Đăng ký Đăng nhập
Trang chủ Nghiên cứu bào chế hydrogel chứa nano lipid dexamethason acetat...

Tài liệu Nghiên cứu bào chế hydrogel chứa nano lipid dexamethason acetat

.PDF
65
364
86

Mô tả:

BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘI VŨ THU HUYỀN NGHIÊN CỨU BÀO CHẾ HYDROGEL CHỨA NANO LIPID DEXAMETHASON ACETAT KHÓA LUẬN TỐT NGHIỆP DƯỢC SĨ HÀ NỘI – 2014 BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘI VŨ THU HUYỀN NGHIÊN CỨU BÀO CHẾ HYDROGEL CHỨA NANO LIPID DEXAMETHASON ACETAT KHÓA LUẬN TỐT NGHIỆP DƯỢC SĨ Người hướng dẫn: TS. Nguyễn Thạch Tùng Nơi thực hiện: Bộ môn Bào chế HÀ NỘI – 2014 LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc đối với thầy giáo TS Nguyễn Thạch Tùng, người thầy đã hết lòng hướng dẫn và giúp đỡ tôi trong quá trình thực hiện khóa luận này. Tôi xin chân thành cảm ơn các thầy cô và các anh chị kỹ thuật viên thuộc bộ môn Bào chế đã có những giúp đỡ qúy báu trong quá trình tôi học tập và thực nghiệm tại bộ môn. Tôi xin chân thành cảm ơn ban giám hiệu nhà trường, phòng đào tạo và các phòng ban liên quan trong nhà trường đã có nhiều giúp đỡ thiết thực về cơ sở vật chất, trang thiết bị và hóa chất thí nghiệm trong quá trình tôi thực hiện đề tài. Cuối cùng tôi xin gửi lời cảm ơn sâu sắc tới gia đình và bạn bè, những người đã luôn giúp đỡ và động viên trong suốt một năm qua. Hà nội, Tháng 5 năm 2014 Sinh viên Vũ Thu Huyền MỤC LỤC Danh mục các kí hiệu, các chữ viết tắt Danh mục các bảng Danh mục các hình vẽ, đồ thị Phụ lục ĐẶT VẤN ĐỀ .................................................................................................. 1 CHƯƠNG I. TỔNG QUAN ............................................................................... 2 1.1. Tổng quan về hệ chất mang nano lipid ............................................................. 2 1.1.1. Cấu tạo....................................................................................................... 2 1.1.2. Thành phần ................................................................................................ 2 1.1.3. Kỹ thuật bào chế ........................................................................................ 3 1.1.4. Một số đặc tính của hệ tiểu phân nano lipid ............................................. 5 1.1.5. Ưu điểm của tiểu phân nano lipid ............................................................. 6 1.1.6. Hạn chế của hệ tiểu phân nano lipid ......................................................... 8 1.1.7. Một số yếu tố ảnh hưởng tới tính chất của hệ tiểu phân nano lipid .......... 8 1.2. Đại cương về gel ................................................................................................ 10 1.2.1. Định nghĩa ............................................................................................... 10 1.2.2. Một số nghiên cứu về gel chứa nano lipid ............................................... 10 1.3. Dexamethason acetat ........................................................................................ 11 1.3.1. Công thức hóa học ................................................................................... 11 1.3.2. Tính chất lý hóa ....................................................................................... 12 1.3.3. Dược lý và cơ chế tác dụng ..................................................................... 12 1.3.4. Một số chế phẩm dexamethason acetat trên thị trường .......................... 12 1.4. Một số nghiên cứu về hệ tiểu phân nano lipid và hệ tiểu phân nano lipid chứa dexamethason acetat ...................................................................................... 12 CHƯƠNG 2. NGUYÊN LIỆU VÀ PHƯƠNG PHÁP................................ 15 2.1. Nguyên vật liệu, thiết bị ................................................................................... 15 2.1.1. Nguyên vật liệu ........................................................................................ 15 2.1.2. Thiết bị nghiên cứu .................................................................................. 15 2.2. Nội dung nghiên cứu......................................................................................... 16 2.3. Phương pháp nghiên cứu ................................................................................. 16 2.3.1. Phương pháp bào chế .............................................................................. 16 2.3.2. Phương pháp đánh giá hệ tiểu phân nano lipid DEA ............................. 19 2.3.3. Phương pháp đánh giá gel chứa hệ tiểu phân nano lipid ....................... 24 CHƯƠNG 3. KẾT QUẢ NGHIÊN CỨU VÀ NHẬN XÉT ....................... 26 3.1. Xây dựng phương pháp định lượng DEA bằng phương pháp HPLC......... 26 3.2. Nghiên cứu bào chế hệ tiểu phân nano lipid chứa dexamethason acetat .... 28 3.2.1. Khảo sát ảnh hưởng của thời gian siêu âm tới KTTP của hệ tiểu phân nano lipid ............................................................................................................ 29 3.2.2. Ảnh hưởng của yếu tố công thức tới KTTP ............................................. 30 3.2.3. Đánh giá độ ổn định về kích thước tiểu phân nano lipid ........................ 33 3.2.4. Đánh giá một số đặc tính của hệ tiểu phân nano lipid chứa DEA .......... 35 3.3. Xây dựng và đánh giá công thức gel bào chế chứa hệ tiểu phân nano lipid dexamethason acetat ............................................................................................... 40 3.3.1. Lựa chọn nồng độ chất tạo gel ................................................................ 40 3.3.2. Đánh giá độ ổn định KTTP của gel nano lipid dexamethason acetat ..... 43 3.3.3. Đánh giá tính thấm của DEA từ gel chứa NLC-DEA qua da chuột....…43 3.3.4. Đánh giá lưu giữ thuốc trên da của các công thức sau 24 giờ .............. 45 KẾT LUẬN VÀ ĐỀ XUẤT .......................................................................... 47 DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT CDH Chất diện hoạt DC Dược chất DD Dung dịch DEA Dexamethason acetat DSC Nhiệt vi sai (Differential Scanning Calorimetry) HPLC Sắc ký lỏng hiệu năng cao (High performance liquid chromatography) HQ Hiệu quả KTTP Kích thước tiểu phân LD Nhiễu xạ laser NLC Hệ chất mang lipid có cấu trúc nano (Nanostructured Lipid Carriers) PCS Quang phổ tương quan photon (Photon Correlation Spectroscopy) PDI Chỉ số phân bố kích thước tiểu phân (Polydispersity index) SLN Nano lipid rắn (Solid Lipid Nanoparticles) TD Tá dược TEM Kính hiển vi điện tử truyền qua (Transmission Electron Microscopy) DANH MỤC CÁC BẢNG Bảng 1.1. Một số chế phẩm dexamethason acetat trên thị trường…………………12 Bảng 2.1. Nguyên vật liệu sử dụng trong quá trình thực nghiệm………………….15 Bảng 2.2. Bảng thành phần các công thức gel NLC-DEA menthol, gel DEA và thuốc mỡ DEA……………………………………………………………………..18 Bảng 3.1. Khảo sát tính tương thích của hệ thống sắc ký…………………………26 Bảng 3.2. Khảo sát độ chính xác của phương pháp……………………………….27 Bảng 3.3. Khảo sát độ đúng của phương pháp…………………………………….27 Bảng 3.4. Thành phần các công thức NLC bào chế………………………………29 Bảng 3.5. KTTP, PDI, thế Zeta và hiệu quả mang DC của công thức CT4…………………………………………………………………………………36 Bảng 3.6. Bảng các công thức bào chế gel nano lipid G1, G2, G3………………..41 Bảng PL 3.1. Sự thay đổi KTTP và PDI của các công thức bảo quản ở 8⁰C (n=3, TB±SD) Bảng PL 3.2. Ảnh hưởng của thời gian siêu âm tới KTTP (n=3, TB±SD) Bảng PL 3.3. Sự thay đổi KTTP và PDI của các công thức bảo quản ở 40⁰C (n=3, TB±SD) Bảng PL 3.4. Ảnh hưởng của nồng độ Tween 80 tới KTTP (n=3, TB±SD) Bảng PL 3.5. KTTP và PDI của các công thức NLC-DEA (n=3, TB±SD) Bảng PL 3.6. Lượng DEA thấm qua da từ CT4 và mẫu nguyên liệu Bảng PL 3.7. Lượng DEA thấm qua da từ công thức gel NLC-DEA, NLC-DEA menthol, công thức gel DEA và thuốc mỡ DEA DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1. Cấu trúc của hệ SLN và hệ NLC…………………………………………2 Hình 2.1. Sơ đồ bào chế NLC-DEA bằng phương pháp đun chảy nhũ hóa sử dụng kỹ thuật siêu âm……………………………………………………………………17 Hình 3.1. Đường chuẩn biểu thị mối tương quan giữa diện tích pic và nồng độ DEA………………………………………………………………………………..28 Hình 3.2. Đồ thị biểu diễn KTTP của công thức CT3 với các thời gian siêu âm khác nhau………………………………………………………………………………..29 Hình 3.3. Đồ thị biểu diễn KTTP và PDI của các công thức sử dụng nồng độ Tween 80 khác nhau……………………………………………………………………….31 Hình 3.4. Đồ thị biểu diễn sự ảnh hưởng của compritol tới KTTP………………..32 Hình 3.5. Đồ thị biểu diễn ảnh hưởng của miglyol tới KTTP……………………..33 Hình 3.6. Đồ thị biểu diễn sự thay đổi KTTP của các công thức sau các khoảng thời gian bảo quản ở 80C………………………………………………………………..34 Hình 3.7. Đồ thị biểu diễn sự thay đổi KTTP của các công thức được bảo quản ở nhiệt độ 400C……………………………………………………………………….34 Hình 3.8. Ảnh chụp hệ NLC-CT4 qua kính hiển vi điện tử truyền qua (TEM)…...36 Hình 3.9. Hình ảnh chụp XRD của mẫu NLC-CT4, mẫu nguyên liệu DEA và compritol…………………………………………………………………………...37 Hình 3.10. Đồ thị tốc độ thấm của DEA từ công thức CT4 và mẫu nguyên liệu…38 Hình 3.11. Lượng DEA lưu giữ trên da của công thức NLC-CT4 và hỗn dịch DEA………………………………………………………………………………..39 Hình 3.12. Đồ thị biểu diễn mối tương quan giữa độ nhớt và tốc độ quay của kim nhớt kế của công thức gel nano lipid G1, G2, G3 và công thức gel carbopol có nồng độ tương ứng……………………………………………………………………….42 Hình 3.13. Đồ thị biểu diễn sự thay đổi KTTP của công thức NLC-DEA và gel NLC-DEA sau 3 chu trình nhiệt lạnh……………………………………………....43 Hình 3.14. Đồ thị biểu diễn lượng DEA thấm qua da từ công thức gel NLC-DEA, NLC-DEA menthol, công thức gel DEA và thuốc mỡ DEA……………………....44 Hình 3.15. Lượng DEA lưu giữ trên da từ các công thức khác nhau sau 24 giờ…45 Hình PL 3.1. Hình ảnh pic đo KTTP của mẫu NLC-CT4 sử dụng máy Zetasizer Hình PL 3.2. Hình ảnh pic sắc ký mẫu DEA chuẩn nồng độ 10µg/ml Hình PL 3.3. Hình ảnh pic sắc ký định lượng DEA thấm qua da từ công thức NLCDEA sau 8 giờ 1 ĐẶT VẤN ĐỀ Trong vài thập kỷ gần đây, nghiên cứu cải thiện sinh khả dụng cho các dược chất ít hoặc không tan trong nước là một trong những đòi hỏi cấp thiết cho ngành bào chế công nghệ dược phẩm. Một trong những biện pháp đang thu được nhiều sự quan tâm là bào chế hệ nano lipid [6]. Với đặc điểm kích thước tiểu phân nhỏ, cấu tạo từ các chất béo sinh lý, hệ nano lipid đã được chứng minh khả năng cải thiện đáng kể sinh khả dụng và giúp kiểm soát giải phóng dược chất. Dexamethason acetat (DEA) là một corticoid tổng hợp, có tác dụng chống dị ứng, làm giảm đáp ứng viêm trong trường hợp viêm da, mề đay, ezema. Tác dụng kháng viêm của dexamethason acetat mạnh gấp 25 lần hydrocortison tuy nhiên nhược điểm là khả năng thấm qua da và khả năng hòa tan trong nước của dexamethason acetat kém. Vì vậy, dạng thuốc qua da của hệ tiểu phân nano lipid dexamethason acetat thực sự là loại chất mang có nhiều triển vọng. Hệ bào chế mới này cho phép dược chất dễ dàng thấm vào da, giảm kích ứng tại chỗ, giảm hấp thu thuốc vào hệ tuần hoàn, kéo dài thời gian lưu thuốc nhờ đó mà tăng cường tác dụng điều trị tại chỗ của thuốc. Để tăng cường khả năng bám dính và ổn định kích thước tiểu phân, các tiểu phân nano được đưa vào trong mạng lưới gel thân nước, hứa hẹn là hệ chất mang lý tưởng cho dạng thuốc dùng ngoài da. Với nhiều triển vọng trên của hệ tiểu phân nano lipid, chúng tôi tiến hành thực hiện đề tài: “Nghiên cứu bào chế hydrogel chứa tiểu phân nano lipid dexamethason acetat” với mục tiêu: 1. Bào chế được tiểu phân nano lipid chứa dexamethason acetat và đánh giá được một số tính chất của hệ. 2. Bào chế được gel chứa tiểu phân nano lipid dexamethason acetat và đánh giá được một số tính chất của gel. 2 CHƯƠNG 1. TỔNG QUAN 1.1. Tổng quan về hệ chất mang nano lipid Hệ tiểu phân nano lipid bao gồm hệ nano lipid rắn (Solid Lipid Nanoparticles- SLN) và hệ chất mang có cấu trúc nano (Nanostructured Lipid Carriers-NLC). Hệ SLN được bắt đầu nghiên cứu từ những năm 1990 như một dạng bào chế có thể thay thế cho liposom, nano nhũ tương và tiểu phân nano polyme. Tuy nhiên SLN có nhược điểm là hiệu quả mang thuốc thấp và có hiện tượng đẩy dược chất ra khỏi tiểu phân trong quá trình bảo quản. Do đó hệ NLC đã ra đời vào đầu thế kỉ 20 giúp cải thiện nhược điểm của SLN [5]. 1.1.1. Cấu tạo NLC là những tiểu phân có đường kính trung bình từ 50 – 1000 nm được phân tán trong nước hoặc một dung dịch chất diện hoạt thân nước. Mỗi tiểu phân có cấu tạo gồm một cốt lipid rắn, trong đó có chứa các giọt lipid lỏng chứa dược chất được hòa tan [5], [6]. Thế hệ I : SLNs Thế hệ II : NLCs Hỗn hợp các lipid rắn c DC Hỗn hợp các lipid rắn Lipid rắn Lipid lỏng Hình 1.1. Cấu trúc của hệ SLN và hệ NLC [5] 1.1.2. Thành phần 1.1.2.1. Dược chất Có rất nhiều dược chất khác nhau có thể được đưa vào NLC như chất chống viêm giảm đau, corticoid, chống ung thư. Khả năng dung mang dược chất vào lipid 3 được đánh giá qua các chỉ số như: độ tan của dược chất trong lipid chảy lỏng, cấu trúc hóa lý của hệ lipid – dược chất, khả năng trộn lẫn của dược chất và lipid ở thể lỏng, trạng thái đa hình của lipid. Nhiều nghiên cứu chỉ ra rằng hệ nano lipid có khả năng tăng sinh khả dụng của các dược chất kém hòa tan hoặc không hòa tan trong nước bằng cách sử dụng các thành phần lipid khác nhau, hiệu quả đã được chứng minh trên: celecoxib, clotrimazol, flubiprofen, nitrendipin [6], [8]. 1.1.2.2. Lipid Lipid được sử dụng có cấu tạo gần giống với lipid sinh lý, phân hủy sinh học, ít độc tính đối với cơ thể khi sử dụng. Lipid rắn bao gồm nhiều loại như: glycerid (tristearin, tripalmatin…), acid béo (acid stearic), alcol béo (alcol cetylic), stero (cholesterol), sáp (sáp ong, cetyl palmitat) [7], [12]. Đặc điểm khác biệt của hệ NLC so với hệ SLN ngoài thành phần là lipid rắn, trong hệ NLC còn có lipid lỏng. Các lipid lỏng ở thể lỏng ở nhiệt độ thường và nhiệt độ cơ thể người. Sự xuất hiện của các lipid lỏng có tác dụng ức chế quá trình tái kết tinh của các phân tử dược chất do chúng bị trộn lẫn trong mạng lưới không gian của chất mang lipid. Các lipid lỏng thường dùng là: squalen, miglyol, soybean oil [5], [6], [10]. 1.1.2.3. Chất diện hoạt Chất diện hoạt có thể sử dụng đơn độc hoặc phối hợp với nhau để ngăn chặn sự kết tụ các tiểu phân. Nồng độ chất diện hoạt nên sử dụng là từ 0,5 đến 5%. Một số chất diện hoạt thường dùng là: poloxamer, polysobat, lecithin, phosphatidyl… Tuy nhiên việc sử dụng loại chất diện hoạt còn tùy thuộc vào đường dùng của thuốc và bị hạn chế khi sử dụng bằng đường tiêm, thuốc nhỏ mắt [9]. 1.1.3. Kỹ thuật bào chế 1.1.3.1. Đồng nhất nhờ lực phân tán lớn và siêu âm Hai phương pháp này được áp dụng đầu tiên trong nghiên cứu bào chế NLC vì các thiết bị này có trong phòng thí nghiệm, được sử dụng rộng rãi và thao tác dễ dàng [5], [6], [14]. 4  Đồng nhất hóa ở áp suất cao Kỹ thuật đồng nhất hóa áp suất cao thường được áp dụng để sản xuất NLC ở quy mô vừa và lớn. Về nguyên tắc trong thiết bị đồng nhất hóa ở áp suất cao, chất lỏng sẽ được đẩy qua một khe hẹp kích thước vài micromet dưới áp suất 100 – 2000 bar. Đun chảy lipid ở nhiệt độ cao hơn 5 – 10 ºC so với điểm chảy của lipid rắn, sau đó hòa tan hoặc phân tán hoạt chất vào pha lipid. Dịch lipid lỏng được phân tán vào pha nước chứa chất nhũ hóa. Khuấy ở tốc độ cao tạo tiền nhũ tương, sau đó được chuyển sang đồng nhất ở nhiệt độ cao hơn nhiệt độ nóng chảy của lipid dưới áp suất cao, thường từ 500 – 1500 bar trong 3 – 10 chu kỳ liên tiếp để giảm kích thước các giọt dầu hình thành nano nhũ tương. Để nguội ở nhiệt độ phòng hay làm lạnh tạo thành hệ tiểu phân nano lipid [5].  Kỹ thuật siêu âm Chuẩn bị pha lipid bao gồm lipid lỏng và lipid rắn nóng chảy, sau đó phân tán vào pha nước chứa chất nhũ hóa sau đó sử dụng siêu âm. Nhũ tương được làm lạnh xuống thu được các hạt nano rắn [4], [5]. 1.1.3.2. Kỹ thuật khuếch tán dung môi Hòa tan hoạt chất và lipid trong một dung môi đồng tan với nước (ví dụ aceton, ethanol), rồi phân tán vào pha nước chứa chất nhũ hóa. Hiện tượng khuếch tán dung môi từ pha dầu sang pha nước dẫn tới sự hình thành tiểu phân nano lipid. Bốc hơi dung môi ở áp suất thấp sẽ thu được hệ tiểu phân nano lipid. Kỹ thuật này tương đối đơn giản nhưng có nhược điểm là phải sử dụng dung môi hữu cơ và khó mở rộng quy mô sản xuất [6], [12]. 1.1.3.3. Kỹ thuật bào chế đi từ vi nhũ tương Vi nhũ tương được bào chế từ lipid nóng chảy ở nhiệt độ cao hơn nhiệt độ nóng chảy của lipid rắn 5 – 10 ºC (thường >60⁰C), rồi phân tán trong pha nước chứa chất diện hoạt ở nhiệt độ cao để tạo thành vi nhũ tương D/N. Hòa tan vi nhũ tương nóng trong nước lạnh (2 - 3ºC) và tiếp tục khuấy (tỷ lệ vi nhũ tương và nước từ 1:25 đến 1:50). Sự thay đổi nhiệt độ nhanh sẽ làm lipid kết tinh đồng thời ngăn chặn sự kết tụ các tiểu phân [6]. 5 1.1.4. Một số đặc tính của hệ tiểu phân nano lipid 1.1.4.1. Hình dạng và kích thước tiểu phân Để quan sát hình dạng và cấu trúc các tiểu phân, người ta thường dùng kính hiển vi điện tử truyền qua (TEM – Transmission Electron Microscopy). Phương pháp này còn được sử dụng trong đánh giá thăm dò các cấu trúc siêu vi như micel, liposom, nhũ tương và các tiểu phân nano [15]. 1.1.4.2. Kích thước tiểu phân Kích thước tiểu phân (KTTP) là đặc trưng cơ bản của hệ NLC. KTTP có thể được xác định bởi quang phổ tương quan photon (PCS – Photon Corelation Spectroscopy) và nhiễu xạ lase (LD). Kết quả phân tích PCS là đường kính trung bình của các hạt nano. Thông tin về sự phân bố KTTP được đánh giá bằng chỉ số PDI. PDI thấp có nghĩa tất cả các hạt có kích thước phân bố trong một khoảng hẹp, do đó hệ phân tán có thể coi tương đối đồng nhất về kích. Ngược lại PDI cao phản ánh sự khác nhau giữa kích thước của các hạt trong công thức. Ưu điểm của phương pháp này là có thể đo được khoảng kích thước tiểu phân rộng từ nanomet đến các tiểu phân có kích thước dưới 1mm [23], [24]. 1.1.4.3. Thế zeta Thế zeta thể hiện lực đẩy tĩnh điện giữa các tiểu phân tích điện ở bề mặt. Hệ phân tán nano có giá trị tuyệt đối của thế Zeta từ 30 – 60 mV sẽ dễ tạo sự ổn định tĩnh điện học [5]. 1.1.4.4. Kết tinh và hiện tượng đa hình Hai kỹ thuật được ứng dụng rộng rãi trong phân tích trạng thái vật lý (vô định hình hay kết tinh) và hiện tượng đa hình của các thành phần cấu tạo nên các tiểu phân là nhiệt vi sai (DSC – Differential Scanning Calorimetry) và tán xạ tia X (X – ray scattering). Nguyên tắc của DSC là dựa trên sự khác nhau về các điểm chảy và enthalpy chảy ở các quá trình chuyển dạng lipid khác nhau. Trong khi tán xạ tia X lại đánh giá dựa trên chiều dài các khoảng trống trong tinh thể lipid [5], [14]. 6 1.1.4.5. Khả năng giải phóng dược chất in vitro Đánh giá khả năng giải phóng in vitro được nghiên cứu nhằm đánh giá tiềm năng trị liệu của dạng bào chế. Có thể sử dụng phương pháp khuếch tán qua màng để xác định khả năng giải phóng in vitro của công thức bào chế [29]. 1.1.4.6. Hiệu quả mang dược chất (Entrapment Efficiency) Định lượng hàm lượng dược chất được mang trong các tiểu phân nano lipid có thể được xác định trực tiếp hoặc gián tiếp. Phương pháp trực tiếp sử dụng các kỹ thuật như li tâm, lọc, sắc kí để xác định hàm lượng dược chất nằm trong nano lipid. Hiệu quả mang dược chất cũng có thể xác định gián tiếp bằng việc xác định lượng thuốc tự do trong môi trường phân tán [24], [29]. Hiệu quả mang dược chất vào nano lipid được xác định theo công thức: EE (%) = mdược chất toàn phần - mdược chất tự do 100% mdược chất toàn phần 1.1.5. Ưu điểm của tiểu phân nano lipid 1.1.5.1. Cấu tạo từ lipid sinh lý, ít kích ứng NLC được cấu tạo từ các lipid sinh lý và có thể phân hủy sinh học, an toàn khi sử dụng trong mỹ phẩm hay các chế phẩm dùng ngoài da, không có hiện tượng nổi ban và phù nề sau khi dùng. Do đó NLC thích hợp cho các vùng da bị tổn thương nhằm mục đích điều trị tại chỗ [13], [17], [31]. 1.1.5.2. Tăng độ ổn định hóa học của hoạt chất Dược chất được kết hợp vào cốt lipid giúp bảo vệ dược chất khỏi sự phân hủy hóa học. Đặc biệt với những dược chất dễ bị phân hủy như: Coenzyme Q10, ascorbyl palmitat, tocoferol, retinol. Các chế phẩm thực phẩm chức năng của β – carotene ở dạng tinh thể thường không bền và hấp thu kém vì vậy người ta bào chế β – carotene trong NLC giúp bảo vệ dược chất và giúp hấp thu dược chất một cách tốt nhất [7], [17], [22]. 1.1.5.3. Kiểm soát giải phóng hoạt chất Sự giải phóng dược chất từ NLC thường gồm 2 giai đoạn: giai đoạn đầu giải phóng nhanh và giai đoạn sau giải phóng kéo dài. Giai đoạn giải phóng nhanh tạo ra 7 sự chênh lệch gradient nồng độ góp phần làm tăng tính thấm dược chất, còn giai đoạn sau sẽ góp duy trì tác dụng của dược chất trong thời gian kéo dài [7], [14]. 1.1.5.4. Đặc tính bao phủ bề mặt (occlusion) Tiểu phân nano lipid có đặc tính bao phủ do tạo thành lớp film trên bề mặt da, do đó làm giảm sự mất hơi nước qua da, tăng cường độ ẩm và hydrat hóa lớp sừng. Tiểu phân nano có diện tích bao phủ lớn hơn 15 lần so với tiểu phân micro. Tiểu phân nhỏ hơn 400 nm, chứa ít nhất 35% lipid có sự kết tinh cao và có diện tích bao phủ lớn nhất. Khi so sánh NLC với sự thay đổi của nồng độ lipid lỏng cho thấy sự tăng nồng độ lipid lỏng làm giảm đặc tính bao phủ bề mặt [7]. 1.1.5.5. Làm tăng tính thấm của hoạt chất Đối với các dạng bào chế dùng qua da, điều quan trọng phải thấm được một mức độ nhất định vào da tuy nhiên cũng không được thấm quá sâu gây ra tác dụng không mong muốn như đường dùng toàn thân. Tiểu phân nano lipid có kích thước nhỏ do vậy chúng có thể tiếp xúc chặt chẽ với lớp sừng và làm tăng tính thấm của hoạt chất. Ngoài ra đặc tính bao phủ cũng giúp tăng sự hydrat hóa lớp sừng, từ đó làm tăng tính thấm [7], [25], [26]. 1.1.5.6. Ngăn cản tia UV Tác dụng ngăn cản tia cực tím của hệ nano lipid được phát hiện bởi Wising và các cộng sự. Sự kết hợp của benzophenon trong hệ nano lipid không chỉ cải thiện các hoạt động ngăn chặn tia UV mà còn làm giảm đáng kể sự hấp thu benzophenon vào da so với một nano nhũ tương thông thường. Tác động cải thiện hoạt động ngăn chặn tia cực tím cho phép làm giảm nồng độ của hoạt chất có thể lên tới 50% so với dạng bào chế thông thường. Song và Lui cũng xác nhận điều nay khi so sánh tính chất hấp thu tia cực tím của 3,4,5 – trimethoxybenzochitin trong hệ nano lipid và các hệ thông thường [7]. 8 1.1.6. Hạn chế của hệ tiểu phân nano lipid 1.1.6.1. Sự phân hủy dược chất khi hình thành hệ nano lipid Các phương pháp bào chế sử dụng nguồn năng lượng cao (đồng nhất hóa áp suất cao, đồng nhất hóa nhờ lực phân cắt lớn và siêu âm) làm tăng khả năng nhiễm tạp hóa học và đặc biệt dẫn tới phân hủy dược chất không bền [20]. 1.1.6.2. Sự chuyển dạng thù hình của lipid Trong hệ NLC có sự xuất hiện của thành phần lipid rắn, trong quá trình bảo quản do sự chuyển dạng lipid từ dạng kém bền, có năng lượng cao (dạng α hoặc β’) sang dạng bền vững có năng lượng thấp hơn (dạng β) dẫn tới việc đẩy các phân tử dược chất trong hệ ra ngoài đồng thời làm thay đổi KTTP. Nếu quá trình này được kiểm soát, hệ NLC hứa hẹn là dạng bào chế giúp kiểm soát giải phóng dược chất. Bên cạnh đó hệ NLC sử dụng thêm lipid lỏng làm ổn định cấu trúc cốt lipid rắn hạn chế hiện tượng đẩy thuốc ra khỏi cốt nano và kiểm soát quá trình giải phóng dược chất tốt hơn so với SLN [6]. 1.1.6.3. Hàm lượng dược chất thấp Khả năng mang dược chất vào trong hệ nano lipid bị ảnh hưởng bởi độ tan của dược chất trong thành phần lipid chảy lỏng, cấu trúc của các lipid hay trạng thái kết tập của các lipid đó. Để đảm bảo kích thước tiểu phân thì lượng lipid chỉ chứa khoảng 1% hệ phân tán và để đảm bảo hiệu quả mang dược chất thì hàm lượng dược chất chỉ khoảng 10% lượng lipid [20]. 1.1.7. Một số yếu tố ảnh hưởng tới tính chất của hệ tiểu phân nano lipid 1.1.7.1. Ảnh hưởng của lipid  Ảnh hưởng của loại lipid Trong nghiên cứu dạng thuốc dùng qua da của nano lipid camptothecin, Zihrou Huang và các cộng sự đã nghiên cứu sự thay đổi các thành phần trong pha lipid để thấy được ảnh hưởng của lipid tới trạng thái vật lý của các tiểu phân nano. Nghiên cứu cho thấy nếu hệ nano sử dụng chất mang là precirol hoặc compritol thì thu được hệ SLN, khi thay thế 1 phần precirol bằng squalene thì thu được hệ NLC và khi thay thế hoàn toàn bằng squalene thì thu được nhũ tương lipid. Cùng với sự 9 thay đổi đó thì kích thước tiểu phân nano cũng thay đổi đáng kể. Hệ SLN sử dụng compritol có kích thước lớn nhất khoảng 309,9 nm, nhỏ nhất là hệ SLN có kích thước là 192,3 nm và SLN sử dụng precirol và dạng nhũ tương lipid có kích thước nhỏ hơn khoảng 247 nm. Như vậy có thể thấy các lipid khác nhau có thể ảnh hưởng khác nhau tới hệ nano lipid do đặc điểm về cấu tạo mạch phân tử cũng như mức độ bền vững của các lipid dưới tác dụng của lực phân cắt và siêu âm [13].  Ảnh hưởng của tỷ lệ lipid Hệ NLC là thế hệ hai của SLN giúp cải thiện khả năng mang dược chất vào trong nano lipid và hạn chế sự kết tinh của các lipid rắn. Sở dĩ hệ NLC có đặc điểm như vậy là do sự xuất hiện của lipid lỏng trong thành phần lipid. Tuy nhiên tỷ lệ của 2 loại lipid này có ảnh hưởng đáng kể tới tính chất của hệ nano lipid [15], [23]. 1.1.7.2. Ảnh hưởng của chất diện hoạt Nghiên cứu của Fei Han về ảnh hưởng của các loại chất diện hoạt, ông đã sử dụng các loại chất diện hoạt khác nhau là lecithin, poloxamer 188, Tween 80 và sodium deoxycholat. Kết quả cho thấy kích thước tiểu phân của các công thức sử dụng các chất diện khác nhau thì có sự khác nhau rõ rệt. Kích thước lớn nhất khoảng 910 nm với công thức sử dụng lecithin và nhỏ nhất là khoảng nanomet với công thức sử dụng cả 3 chất diện hoạt là poloxamer 188, Tween 80 và sodium deoxycholat. Có thể sử dụng các chất diện hoạt khác nhau và phối hợp chúng để đạt kích thước tiểu phân nhỏ nhất và độ ổn định của hệ nano lipid trong quá trình bảo quản [9]. 1.1.7.3. Ảnh hưởng của quy trình bào chế.  Ảnh hưởng của cường độ và thời gian tác dụng lực gây phân tán Đối với hệ nano lipid được hình thành do sự phân tán pha lipid vào pha nước vì vậy cường độ và thời gian phân tán ảnh hưởng nhiều tới kích thước tiểu phân. Khi nghiên cứu tính chất của hệ nano lipid chứa dithranol, Gambhire M. S và các cộng sự đã cho thấy rằng thời gian siêu âm tăng thì kích thước tiểu phân giảm đồng thời hiệu quả bẫy tăng. Có thể lí giải điều này do tăng thời gian siêu âm làm giảm 10 kích thước tiểu phân nên diện tích bề mặt tăng giúp dược chất dễ dàng vào các tiểu phân [1]. Tuy nhiên khi nghiên cứu bào chế hệ nano lipid cần phải xác định được các thông số của quy trình tối ưu vì các thông số này ảnh hưởng tới kích thước tiểu phân, nồng độ pha nội và đặc điểm cấu trúc của hệ nano lipid [1].  Ảnh hưởng của nhiệt độ Thông thường nhiệt độ thay đổi có ảnh hưởng gián tiếp đến chất lượng hệ nano lipid: do làm thay đổi sức căng bề mặt pha phân cách, độ nhớt của môi trường phân tán, khả năng hấp phụ của chất nhũ hóa, tăng tốc độ chuyển động Brown. Khi nhiệt độ tăng, sức căng của các bề mặt phân cách pha và độ nhớt giảm tạo điều kiện cho quá trình nhũ hóa xảy ra nhanh hơn và dễ dàng hơn. Trong nhiều trường hợp nhiệt độ của hỗn hợp tăng lên do tác dụng của lực phân tán. Sự thay đổi nhiệt độ ảnh hưởng rất lớn tới khả năng hấp thu các chất nhũ hóa lên trên bề mặt phân cách pha, cản trở tác dụng của chất nhũ hóa. Riêng đối với hệ nano lipid nhiệt độ còn ảnh hưởng tới nhiệt độ đông đặc và nóng chảy của lipid rắn vì vậy trong quá trình điều chế phải khống chế và duy trì nhiệt độ ổn định để không gây ra ảnh hưởng tới sự hình thành và ổn định của hệ nano lipid [1]. 1.2. Đại cương về gel 1.2.1. Định nghĩa Gel là một hệ thống liên kết chéo lỏng lẻo, được phân loại chủ yếu dựa trên mức độ chảy mạnh hay yếu của hệ khi ở trạng thái ổn định. Gel được tạo thành từ sự liên kết các tiểu phân trong dung dịch keo tạo thành một mạng lưới đan xen, đem đến thể chất rắn hoặc bán rắn cho gel mà chất lỏng có thể thâm nhập được vào bên trong [6]. 1.2.2. Một số nghiên cứu về gel chứa nano lipid 1.2.2.1. Gel nano lipid sử dụng các polyme có nguồn gốc tự nhiên Các polyme thân nước dùng để phân tán các tiểu phân nano lipid thường được sử dụng là chitosan, dextran, gôm xanthan. Chitosan là một polyme tự nhiên thu được từ chitin, nó có đặc điểm là tương thích sinh học, phân hủy sinh học và không 11 độc hại. Chitosan được ứng dụng nhiều trong y học, sinh học, có thể phối hợp chitosan với các polyme khác để cải thiện đặc điểm của hệ phân phối thuốc. Các phân tử này mang điện tích dương nên có thể thay đổi thế Zeta của hạt nano khi kết hợp. Hệ mang thuốc sử dụng chitosan giúp cải thiện việc lưu giữ trên mắt. Ngoài chitosan, gel dextran và các dẫn chất của nó cũng được biết đến như một hệ thống bán rắn cho sự phân tán các hạt nano do đặc điểm không độc hại, không gây kích ứng mô. Gel xanthan cũng được sử dụng nhiều trong dược phẩm tuy nhiên chúng có nhược điểm là độ nhớt và mức độ bám dính thấp [6]. 1.2.2.2. Gel nano lipid sử dụng các polymer có nguồn gốc tổng hợp Dẫn xuất bán tổng hợp của cellulose được sử dụng rộng rãi trong lĩnh vực dược phẩm. Các dẫn chất này có đặc điểm là an toàn, chứng minh được tăng tác dụng tại chỗ và giá thành rẻ. Ví dụ về loại polyme tổng hợp hay được sử dụng đó là carbopol, tùy thuộc vào cấu trúc phân tử mà có nhiều loại carbopol khác nhau. Khi sử dụng nồng độ carbopol thường nhỏ hơn 1%. Có thể sử dụng các muối kali hydroxit hoặc natri hydroxit để trung hòa môi trường tạo gel, tuy nhiên các ion kim loại này thường ảnh hưởng tới thế Zeta của hệ tiểu phân nano lipid nên người ta thường dùng triethanolamin để trung hòa tạo gel. Hydrogel carbopol cho thấy sự thích hợp khi kết hợp với hệ nano lipid [6], [10], [18], [24]. 1.3. Dexamethason acetat 1.3.1. Công thức hóa học C 24 H 31 FO 6 Khối lượng phân tử: 434,5 Tên khoa học: 9-fluoro - 11β,17- dihydroxy -16α-methyl-3,20-dioxopregna1,4-dien-21-ylacetat
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng