơng pháp cơ học................................................................................... 27 I.1.3.3.2 Phƣơng pháp nhiệt ...................................................................................... 28 I.1.3.3.3. Phƣơng pháp hóa học................................................................................. 28 I.2. Một số thông tin, dữ liệu về thực trạng xử lý tích tụ parafin tại LD Vietsovpetro .............................................................................................................. I.2.1.Một vài nét về lịch sử chi phối nghiên cứu xử lý tích tụ parafin tại LD Vietsovpetro .............................................................................................................. 30 I.2.2. Thực trạng tích tụ và việc nghiên cứu nhằm phòng ngừa, hoặc xử lý loại trừ tích tụ sáp-parafin ở XNLD Vietsovpetro .................................................... 32 8 I.3. Nghiên cứu xác lập tiêu chí phục vụ lựa chọn hóa phẩm, phƣơng pháp tiếp cận và phƣơng pháp nghiên cứu ........................................................................ 51 Phần I THÍ NGHIỆM ..................................................................................................... 52 II.1. Hóa chất: ............................................................................................................ 52 II.2. Thiết bị:.............................................................................................................. 52 II.3. Phƣơng pháp và quy trình thực hiện thí nghiệm ............................................... 53 Phần III. KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN ......................................... 54 III.1. Thiết kế thành phần các hệ dung dịch cho thí nghiệm ..................................... 54 III.2. Nghiên cứu ảnh hƣởng của hàm lƣợng chất xúc tác tới biến thiên pH dung dịch và động học tạo nhiệt của hệ hóa phẩm ................................................... 55 II.2.1. Nghiên cứu với hàm lƣợng xúc tác = 0%, nhiệt độ dung dich ban đầu = 230C ........................................................................................................................... 55 II.2.2. Nghiên cứu với hàm lƣợng xúc tác = 0,005%, nhiệt độ dung dich ban đầu = 230C ................................................................................................................. 57 II.2.3. Nghiên cứu với hàm lƣợng xúc tác = 0,01%, nhiệt độ dung dich ban đầu = 230C ................................................................................................................. 58 II.2.4. Nghiên cứu với hàm lƣợng xúc tác = 0,025% , nhiệt độ dung dich ban đầu = 230C ................................................................................................................. 60 II.2.5. Nghiên cứu với hàm lƣợng xúc tác = 0,05% , nhiệt độ dung dich ban đầu = 250C ...................................................................................................................................................... 61 II.2.6. Nghiên cứu với hàm lƣợng xúc tác = 0%, nhiệt độ dung dich ban đầu = 300C 64.................................................................................................................................................... 65 II.2.7. Nghiên cứu với hàm lƣợng xúc tác = 0,01%, nhiệt độ dung dịch ban đầu = 300C 64 ............................................................................................................ 66 KẾTLUẬN VÀ KIẾN NGHỊ.................................................................................... 69 9 LỜI NÓI ĐẦU Một trong những vấn đề nan giải trong vận chuyển dầu thô theo đƣờng ống dƣới đáy biển là vấn đề tích tụ sáp-parafin trên thành ống. Tích tụ sáp-parafin làm giảm tiết diện đƣờng ống, tăng trở lực dẫn tới giảm năng suất vận chuyển nói riêng, chi phí vận chuyển nói chung. Tích tụ sáp-parafin còn có thể dẫn tới sự cố tắc đƣờng ống, gây gián đoạn việc khai thác dầu thô gây tổn hại nghiêm trọng tới hiệu quả kinh tế. Bản chất hiện tƣợng tích tụ sáp-parafin nằm ở chỗ, trong quá trình vận chuyển, dòng dầu nguội dần. Sự giảm nhiệt này và yếu tố thời gian làm những tinh thể parafin có nhiệt độ kết tinh cao kết tinh trong dòng dầu đầu vào (từ giếng dầu hoặc tàu chứa dầu…) lớn lên về kích thƣớc tụ kết tụ lại thành những cụm tinh thể lớn hơn bám vào thành ống. Sự giảm nhiệt cũng làm cho một số phân đoạn mới của parafin tiếp tục kết tinh thúc đẩy mức độ kết tụ và tích tụ. Sáp-parafin, ngoài thành phần parafin, còn chứa asphanten, nhựa, một số hợp chất có trọng lƣợng phân tử cao khác. Thực tế khai thác dầu khí ở Việt Nam cho thấy, chỉ riêng tại các mỏ Bạch Hổ và Rồng của Liên doanh Vietsovpetro, tổng chiều dài của hệ thống đƣờng ống dẫn dầu dƣới đáy biển cũng có tới mấy trăm km. Ngoài hệ thống này, nhiều công ty khai thác dầu khí nhƣ Cửu Long, Việt-Nhật (JVPC), Đại Hùng … hoặc cũng có hệ thống ống dẫn dầu từ giàn khai thác tới các tàu chứa, hoặc cũng có hệ thống ống dẫn dầu từ các đầu giếng chìm dƣới đáy biển tới giàn khai thác. Các hệ thống này cũng luôn gặp phải hiện tƣợng tích tụ sáp-parafin và thƣờng xuyên phải ngâm rửa (bằng xylen, condensat) rất tốn kém. Thực tế trên cho thấy cần thiết phải nghiên cứu đƣa vào ứng dụng những giải pháp công nghệ hợp lý có chi phí thấp phục vụ loại trừ tích tụ sáp-parafin trong 10 hệ thống đƣờng ống vận chuyển dầu thô. Cũng chính vì vậy, và trên cơ sở nghiên cứu thăm dò đã thực hiện, chúng tôi xin đề xuất nội dung nghiên cứu: “Nghiên cứu giải pháp công nghệ kiểm soát phản ứng hóa nhiệt ứng dụng trong loại trừ tích tụ sáp-parafin trong hệ thống đường ống vận chuyển dầu thô” Kết quả của đề tài sẽ đóng góp vào việc thực hiện các mục tiêu tăng trƣởng của ngành nói chung và mục tiêu phát triển KHCN nói riêng. 11 Phần I TỔNG QUAN VỀ LẮNG ĐỌNG SÁP-PARAFIN VÀ PHƢƠNG PHÁP XỬ LÝ LOẠI TRỪ I.1. Khái niệm về lắng đọng sáp-parafin và cơ chế gây lắng đọng I.1.1. Khái niệm chung về lắng đọng sáp-parafin I.1.1.1Khái liệm về lắng đọng hữu cơ Lắng đọng hữu cơ có thể tồn tại trong vùng cận đáy giếng, trong lòng giếng, thân giếng, trong cần khai thác, trong hệ thống thiết bị bề mặt và trong đƣờng ống dẫn dầu. Lắng đọng này chứa chủ yếu sáp (dạng rắn của các parafin mạch thẳng), các hợp chất asphanten, nhựa, các hợp chất chứa vòng thơm khác. Tham gia vào thành phần lắng đọng hữu cơ còn có một số vật liệu vô cơ nhƣ cát, sét các tinh thể muối vô cơ (CaCO3, Fe2O3 , Fe(OH)3 ...). Tuy nhiên, sáp-parafin chính là thành phần chính của lắng đọng hữu cơ. Thành phần hữu cơ lớn thứ hai trong lắng đọng hữu cơ chính là nhựa và asphanten. Ví dụ về lắng lắng đọng hữu cơ đƣợc đƣa trong Hình I.1. 12 Hình I.1. Hình ảnh minh hóa lắng đọng hữu cơ Lắng đọng sáp-parafin, theo tiêu chí trạng thái, đƣợc quan sát thấy ở hai dạng là dạng đặc và dạng xốp nhão. Dạng đặc thƣờng đƣợc tìm thấy trong cần khai thác, đƣờng ra và vào trong những ống vận chuyển hỗn hợp dầu và khí. Dạng lắng đọng này thƣờng phân bố tƣơng đối đều theo bề mặt bên trong thành ống. Dạng xốp và nhão thƣờng đƣợc tìm thấy trong bình tách, bể chứa và trong các đoạn đƣờng ống có vận tốc dòng chảy nhỏ. Dạng này gồm những hạt parafin riêng biệt không liên kết chặt chẽ và không bám chặt vào bề mặt kim loại. Quy luật phân bố lắng đọng sáp-parafin phụ thuộc vào biến thiên nhiệt độ và chế độ dòng chảy. Trong cần ống khai thác, lắng đọng dƣới sâu là lắng đọng chứa các parafin có nhiệt độ kết tinh cao và có chứa nhiều asphanten, nhựa. Phần lắng đọng càng gần miệng giếng càng có cấu trúc mềm hơn. Loại này chứa chủ yếu các parafin có nhiệt độ kết tinh thấp hơn (có số nguyên tử C thấp). Nói chung, trong cần khai thác, yếu tố tác động tới quy luật phân bố sáp-parafin chủ yếu là nhiệt độ. Trong các đoạn ống nằm ngang tồn tại một quy luật phổ biến khác. Nghiên cứu cho thấy mức độ tích tụ sáp-parafin đạt cực đại trên những đoạn đầu của đƣờng ống và giảm dần theo chiều chuyển động của dòng chảy. Điều này cho thấy, dƣới tác dụng của nhiệt độ và sự chảy, parafin nhanh chóng lắng đọng nên tích tụ mạnh ở những đoạn đầu của đƣờng ống. Cùng với quá trình lắng đọng, hàm lƣợng parafin dễ lắng đọng giảm dần, nên khả năng tích tụ cũng giảm. Ngoài chịu tác động của gradien nhiệt độ, chế độ dòng chảy, tích tụ còn chịu ảnh hƣởng của lực trọng trƣờng. Lực này có thể gây nên hiện tƣợng độ dày tích tụ trong các đoạn ống nằm ngang tăng ở nửa dƣới của đƣợng ống. Nói chung, lớp lắng đọng trên đƣờng ống tồn tại khi độ bền liên kết giữa lắng đọng với thành ống lớn hơn ứng suất tiếp tuyến do dòng chảy tạo thành. Trong trƣờng 13 hợp ngƣợc lại, lớp lắng đọng tạo thành trên thành ống sẽ bị bào mòn và vỡ trôi theo dòng chảy. Ứng suất tiếp tuyến đƣợc xác định theo công thức: τ = λ v2 γ / 8g Trong đó : τ : ứng xuất tiếp tuyến (g/cm2) v : vận tốc trung bình của dòng chất lỏng (cm/s) γ : Khối lƣợng riêng ( g/cm3 ) g : gia tốc trọng trƣờng (9.81m/s2) λ : hệ số sức cản thuỷ lực. I.1.1.2 Khái liệm về lắng đọng vô cơ Lắng đọng vô cơ, nói chung có thành phần phức tạp [13]. Ở trong thời kỳ khai thác đầu, thành phần phổ biến nhất của lắng đọng vô cơ là các muối: Canxit - CaCO3 , Thạch cao - CaSO4.2H2O , Anhydrit - CaSO4 , Barit - BaSO4, Asetin -SrSO4, Halit - NaCl ... Ở giai đoạn khai thác cuối, xuất hiện thêm các muối sunphua mà phổ biến nhất là sunphua sắt - FeS. a goài các khoáng vật phổ biến vừa nêu, lắng đọng vô cơ có thể chứa các khoáng khác nhƣ: MgCO3, MgSO4, Ca(OH)2, Mg(OH)2, Fe(OH)3, Thạch anh - SiO2, Biotit-MgCl2.6H2O, CaF2 ... Trong lắng đọng vô cơ ngƣời ta cũng thƣờng tìm thấy vật liệu lắng đọng hữu cơ nhƣ: asphanten, nhựa, parafin, một số hợp chất thơm ... nói chung, ngƣời ta cho rằng, cặn lắng đọng trong khai thác và xử lý dầu tại các mỏ dầu có thành phần và cấu trúc phức tạp, phụ thuộc vào thành phần hóa học của nƣớc, điều kiện nhiệt độ áp suất, đặc điểm khai thác mỏ. Căn cứ vào cấu trúc của lắng đọng muối vô cơ, ngƣời ta chia chúng thành: lắng đọng có cấu trúc tinh thể cỡ micro hoặc hạt nhỏ; lắng đọng có cấu trúc lớp chắc đặc với các mức độ kết tinh khác nhau và có chứa lẫn vật chất hữu cơ; lắng đọng có cấu trúc tinh thể lớn; lắng đọng có cấu trúc xốp. Lắng đọng có cấu trúc tinh thể cỡ micro thƣờng tạo ra ở những cánh bơm ly tâm, nắp van, đƣờng ống dẫn, van điều chỉnh... Lắng đọng nhiệt độ cao (bám trên bề mặt ống trao đổi nhiệt, trên mặt thiết bị tách nƣớc khỏi dầu thô) thƣờng thuộc loại cấu trúc này. Nói chung, trong các lắng đọng này chúng ta không 14 nhận ra cấu trúc lớp, vì chúng là một thể thống nhất. Loại lắng đọng có cấu trúc này, nói chung là kém phổ biến. Trong Hình I.2 là hình ảnh lắng đọng trong đƣờng ống dẫn tới thiết bị xử lý dầu thô tại mỏ Bạch Hổ của Xí nghiệp Liên doanh Dầu khí Vietsovpetro. Phần kết tinh tốt là phần có bề mặt mịn, ánh trong. Phần khác có màu xám là phần có mức độ kết tinh không đồng đều và chứa nhiều tạp chất hữu cơ. Kiểu cấu trúc cặn lắng đọng nhƣ đƣa trong Hình I.2 đặc trƣng cho chế độ khai thác thay đổi theo thời gian. Phần mang tính phổ biến của cặn lắng đọng là phần có cấu trúc lớp. Với loại có cấu trúc lớp nhƣ vậy, lớp lắng đọng gần thành ống thƣờng là lớp tinh thể có cấu trúc micro xen lẫn với các hợp chất hữu cơ và theo mức độ xa dần từ lớp này, là những lớp có cấu trúc tinh thể mịn, tinh thể trung bình và sau đó là lớp tinh thể lớn hình kim. Mặt cắt ngang của dạng lắng đọng này trong ống thƣờng có dạng ống hình trụ đặc trƣng bởi kiểu định hƣớng cấu trúc tinh thể phát triển theo hƣớng từ bề mặt hƣớng về tâm. Lắng đọng kiểu này thƣờng thấy trong cần khai thác và thiết bị đầu giếng. Theo điều kiện nhiệt động học, loại lắng đọng này có thể đƣợc xếp vào có nhiệt độ trung bình. Trong hình I.3 chúng tôi đƣa hình ảnh lắng đọng bám trên thành cần khai thác đại diện cho loại mà chúng tôi vừa mô tả [12]. Đây chính là nghiên cứu của hãng dịch vụ kỹ thuật của Hoa Kỳ hãng Schlumberger. Lắng đọng có cấu trúc xốp đặc trƣng cho điều kiện hình thành ở khoảng nhiệt độ thấp nhƣ trong bể chứa dầu. Trong một số trƣờng hợp, lắng đọng dạng này có thể tạo đá chứa các hốc không đều có tinh thể khoáng vật vây quanh. Trong loại đá này tồn tại những tinh thể hình kim lớn có kích thƣớc lên tới 1020pm. Trên hình I.3, chúng ta nhìn rõ các tinh thể lớn của muối CaCO3 phát triển theo hƣớng từ bề mặt hƣớng về tâm ống. Chính vì tính lồi lõm của bề mặt cặn lắng đọng là một trong những nguyên nhân làm tăng mạnh trở lực dòng chảy của lƣu thể trong ống. 15 Hình I.2 Lắng đọng muối lấy từ mỏ Bạch Hổ Hình I.3 Lắng đọng muối trong ống khai thác theo Shlumbeger 16 I.1.1.3 Cơ chế gây lắng đọng hữu cơ Dầu thô khi nằm trong vỉa chứa là hệ keo đa phân tán cân bằng. Mức độ phân tán của các hợp phần nặng nhƣ asphanten, nhựa, các hợp chất có trọng lƣợng phân tử cao... trong hệ này, ngoài phụ thuộc vào nhiệt độ, áp suất, còn phụ thuộc vào thành phần hoá học, thành phần pha của dầu thô nhƣ : + Tỷ lệ các phân tử phân cực / không phân cực; + Tỷ lệ Hydrocacbon nhẹ / Hydrocacbon nặng; + Sự có mặt của các hạt có kích thƣớc hạt keo phân tán trong dầu. Sự thay đổi của bất cứ một trong các yếu tố nêu trên dẫn đến sự mất cân bằng chung của hệ và kết quả của nó là xảy ra hiện tƣợng kết tinh, kết tủa các hợp chất parafin, nhựa, asphanten… Trong quá trình khai thác, dòng dầu đi vào đáy giếng, chuyển động đi lên theo lòng giếng, cần khai thác tới thiết bị bề mặt. Quá trình này đi liền với sự giảm áp suất và nhiệt độ, sự tách pha khí của một số hydrocacbon parafin nhẹ. Khi đƣợc xử lý trong các thiết bị bề mặt, xảy ra các quá trình nhƣ: tách một phần các phân đoạn nhẹ, một phần nƣớc đồng hành; giảm nhiệt độ do trao đổi với môi trƣờng; thay đổi áp suất... Trong quá trình bơm qua đƣờng ống dẫn dầu, quá trình hạ nhiệt độ tiếp tục xảy ra. Sự mất cân bằng nhiệt động học và cân bằng pha trong những trƣờng hợp vừa nêu, làm các cấu tử nặng nhƣ asphanten, nhựa tách ra từ hỗn hợp dầu thô thành các mixen keo. Sự mất cân bằng này cũng làm cho độ hòa tan của các parafin rắn giảm và khi nhiệt độ giảm tới một mức nào đó, parafin bắt đầu kết tinh. Các nghiên cứu chỉ ra rằng, thứ tự kết tinh parafin trong dầu bắt đầu từ parafin có trọng lƣợng phân tử cao, tức parafin có số phân tử cacbon cao, tới các parafin có trọng lƣợng phân tử thấp hơn. Cùng với sự giảm nhiệt độ và theo thời gian, các tinh thể parafin lớn lên. Chúng liên kết với nhau tạo cụm tinh thể và khi gặp điều kiện thuân lợi tạo tích tụ lắng đọng. Tồn tại 3 cơ chế thúc đẩy lắng đọng là cơ chế khuyếch tán phân tử, cơ chế tán xạ do chuyển động trƣợt tƣơng đối và cơ chế chuyển động nhiệt (braonơ). 17 I.1.1.4 Cơ chế gây lắng đọng vô cơ Muối vô cơ tan trong nƣớc bị lắng đọng khi điều kiện cân bằng, đƣợc thiết lập trƣớc đó, thay đổi theo hƣớng không có lợi cho độ hoà tan của muối. 1) Khi hai nguồn nƣớc có thành phần không tƣơng hợp trộn lẫn với nhau (Ví dụ: khi nƣớc vỉa chứa muối CaCl2 hoà tan, tức chứa Cl- và Ca2+ trộn lẫn với nƣớc giàu anion SO42- thì CaSO4 kết tủa) ; 2) Khi điều kiện nhiệt động học thay đổi. Khi điều kiện nhiệt động học: nhiệt độ, áp suất thay đổi độ hòa tan của muối trong nƣớc thay đổi và có thể trở nên quá bão hòa dẫn tới kết tinh muối. 3) Khi một, hoặc một vài muối, một hoặc một vài dạng ion mới tan vào có thể tạo muối với ion hoà tan sẵn trong nƣớc trƣớc đó. Cả 3 trƣờng hợp nêu trên đều có chung một điểm là sự mất cân bằng về nồng độ của muối trong nƣớc, vì thế nguyên nhân sâu xa nhất có thể dẫn đến lắng đọng phải là nguyên nhân kết tinh muối từ dung dịch nƣớc trong những điều kiện nhất định. Khoáng vật thứ sinh trong vỉa chứa thƣờng chứa các khoáng canxit, thạch cao, zeolit, halit... Chúng đƣợc hình thành từ các hoạt động kiến tạo, thuỷ nhiệt và phong hoá. Nƣớc vỉa nội tại trong các vỉa chứa này thƣờng đƣợc bão hoà bởi các muối hoà tan. Nƣớc bơm ép vỉa nhằm mục đích duy trì áp suất hoặc đẩy dầu cũng có thể trở nên bão hoà khi các muối có trong vỉa tiếp tục hoà tan vào đó. ẩ hƣ vậy, khi còn nằm trong vỉa, nƣớc vỉa hoặc nƣớc bơm ép vỉa đã chứa một lƣợng các muối hoà tan nào đó và thậm chí có thể đã trở nên bão hoà đối với một số muối. Khả năng hoà tan và bão hoà muối trong nƣớc vỉa hoặc nƣớc bơm ép phụ thuộc vào nguồn cung cấp ion tạo muối và điều kiện nhiệt động học (nhiệt độ, áp suất) trong vỉa chứa. Trong quá trình khai thác, nƣớc đồng hành cùng dầu (chính từ nguồn nƣớc vỉa hoặc nƣớc bơm ép đƣợc đề cập đến ở trên) đi qua vùng cận đáy giếng, vào lòng giếng, theo đƣờng ống vận chuyển đi lên bề mặt vào các thiết bị xử lý. Tại hầu hết các vị trí, nƣớc đồng hành đi qua, áp suất, nhiệt độ thay đổi, tức điều kiện nhiệt động học thay đổi, làm một số muối trở nên quá bão hoà và chúng kết 18 tinh trong dòng chảy. Ở vị trí mà có các điều kiện nhiệt động học thay đổi càng mạnh khả năng mất cân bằng càng lớn mức độ kết tinh càng mạnh. Trên hình I.4 chúng tôi đƣa quan hệ độ hòa tan trong nƣớc của CaCO3 ở các nhiệt độ khác nhau [8]. Quan hệ này cho thấy, theo chiều tăng của nhiệt độ, độ hòa tan trong nƣớc của CaCO3 giảm dần. Điều này có nghĩa rằng, nếu dùng nƣớc có nhiệt độ thƣờng đã hòa tan một lƣợng CaCO3 nào đó để bơm ép vào vỉa, thì khi gặp nhiệt độ cao bị hâm nóng lên muối CaCO3 sẽ kết tinh trong vỉa. Thế nhƣng, mặt khác, quan hệ trên hình I.4 cũng lại cho thấy, nƣớc bão hòa muối CaCO3 trong vỉa sẽ không thể tạo kết tinh khi nhiệt độ của nó giảm đi. Nói cách khác sự giảm nhiệt độ chƣa phải là điều kiện để CaCO3 kết tủa trong long giếng và trên bề mặt, khi theo quá trình đi lên từ vỉa, nhiệt độ dòng nƣớc giảm đi. Áp suất riêng phần của CO2 mới là nguyên nhân chính gây kết tinh muối CaCO3 tại vùng cận đáy giếng, trong lòng giếng và trong hệ thống thiết bị vận chuyển, xử lý trên bề mặt. Trong hình I.5, chúng tôi đƣa quan hệ độ hòa tan trong nƣớc của CaCO3 ở các áp suất riêng phần của khí CO2 [8]. 19 tới độ hòa tan của CaCO3 Quan hệ này cho thấy, áp suất ảnh hƣởng tới độ hòa tan của CaCO3 mạnh hơn nhiều so với nhiệt độ. Cụ thể là, ở điều kiện nhiệt độ miệng giếng, độ hòa tan trong nƣớc của CaCO3 là 40 mg/L, thì trong điều kiện áp suất miệng giếng 10 atm. độ hòa tan trong nƣớc của CaCO3 là 500mg/L, tức áp suất ảnh hƣởng tới độ hòa tan trong nƣớc của CaCO3 lớn hơn trên 10 lần ảnh hƣởng của nhiệt độ. Khi nhiệt độ biến thiên từ 1400C (nhiệt độ đáy giếng) đến 400C (nhiệt độ miệng giếng) độ hòa tan của CaCO3 tăng từ 10 mg/L lên tới 40 mg/L. Trong điều kiện giếng tƣơng tự, áp suất giảm từ trên 100 atm. xuống 10 atm., độ hòa tan của CaCO3 giảm từ 1.000 mg/L xuống còn 500 mg/L. Điều này có nghĩa rằng, quá bão hòa đối với nƣớc chứa muối CaCO3 hòa tan chỉ xảy ra theo cơ chế thay đổi áp suất riêng phần của CO2. Trong trƣờng hợp này, chúng ta nên tập trung chú ý nhiều tới áp suất. Ngoài vấn đề mang tính vật lý về thay đổi áp suất, CO2 còn tác động tới khả năng hòa tan và bão hòa của CaCO3 trong nƣớc thông qua cơ chế hóa học. Chính vì vậy, nhiều khi nhìn vào thành phần hóa học của nƣớc ta chƣa thể xác định đƣợc liệu thành phần này có thể là nguyên nhân sâu xa dẫn tới lắng 20
- Xem thêm -

Tài liệu liên quan