Nghiên cứu bào chế hệ nano lipid rắn chứa fluconazol

  • Số trang: 63 |
  • Loại file: PDF |
  • Lượt xem: 24 |
  • Lượt tải: 0
minhtuan

Đã đăng 15929 tài liệu

Mô tả:

Y TẾ BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘIHỌC DƯỢC HÀ NỘI TRƯỜNG ĐẠI ============ ============ NGÔ THỊ PHƯƠNG LIÊN TRẦN THỊ HUỆ NGHIÊN CỨU BÀO CHẾ HỆ NANO LIPID RẮN NGHIÊN CỨU BÀO CHẾ HỆ NANO PIROXICAM BẰNG PHƯƠNG PHÁP KẾT TỦA CHỨA FLUCONAZOL KHÓA LUẬN TỐT NGHIỆP DƯỢC SĨ KHÓA LUẬN TỐT NGHIỆP DƯỢC SĨ HÀ NỘI - 2013 BỘ Y TẾ TRƯỜNG ĐẠI HỌC DƯỢC HÀ NỘI ============ NGÔ THỊ PHƯƠNG LIÊN NGHIÊN CỨU BÀO CHẾ HỆ NANO LIPID RẮN CHỨA FLUCONAZOL KHÓA LUẬN TỐT NGHIỆP DƯỢC SĨ Người hướng dẫn: DS. Đào Minh Huy Nơi thực hiện: Bộ môn Bào chế HÀ NỘI - 2013 LỜI CẢM ƠN Với lòng biết ơn sâu sắc, em xin gửi lời cảm ơn chân thành tới: Th.S. Nguyễn Thị Mai Anh DS. Đào Minh Huy Là những người thày đã luôn tận tình chỉ bảo, hướng dẫn và giúp đỡ em trong suốt quá trình thực hiện và hoàn thành khóa luận tốt nghiệp. Em cũng chân thành cảm ơn: Các thầy cô trong Ban giám hiệu, phòng Đào tạo cùng toàn thể các thầy cô các bộ môn và cán bộ các phòng ban trường Đại học Dược Hà Nội đã tận tình dạy dỗ em trong những năm tháng học tập tại trường. Các thầy cô và kỹ thuật viên bộ môn Bào chế, bộ môn Công nghiệp Dược, bộ môn Dược lực trường Đại học Dược Hà Nội đã tạo điều kiện giúp đỡ em trong quá trình thực hiện khóa luận này. Cuối cùng em xin chân thành cảm ơn gia đình và bạn bè, đặc biệt là những người bạn thân thiết trong nhóm NNCC đã luôn ở bên cạnh, động viên, cổ vũ em trong những thời điểm khó khăn nhất để em có thể hoàn thành khóa luận này. Em xin chân thành cảm ơn! Hà Nội, ngày 17 tháng 05 năm 2013 Sinh viên Ngô Thị Phương Liên MỤC LỤC DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ĐẶT VẤN ĐỀ ........................................................................................................ 1 CHƯƠNG 1. TỔNG QUAN.................................................................................. 2 1.1. VÀI NÉT VỀ HỆ TIỂU PHÂN NANO LIPID ............................................ 2 1.1.1. Cấu tạo ................................................................................................ 2 1.1.2. Thành phần .......................................................................................... 3 1.1.3. Phương pháp bào chế .......................................................................... 6 1.1.4. Những hạn chế của hệ tiểu phân nano lipid ......................................... 9 1.2. FLUCONAZOL ....................................................................................... 11 1.2.1. Công thức hoá học ............................................................................. 11 1.2.2. Tính chất............................................................................................ 11 1.2.3. Tác dụng, chỉ định ............................................................................. 12 1.2.4. Các dạng thuốc chứa fluconazol ........................................................ 12 1.2.5. Một số nghiên cứu về hệ nano lipid điều trị nấm ................................ 13 CHƯƠNG 2. ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU .................. 15 2.1. NGUYÊN VẬT LIỆU VÀ THIẾT BỊ ....................................................... 15 2.1.1. Nguyên vật liệu .................................................................................. 15 2.1.2. Thiết bị nghiên cứu ............................................................................ 16 2.2. PHƯƠNG PHÁP NGHIÊN CỨU .............................................................. 16 2.2.1. Phương pháp bào chế hệ tiểu phân nano lipid fluconazol ................... 16 2.2.2. Phương pháp đánh giá hệ tiểu phân nano lipid .................................. 18 CHƯƠNG 3. KẾT QUẢ THỰC NGHIỆM VÀ NHẬN XÉT ............................ 23 3.1. KHẢO SÁT PHƯƠNG PHÁP BÀO CHẾ NLC FLUCONAZOL ............. 23 3.1.1. Phương pháp nhũ hóa khuếch tán dung môi ...................................... 23 3.1.2. Phương pháp đun chảy nhũ hóa ......................................................... 24 3.2. KHẢO SÁT ẢNH HƯỞNG CỦA TÁ DƯỢC ........................................... 29 3.2.1. Lựa chọn lipid rắn ............................................................................. 29 Hình 3.3: Ảnh hưởng của tá dược lipid rắn tới KTTP và thế Zeta của hệ NLC fluconazol ....................................................................................................... 30 3.2.2. Lựa chọn chất diện hoạt thân nước .................................................... 31 3.2.3. Lựa chọn nồng độ chất diện hoạt (Tween 40)..................................... 33 3.2.4. Lựa chọn lipid lỏng ............................................................................ 34 3.2.5. Lựa chọn nồng độ lipid sử dụng ......................................................... 35 3.2.6. Lựa chọn nồng độ dược chất.............................................................. 36 3.3. ĐÁNH GIÁ MỘT SỐ ĐẶC TÍNH CỦA NLC FLUCONAZOL ................ 38 3.3.1. Hàm lượng dược chất ........................................................................ 38 3.3.2. KTTP, phân bố KTTP và thế Zeta ...................................................... 38 3.3.3. Xác định cấu trúc NLC bằng kính hiển vi điện tử truyền qua (TEM) .. 39 ....................................................................................................................... 39 3.3.4. Xác định trạng thái kết tinh của dược chất......................................... 40 3.3.5. Sơ bộ đánh giá khả năng giải phóng dược chất từ NLC fluconazol .... 41 KẾT LUẬN VÀ ĐỀ XUẤT ................................................................................. 45 TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT CDH : Chất diện hoạt DSC (differential scanning calorimetry) : Nhiệt lượng vi sai quét FLZ : Fluconazol HLB (hydrophilic-lipophilic balance) : Hệ số cân bằng dầu – nước HPLC : Sắc ký lỏng hiệu năng cao (high performance liquid chromatography) HSH (high shear homogenization) : Đồng nhất hóa nhờ lực phân cắt lớn KHV : Kính hiển vi KTTP : Kích thước tiểu phân NLC (nanostructure lipid carries) : Hệ tiểu phân nano lipid PDI (polydispersity index) : Chỉ số đa phân tán TEM (transmission electron microscopy) : Kính hiển vi điện tử truyền qua SLN (solid lipid nanoparticles) : Hệ tiểu phân nano lipid rắn DANH MỤC CÁC BẢNG Bảng 1.1: Bảng tóm tắt các thí nghiệm do Fu-Qiang Hu. và cộng sự tiến hành ...... 8 Bảng 2.1: Nguyên vật liệu sử dụng trong quá trình thực nghiệm ...........................15 Bảng 3.1: Công thức, thông số thiết bị bào chế NLC fluconazol bằng phương pháp nhũ hóa khuếch tán dung môi ......................................................23 Bảng 3.2: Công thức, thông số thiết bị bào chế NLC fluconazol sử dụng thiết bị đồng nhất hóa rotor – stator .................................................................24 Bảng 3.3: Ảnh hưởng của thiết bị đồng nhất hóa tới KTTP của NLC....................25 Bảng 3.4: Công thức bào chế khảo sát ảnh hưởng của thời gian siêu âm ...............26 Bảng 3.5: Công thức bào chế khảo sát ảnh hưởng của loại lipid rắn ......................29 Bảng 3.6: Công thức bào chế khảo sát nồng độ Tween 40 ....................................33 Bảng 3.7: Ảnh hưởng của nồng độ Tween 40 tới KTTP của hệ NLC fluconazol .33 Bảng 3.8: Công thức bào chế khảo sát một số lipid lỏng .......................................34 Bảng 3.9: Công thức bào chế khảo sát nồng độ dược chất.....................................36 Bảng 3.10: Công thức và phương pháp bào chế NLC fluconazol ............................37 Bảng 3.11: Diện tích pic của các dung dịch fluconazol chuẩn nồng độ khác nhau ..41 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1: Cấu trúc của tiểu phân SLN (trái) và NLC (phải) ................................... 2 Hình 1.2: Ba kiểu phân bố dược chất trong tiểu phân nano lipid ............................ 3 Hình 1.3: Ảnh hưởng của nồng độ chất diện hoạt lên bề mặt, cấu trúc tiểu phân. ..10 Hình 2.1: Sơ đồ bào chế NLC fluconazol bằng phương pháp nhũ hóa khuếch tán dung môi. ..............................................................................................16 Hình 2.2: Sơ đồ bào chế NLC fluconazol bằng phương pháp đun chảy nhũ hóa. ..17 Hình 2.3: Bình Franz ............................................................................................20 Hình 3.1: Ảnh hưởng của thời gian siêu âm tới KTTP của hệ NLC fluconazol .....27 Hình 3.2: Ảnh hưởng của phương pháp làm lạnh tới KTTP của hệ NLC fluconazol .............................................................................................28 Hình 3.3: Ảnh hưởng của tá dược lipid rắn tới KTTP và thế Zeta của hệ NLC fluconazol .............................................................................................30 Hình 3.4: Ảnh hưởng của loại chất diện hoạt tới KTTP và thế Zeta của hệ NLC fluconazol .............................................................................................31 Hình 3.5: Đồ thị phân bố KTTP của hệ NLC fluconazol sử dụng CDH benzalkonium clorid ..............................................................................32 Hình 3.6: Ảnh hưởng của một số lipid lỏng tới KTTP và thế Zeta của hệ NLC fluconazol .............................................................................................34 Hình 3.7: Ảnh hưởng của nồng độ hỗn hợp lipid lên KTTP của hệ NLC fluconazol .............................................................................................35 Hình 3.8: Độ nhớt của hệ NLC fluconazol .............................................................35 Hình 3.9: Phần trăm fluconazol giải phóng qua màng thẩm tích với các mẫu NLC fluconazol có nồng độ dược chất khác nhau .................................37 Hình 3.10: Kết quả đo KTTP của hệ NLC fluconazol .............................................38 Hình 3.11: Kết quả đo thế Zeta của hệ NLC fluconazol ..........................................39 Hình 3.12: Hình ảnh chụp TEM của NLC fluconazol. ............................................39 Hình 3.13: Phổ nhiệt lượng vi sai quét của các mẫu fluconazol, alcol cetylic, FNLC 0; 2; 20% ....................................................................................40 Hình 3.14: Đường chuẩn biểu thị mối tương quan giữa diện tích pic và nồng độ fluconazol ............................................................................................41 Hình 3.15: Phần trăm fluconazol giải phóng qua màng thẩm tích ...........................42 Hình 3.16: Phần trăm fluconazol giải phóng qua da thỏ ..........................................43 Hình 3.17: Hiện tượng tháo thuốc ra khỏi hệ tiểu phân nano lipid rắn (SLN)..........44 1 ĐẶT VẤN ĐỀ Công nghệ nano ra đời đã đánh dấu một bước ngoặt lịch sử đối với nền công nghiệp dược phẩm, mở ra những hướng phát triển mới trong việc nghiên cứu, bào chế ra các sản phẩm mới với nhiều ưu điểm vượt trội so với các dạng bào chế quy ước. Hệ tiểu phân nano lipid lần đầu tiên được nghiên cứu vào những năm đầu của thập niên 90 đã thu được nhiều thành công lớn, đặc biệt trong việc bào chế các dạng thuốc hấp thu qua da và niêm mạc. Trong những năm gần đây, việc điều trị bệnh nấm do các loại nấm men hoại sinh gây bệnh trên da và niêm mạc đang ngày càng được quan tâm. Nguyên nhân là do các loại nấm này trong những điều kiện xác định có khả năng xâm nhập vào các khoang ổ sâu hơn trong cơ thể, làm gia tăng tỉ lệ những người bị nhiễm nấm cơ hội. Thêm vào đó, các tổ chức nấm phát triển chậm và thường tồn tại ở các mô khó thấm thuốc nên điều trị các bệnh do nấm gây ra thường lâu dài và khó hơn các bệnh nhiễm khuẩn khác [2]. Fluconazol là một dẫn chất azol – nhóm thuốc hiện đang được ứng dụng rộng rãi trên lâm sàng, trong điều trị nhiễm nấm ở trên bề mặt da, niêm mạc và toàn thân do chúng có phổ kháng nấm rộng [2]. Việc ứng dụng hệ đưa thuốc có cấu trúc nano sử dụng chất mang lipid vào nghiên cứu bào chế đã mở ra những hướng đi mới giúp làm kiểm soát giải phóng, tăng tính thấm, do đó làm tăng sinh khả dụng của chế phẩm. Vì vậy, đề tài “Nghiên cứu bào chế hệ nano lipid rắn chứa fluconazol” được tiến hành với 2 mục tiêu sau: 1. Bào chế được hệ nano lipid chứa fluconazol. 2. Sơ bộ đánh giá được một số đặc tính của hệ nano lipid chứa fluconazol. 2 CHƯƠNG 1. TỔNG QUAN 1.1. VÀI NÉT VỀ HỆ TIỂU PHÂN NANO LIPID 1.1.1. Cấu tạo Hệ đưa thuốc có cấu trúc nano (nanostructured systems, nanoparticles-based system) là các hệ đưa thuốc kích cỡ nano, trong đó, dược chất có tính chất khác nhau được lồng hay gắn vào chất mang có nguồn gốc hữu cơ hay vô cơ. Các giá mang thuốc này thường được đưa vào cơ thể dưới dạng thuốc tiêm truyền tĩnh mạch, thuốc uống, thuốc phun mù, thuốc giọt… với mục đích chính là nâng cao sinh khả dụng, kéo dài tác dụng và đưa thuốc tới đích [5]. Trong thời gian gần đây, chất mang lipid đặc biệt được chú ý với hai dạng bào chế là SLN (solid lipid nanoparticles) và NLC (nanostructures lipid carries). Hình 1.1: Cấu trúc của tiểu phân SLN (trái) và NLC (phải) Hệ tiểu phân nano lipid rắn (SLN) đã được nghiên cứu phát triển từ những năm 1990 bằng việc thay thế lipid lỏng của một nhũ tương D/N bằng một lipid rắn hoặc hỗn hợp nhiều lipid rắn [23]. Mỗi tiểu phân có cấu tạo gồm một màng lipid đơn, bao quanh một lõi chứa cốt lipid rắn, dược chất nằm xen kẽ trong cốt lipid ở dạng hoà tan hoặc kết tinh. Kích thước trung bình của SLN nằm trong khoảng từ 40 – 1000 nm được phân tán trong nước hoặc trong một dung dịch chất diện hoạt thân nước [23], [27]. SLN được nghiên cứu nhiều trong bào chế các dạng thuốc nhờ những ưu điểm như: độ ổn định vật lý cao, bảo vệ các dược chất kém bền, kiểm soát giải phóng dược chất (giải phóng nhanh hoặc duy trì), dung nạp tốt (đặc biệt thích hợp khi sử dụng cho các chế phẩm hấp thu qua da và niêm mạc), có thể phối hợp cả dược chất thân nước và thân dầu, tránh được việc sử dụng dung môi hữu cơ, 3 dễ dàng mở rộng quy mô sản xuất [21], [27], [31]. Tuy nhiên, SLN có nhiều nhược điểm như: hiệu suất nạp thuốc không cao, có hiện tượng tháo thuốc ra khỏi tiểu phân trong quá trình bảo quản do có sự chuyển dạng lipid từ dạng kém bền sang dạng bền vững hơn (hai dạng α và β’ kém bền hơn so với dạng β), hiện tượng sắp xếp lại mạng lưới tinh thể của lipid làm giảm không gian chứa dược chất [22], [23], [27], [31]. Hệ tiểu phân nano lipid thế hệ hai (NLC) đã được phát triển để khắc phục những hạn chế trên của SLN. NLC được bào chế bằng cách thay thế lipid rắn trong SLN bằng hỗn hợp lipid rắn và lipid lỏng, với tỉ lệ lipid lỏng từ 0,1% đến 30%. Do thêm vào một lượng lipid lỏng trong thành phần, hỗn hợp lipid có nhiệt độ nóng chảy thấp hơn hẳn so với chỉ sử dụng lipid rắn, nhưng vẫn tồn tại ở thể rắn khi ở nhiệt độ dưới 40oC. Sử dụng thêm lipid lỏng giúp ức chế quá trình tái kết tinh của các phân tử dược chất do chúng bị “trộn” lẫn trong “mạng lưới không gian” của chất mang lipid [5]. So với SLN, NLC có hiệu suất nạp thuốc cao hơn, tránh được hiện tượng tháo thuốc ra khỏi hệ tiểu phân nano lipid. Dược chất có thể nằm giữa các chuỗi acid béo hoặc giữa các lớp lipid trong cấu trúc của tiểu phân NLC [23]. Chất nền lipid đồng nhất Lớp vỏ dược chất Lớp vỏ lipid bao bao quanh lõi lipid quanh lõi dược chất Hình 1.2: Ba kiểu phân bố dược chất trong tiểu phân nano lipid 1.1.2. Thành phần Các thành phần trong hệ tiểu phân nano lipid gồm có: dược chất (có thể thân dầu hoặc thân nước), lipid rắn, lipid lỏng (đối với NLC), chất diện hoạt và nước. 4 1.1.2.1. Dược chất Có rất nhiều dược chất khác nhau có thể được đưa vào SLN như doxorubicin, diazepam, paclitaxel, prednisolon, acyclovir,… Điểm then chốt trong việc lựa chọn dược chất đưa vào SLN là khả năng nạp thuốc vào lipid, được đánh giá qua một số yếu tố, ví dụ như [22]: - Độ tan của dược chất trong lipid chảy lỏng. - Khả năng trộn lẫn của dược chất và lipid ở thể lỏng. - Cấu trúc vật lý và hoá học của hệ lipid – dược chất. - Trạng thái đa hình của lipid. Jensen L. B. và cộng sự đã bào chế SLN dùng ngoài với 5 corticoid có độ tan trong lipid khác nhau bằng phương pháp đồng nhất ở áp suất cao. Kết quả giải phóng in vitro cho thấy corticoid càng thân dầu thì sự giải phóng từ SLN càng chậm. Trái lại, những dược chất thân nước sẽ tồn tại trong pha nước nhiều hơn nên giải phóng dược chất nhanh hơn. Nguyên nhân là do những dược chất thân dầu sẽ được hoà tan trong lipid nóng chảy nhiều hơn, nên sẽ giữ được trong các tiểu phân nano nhiều hơn [18]. 1.1.2.2. Lipid Lipid được sử dụng thường có cấu tạo gần giống với lipid sinh lý nên an toàn, ít độc tính đối với cơ thể khi sử dụng. Lipid bao gồm nhiều loại như: glycerid (tristearin, tripalmitat…), acid béo (acid stearic), alcol béo (alcol cetylic), steroid (cholesterol), sáp (sáp ong, cetyl palmitat). Loại lipid sử dụng ảnh hưởng nhiều đến các thông số của tiểu phân nano lipid như: KTTP, tốc độ kết tinh lipid, trạng thái kết tinh, hình dạng tinh thể lipid [21]. Hầu hết các trường hợp, nếu nồng độ lipid vượt quá 5 – 10% sẽ làm tăng KTTP (thậm chí đến kích thước micro) và khoảng phân bố kích thước mở rộng. Ghadiri M. và cộng sự, Shah K. A. và cộng sự đã nghiên cứu ảnh hưởng của tỉ lệ lipid lên KTTP và phân bố KTTP. Cả hai nghiên cứu đều cho kết quả tương tự nhau: khi tăng tỉ lệ lipid, độ nhớt của hệ tăng do đó KTTP và PDI tăng theo. Ghadiri M. và cộng sự còn nhận thấy, tăng tỉ lệ lipid (acid stearic) làm tăng hiệu 5 suất nạp thuốc paromomycin trong bào chế SLN. Nguyên nhân do khi tăng tỉ lệ lipid làm không gian bên trong tiểu phân tăng lên, nên lượng dược chất được giữ trong những tiểu phân này nhiều hơn [12], [26]. Wang R. và cộng sự đã nghiên cứu ảnh hưởng của 3 loại lipid rắn có nhiệt độ nóng chảy khác nhau: acid stearic (tonóng chảy= 67 – 69oC), glyceryl monostearat (tonóng chảy= 63 – 68oC), Compritol 888 ATO (glyceryl behenat, tonóng chảy= 70oC) tới sự hình thành và cấu trúc của SLN chứa tacrolimus (FK506) – một chất có tác dụng ức chế miễn dịch. Kết quả cho thấy KTTP SLN sử dụng Compritol 888 ATO > acid stearic > glyceryl monostearat. Tuy nhiên, SLN acid stearic có hiệu suất nạp thuốc cao nhất. Việc sử dụng chất mang là Compritol 888 ATO có nhiệt độ nóng chảy cao đã làm tăng độ nhớt của SLN, giải thích cho việc SLN thu được có KTTP lớn hơn 2 mẫu còn lại [30]. Ảnh hưởng của alcol béo có độ dài mạch carbon khác nhau (12C – 18C) đến tính thấm qua da ex vivo của econazol nitrat đã được Sanna V. và cộng sự nghiên cứu. Cả 4 alcol béo (alcol laurylic, alcol myristylic, alcol cetylic, alcol stearylic) đều có hiệu suất nạp thuốc cao 95 – 99%. Nguyên nhân có thể do các alcol này với mạch C dài làm cho trật tự không gian của lipid kém linh hoạt, tạo ra nhiều “khoảng trống” cho các phân tử dược chất nằm xen kẽ vào. Tuy nhiên khi sử dụng alcol cetylic và alcol stearylic (16C và 18C) chế phẩm có KTTP nhỏ hơn khi sử dụng 2 alcol béo mạch carbon ngắn còn lại (12C và 14C). PDI nằm trong khoảng 0,3 - 0,4 và giá trị này giảm khi độ dài của mạch carbon tăng lên [25]. 1.1.2.3. Chất diện hoạt Chất diện hoạt có thể sử dụng đơn độc hoặc phối hợp với nhau để ngăn chặn sự tái kết tập các tiểu phân. Nồng độ chất diện hoạt ảnh hưởng rất lớn đến tính chất của hệ tiểu phân nano lipid như: KTTP, PDI, hiệu suất nạp thuốc và khả năng giải phóng dược chất. Nồng độ chất diện hoạt sử dụng tốt nhất là từ 0,5 đến 5% [5]. Một số chất diện hoạt thường dùng: poloxame, lecithin, phosphatidylcholin, polysorbat,… Loại chất diện hoạt sử dụng tuỳ thuộc vào đường dùng của thuốc và bị hạn chế nhiều khi sử dụng bằng đường tiêm [21]. 6 Liu C. H. và cộng sự đã nghiên cứu bào chế SLN chứa vitamin K1 (0,25 – 0,5%) dùng đường uống bằng phương pháp siêu âm. Nghiên cứu đã đánh giá ảnh hưởng của lipid (acid lauric, acid myristic, acid palmatic, acid stearic, Precirol ATO5), chất diện hoạt thân nước (Tween 80, Tween 20, Pluronic F68), chất diện hoạt thân dầu (Centrol 2F-SB, Myverol 18 - 04K, Span 60, Pre - 7070) đến KTTP và độ ổn định của SLN. Kết quả cho thấy, SLN được tạo thành từ Precirol ATO5 (glyceryl palmitolstearat) kết hợp với hỗn hợp hai chất nhũ hoá Pluronic F68 (poloxame 188) và Myverol 18 - 04K (glyceride dầu cọ đã hydrogen hoá) cho KTTP nhỏ nhất và ổn định nhất. SLN có dạng hình cầu, KTTP trung bình, thế Zeta, hiệu suất nạp thuốc lần lượt là 125 nm; - 23 mV; > 85% và có thể bảo quản được ở 25oC trong 4 tháng. Tương tự như nhũ tương, việc sử dụng kết hợp chất diện hoạt thân dầu và chất diện hoạt thân nước sẽ tạo được các hệ phân tán ổn định hơn so với việc sử dụng đơn độc một loại chất nhũ hoá [20]. 1.1.3. Phương pháp bào chế 1.1.3.1. Đồng nhất hoá nhờ lực phân cắt lớn (HSH - high shear homogenization) và siêu âm Đây là phương pháp đầu tiên được sử dụng để nghiên cứu bào chế hệ nano lipid trong phòng thí nghiệm do tính sẵn có của các thiết bị, dễ dàng thao tác. Trong phương pháp này, pha dầu đun chảy đã hoà tan dược chất được phối hợp từ từ vào pha nước chứa chất diện hoạt, đồng thời khuấy ở tốc độ cao hoặc siêu âm ở nhiệt độ cao để hình thành hệ nano nhũ tương. Để nguội hoặc làm lạnh trong điều kiện phù hợp sẽ hình thành các tiểu phân nano lipid [21]. Gambhrie M. S. và cộng sự đã tiến hành nghiên cứu đánh giá ảnh hưởng của thời gian siêu âm đến tính chất của SLN dùng ngoài chứa dithranol. Khi tăng thời gian siêu âm thì KTTP giảm, đồng thời hiệu suất nạp thuốc tăng. Nguyên nhân có thể do khi tăng thời gian siêu âm thì KTTP giảm dẫn tới diện tích bề mặt tăng lên làm cho dược chất dễ dàng được gắn vào các tiểu phân lipid [11]. Trong nghiên cứu bào chế SLN chứa vitamin K1 (0,25 – 0,5%) dùng đường uống bằng phương pháp siêu âm, Liu C. H. và cộng sự đã khảo sát ảnh hưởng của 7 thời gian siêu âm tới KTTP. KTTP giảm từ 239 xuống còn 127 nm khi tăng thời gian siêu âm từ 2 – 8 phút. Hơn 8 phút, thời gian siêu âm không ảnh hưởng đến KTTP nữa. Tăng thời gian siêu âm cũng không làm ảnh hưởng tới hiệu suất nạp thuốc của SLN [20]. Cả hai kỹ thuật siêu âm và HSH đều đơn giản, dễ thực hiện ở quy mô phòng thí nhiệm. Tuy nhiên, kỹ thuật siêu âm cũng có một số nhược điểm như: khi tăng thời gian siêu âm (thường lớn hơn 15 phút) dẫn tới nguy cơ nhiễm tạp kim loại, phân bố kích thước tiểu phân rộng. Cả hai kỹ thuật đều sinh nhiều năng lượng trong quá trình bào chế nên không thích hợp khi sử dụng cho các dược chất kém bền [29]. 1.1.3.2. Đồng nhất hoá ở áp suất cao (high pressure homogenization) Là phương pháp đã được ứng dụng rộng rãi để bào chế nano nhũ tương (nanoemulsions) từ nhiều năm trước đây. Đồng nhất hoá ở áp suất cao hiện cũng là phương pháp hiệu quả và khả thi nhất trong bào chế hệ nano lipid, do có nhiều ưu điểm như: KTTP thu được nhỏ hơn, thời gian sản xuất ngắn nên có thể áp dụng rộng rãi ở qui mô công nghiệp [21], [23]. Có 2 phương pháp đồng nhất hoá ở áp suất cao được sử dụng để bào chế hệ nano lipid là đồng nhất nóng và đồng nhất lạnh [21], [27]. Nguyên tắc: Trong thiết bị đồng nhất hoá ở áp suất cao, chất lỏng sẽ được đẩy qua một khe hẹp kích thước vài micromet, dưới áp suất cao 100 – 2000 bar. Chất lỏng được tăng tốc trong một khoảng rất ngắn tới vận tốc rất cao (trên 1000 km/h) tạo ra lực phân cắt lớn làm giảm KTTP [21]. 1.1.3.3. Phương pháp nhũ hóa khuếch tán dung môi (solvent emulsification – diffusion) Hoà tan dược chất và lipid trong một dung môi hữu cơ trộn lẫn được với nước (ví dụ aceton), rồi phân tán vào pha nước chứa chất nhũ hoá. Tiểu phân nano lipid được hình thành do hiện tượng khuếch tán dung môi từ pha dầu ra pha nước. Bốc hơi dung môi ở áp suất thấp sẽ thu được hệ tiểu phân nano lipid rắn [5]. 8 Fu-Qiang Hu. và cộng sự đã nghiên cứu bào chế SLN và NLC sử dụng phương pháp khuếch tán dung môi với các loại lipid khác nhau, có hoặc không có chứa dược chất là clobetasol propionat, kết quả được đánh giá dựa trên một số đặc điểm về KTTP, khả năng giải phóng dược chất, hiệu suất nang hoá [15], [16], [17]. Bảng 1.1: Bảng tóm tắt các thí nghiệm do Fu-Qiang Hu. và cộng sự tiến hành Thí nghiệm 1 2 3 Lipid rắn Monostearin Acid stearic Monostearin Lipid lỏng - Acid oleic Caprylic / capric triglycerids Clobetasol propionat Dược chất CNH - Pluronic F68 - Natri cholat Natri dodoecyl sulfat Ethanol, aceton Dung môi hữu cơ KTTP 117,3 ÷ 432,4 nm 151,1 ÷ 451,7 nm 328,4 ÷ 413,3 nm PDI 0,22 – 0,27 0,138 ÷ 0,418 0,045 ÷ 0,369 Thế Zeta - 14,3 ÷ + 4,7 mV - 58,7 ÷ - 43,2 mV - 27,6 ÷ - 20,5 mV Các thí nghiệm trên đều cho thấy những ưu điểm vượt trội của NLC so với SLN về KTTP, khả năng giải phóng dược chất và các yếu tố này đều phụ thuộc vào nồng độ của lipid lỏng. Khi tăng nồng độ acid oleic lên 30%, tiểu phân thu được có hình cầu, kích thước nhỏ, bề mặt nhẵn. Nguyên nhân do lipid lỏng làm xáo trộn trật tự của lipid trong phân tử, giúp tạo thêm nhiều “khoảng trống” để dược chất có thể gắn thêm vào. SLN thu được ở 70oC có khả năng gắn thuốc vào lipid cao hơn ở 0 oC. Trái lại, khả năng gắn thuốc vào NLC không bị ảnh hưởng bởi nhiệt độ. Thử nghiệm in vitro cho thấy, NLC bào chế ở 70 oC có khả năng giải phóng dược chất theo 2 giai đoạn: giải phóng ồ ạt trong những giờ đâu, giải phóng kéo dài sau đó [15], [16], [17]. 1.1.3.4. Phương pháp bào chế đi từ vi nhũ tương (microemulsion) Vi nhũ tương được bào chế từ lipid có nhiệt độ nóng chảy thấp (ví dụ: acid stearic), chất diện hoạt (ví dụ: polysorbat 20, polysorbat 60, soy phosphatidylcholin, 9 taurodeoxycholic) sử dụng đơn độc hoặc phối hợp thêm với một số chất khác (ví dụ: butanol, sodium monoctylphosphat) và nước. Đầu tiên lipid được đun chảy lỏng ở nhiệt độ cao hơn nhiệt độ nóng chảy của nó. Sau đó, phân tán vào trong nước có chứa chất diện hoạt đã được đun nóng ở nhiệt độ tương đương với lipid bằng cách khuấy nhẹ tạo vi nhũ tương D/N. Hoà tan vi nhũ tương nóng vào trong nước lạnh (2 – 3oC) và tiếp tục khuấy (tỉ lệ vi nhũ tương và nước từ 1:25 – 1:50). Sự thay đổi nhiệt độ nhanh sẽ làm cho lipid kết tinh, đồng thời ngăn chặn sự kết tụ của các tiểu phân [5], [21], [22]. Ngoài những phương pháp bào chế kể trên còn có một số phương pháp khác dùng để bào chế hệ tiểu phân nano lipid: phương pháp đông tụ, phương pháp sử dụng chất lỏng siêu tới hạn, phương pháp tiếp xúc màng, phương pháp nhiệt độ đảo pha, phương pháp phun sấy, phương pháp phun tĩnh điện [4]. 1.1.4. Những hạn chế của hệ tiểu phân nano lipid Mặc dù có rất nhiều ưu điểm như đã nêu trên nhưng hệ nano lipid cũng gặp một số hạn chế trong quá trình bào chế và bảo quản. 1.1.4.1. Sự phân huỷ của dược chất khi hình thành hệ nano lipid Các phương pháp bào chế sử dụng nguồn năng lượng cao (đồng nhất hoá ở áp suất cao, đồng nhất hoá nhờ lực phân cắt lớn và siêu âm) làm tăng khả năng nhiễm tạp hoá học và đặc biệt là dễ dẫn tới phân huỷ dược chất không bền như ADN, albumin, erythropoietin [29]. Những dược chất có phân tử khối lớn hay chứa những chuỗi dài dễ bị phân huỷ hơn dược chất có phân tử khối thấp và hình cầu [5]. 1.1.4.2. Hiện tượng gel hoá Là hiện tượng thay đổi KTTP keo và có sự chuyển dạng từ hỗn dịch có độ nhớt thấp sang gel có độ nhớt cao trong quá trình bảo quản. Nguyên nhân có thể do: nhiệt độ cao, tiếp xúc với ánh sáng. Sử dụng các chất đồng diện hoạt có độ linh động cao như glycolat có khả năng hạn chế được hiện tượng này. Hiện tượng gel hoá có thể dự đoán trước thông qua thế Zeta [5]. Helgason T. và cộng sự đã nghiên cứu ảnh hưởng của nồng độ chất diện hoạt lên bề mặt, cấu trúc tiểu phân, cũng như sự ổn định cấu trúc của SLN. 10 Tác giả tiến hành nghiên cứu bào chế SLN tripalmitin bằng kĩ thuật đồng nhất hoá nóng dưới áp suất cao sử dụng chất diện hoạt không ion hoá Tween 20. Nghiên cứu đã chỉ ra rằng đường kính tiểu phân ít bị ảnh hưởng khi tăng nồng độ Tween 20 từ 0 – 5%, nhưng khi sử dụng Tween 20 ở nồng độ cao giúp tránh được hiện tượng gel hoá trong quá trình bảo quản. Nguyên nhân của hiện tượng gel hoá là do các phân tử chất diện hoạt không đủ để bao hết bề mặt kị nước của các tiểu phân lipid rắn [14]. Hình 1.3: Ảnh hưởng của nồng độ chất diện hoạt lên bề mặt, cấu trúc tiểu phân. 1.1.4.3. Sự chuyển dạng thù hình của lipid Sự chuyển dạng thù hình của lipid ảnh hưởng trực tiếp đến sự kết hợp vào lipid của dược chất và sự giải phóng dược chất. Do đó, SLN có hiện tượng tháo thuốc ra khỏi tiểu phân trong quá trình bảo quản do có sự chuyển dạng lipid từ dạng kém bền, có năng lượng cao (dạng α hoặc β’) sang dạng bền vững, có năng lượng thấp hơn (dạng β). Trong quá trình bào chế, sau khi nhũ hóa tạo nano nhũ tương, hệ được làm lạnh nhanh hình thành các tiểu phân SLN, trong đó tiểu phân lipid tồn tại dưới dạng kém bền. Các tiểu phân lipid này sắp xếp lộn xộn, tạo ra nhiều “không gian trống” cho dược chất. Sau quá trình bảo quản, một phần các tiểu phân lipid 11 chuyển sang dạng bền vững hơn nên sắp xếp có trật tự hơn, làm giảm bớt “không gian trống”, dược chất bị đào thải ra ngoài tiểu phân SLN (hiện tượng tháo thuốc). Nếu quá trình này được kiểm soát, SLN hứa hẹn là dạng bào chế giúp kiểm soát giải phóng dược chất. NLC sử dụng thêm lipid lỏng làm ổn định cấu trúc “cốt lipid rắn” đã giúp cải thiện hiện tượng tháo thuốc và kiểm soát quá trình giải phóng dược chất [23], [27], [31]. 1.2. FLUCONAZOL 1.2.1. Công thức hoá học - Tên khoa học: 2-(2,4-Difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1- yl)propan-2-ol. - Công thức phân tử: C13H12F2N6O. - Khối lượng phân tử: 306,27 [7], [28]. 1.2.2. Tính chất  Tính chất vật lý: - Đặc tính: Bột kết tinh màu trắng hoặc gần như trắng [28]. - Độ tan: Ít tan trong nước (8 - 10 mg/ml), tan được trong rượu và aceton, ít tan trong chloroform, isopropanol, tan hoàn toàn trong methanol, rất ít tan trong toluen [28]. - Nhiệt độ nóng chảy khoảng 139oC [2]. - Bảo quản ở nơi kín, nhiệt độ dưới 30 oC [28]. - Độ ổn định: Tiến hành thử nghiệm độ ổn định của fluconazol ở 90 oC trong các môi trường khác nhau (nước; HCl 0,1M; NaOH 0,1M; H2O2 3%). Phần trăm fluconazol chưa bị phân hủy ở các điều kiện kể trên sau 1 giờ và 6 giờ lần lượt là > 94,13% và > 90,12% [9].
- Xem thêm -