Một số phương pháp tiếp cận giải quyết bài toán phương trình Fermat

  • Số trang: 44 |
  • Loại file: DOC |
  • Lượt xem: 46 |
  • Lượt tải: 0
minhtuan

Đã đăng 15929 tài liệu

Mô tả:

1 BỘ GIÁO DỤC VÀ ĐÀO TẠO Trêng ®¹i häc Vinh LÊ HOÀNG DUY CƯỜNG MỘT SỐ PHƯƠNG PHÁP TIẾP CẬN GIẢI QUYẾT BÀI TOÁN PHƯƠNG TRÌNH FERMAT LuËn v¨n th¹c sÜ to¸n häc NGHÖ AN - 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO Trêng ®¹i häc Vinh 2 LÊ HOÀNG DUY CƯỜNG MỘT SỐ PHƯƠNG PHÁP TIẾP CẬN GIẢI QUYẾT BÀI TOÁN PHƯƠNG TRÌNH FERMAT CHUYÊN NGÀNH: ĐẠI SỐ VÀ LÝ THUYẾT SỐ Mã số: 60 46 01 04 LuËn v¨n th¹c sÜ to¸n häc Người hướng dẫn khoa học PGS.TS. NGUYỄN THÀNH QUANG NGHÖ AN – 2014 MỤC LỤC 3 Trang MỞ ĐẦU CHƯƠNG 1 VỀ ĐỊNH LÍ CUỐI CÙNG CỦA FERMAT 1 4 1.1 Phương trình Pitago 4 1.2 Định lí sau cùng của Fermat 7 1.3 Phương pháp quy nạp lùi vô hạn 12 1.4 Giả thuyết Mordell – Shafarevich – Tate 15 1.5 Định lí Mason 21 CHƯƠNG 2 ĐƯỜNG CONG ELLIPTIC, DẠNG MODULAR VÀ ỨNG DỤNG 2.1 Đường cong Elliptic 26 2.2 Đường cong Elliptic trên trường số thực 28 2.3 L- Hàm của đường cong Elliptic 31 2.4 Giả thuyết Shimura – Taniyama 32 2.5 Chứng minh định lí lớn Fermat trong một số trường hợp cụ thể bằng phương phát ứng dụng công cụ đường cong Elliptic 37 KẾT LUẬN 25 40 4 TÀI LIỆU THAM KHẢO 41 MỞ ĐẦU Fermat (1601 – 1665) đã mở rộng phương trình Pythagore x 2  y 2  z 2 và tạo ra một bài toán khó bất hủ, một trong những câu hỏi lớn nhất của toán học và nhân loại. Định lý cuối cùng của Fermat hay còn gọi là Định lý lớn Fermat, là một trong những định lý nổi tiếng trong lịch sử toán học: Không tồn tại các nghiệm nguyên khác không x, y, z thoả mãn n n n phương trình x  y  z , trong đó n là một số nguyên lớn hơn 2. Định lý lớn Fermat đã gây cảm hứng cho nhiều thế hệ, không những cho các nhà toán học mà còn cho cả những người ngoài toán có quan tâm. Nhiều cách tiếp cận Định lý Fermat đã được đưa ra, nhiều lý thuyết toán học nảy sinh từ đó. Định lý Fermat đã trở thành con gà đẻ trứng vàng của toán học trong suốt gần 4 thế kỷ. Cho đến cuối thập kỷ 70 thế kỷ trước, cho dù với nhiều nổ lực của giới toán học, người ta chỉ mới chứng minh được trong những trường hợp riêng. Kết hợp với máy tính, người ta đã chứng minh được Định lý Fermat đối với n tới bốn triệu, tuy nhiên con số này vẫn còn rất xa với số n tổng quát lớn hơn 2. Các trường hợp n = 3 và n = 5 đã được Euler, Dirichlet và Legendre chứng minh năm 1825 và phải đến 15 năm sau, trường hợp n = 7 mới được Gabriel Lamé chứng minh. Ernst Kummer đã chứng minh Định lý lớn Fermat đúng với mọi số nguyên tố tới 100 (trừ 3 số nguyên tố phi chính quy là 37, 59, 67). Sự phát triển của Số học gần đây chịu sự ảnh hưởng rất lớn của sự tương tự giữa số nguyên và đa thức. Để nghiên cứu một tính chất nào đó trên vành số nguyên, trước hết người ta kiểm tra tính chất đó trên vành đa thức. Nhờ đó, vào những năm 80 của thế kỷ XX, Định lý Mason đã được phát minh 5 như là một công cụ cho nhiều hy vọng trên con đường chinh phục Định lý lớn Fermat. Năm 1983, Faltings đã làm một cuộc cách mạng thực sự khi sử dụng công cụ của Hình học Đại số để chứng minh được rằng phương trình Fermat cùng lắm thì cũng chỉ có hữu hạn nghiệm. Dĩ nhiên, từ chỗ hữu hạn đến chỗ không có gì còn có cả một khoảng cách rất xa, nhưng nó cho một câu trả lời tổng quát, điều mà các thế hệ trước đây chưa làm được. Năm 1993, bằng việc chứng minh thành công giả thuyết Giả thuyết Shimura - Taniyama về các đường cong Elliptic, nhà toán học Andrew Wiles (người Anh gốc Mỹ) đã giải quyết trọn vẹn bài toán về phương trình Fermat. Với những lý do như đã trình bày ở trên, chúng tôi chọn đề tài của luận văn là “Một số phương pháp tiếp cận giải quyết bài toán phương trình Fermat” nhằm tìm hiểu sâu hơn về Định lý lớn Fermat nói riêng và Lý thuyết số nói chung. Luận văn nhằm giới thiệu một số phương pháp tiếp cận giải quyết bài toán về phương trình Fermat. Nội dung luận văn này gồm 2 chương, ngoài phần mở đầu, kết luận, tài liệu tham khảo. Trong chương 1, chúng tôi giới thiệu Định lý lớn Fermat và một số phương pháp liên quan đến Định lý lớn Fermat như phương pháp quy nạp lùi vô hạn, phương pháp ứng dụng đường cong phẳng hữu tỉ, phương pháp áp dụng định lý Mason và một số kết quả gần đây xung quanh Định lý Mason. Trong chương 2, chúng tôi trình bày phương pháp chứng minh giả thuyết Shimura - Taniyama về các đường cong Elliptic và ứng dụng trong việc kết hợp Định lý Frey để hoàn thành chứng minh Định lý lớn Fermat của Andrew Wiles. Luận văn này được hoàn thành dưới sự hướng dẫn tận tình và chu đáo của PGS.TS. Nguyễn Thành Quang. Nhân dịp này tôi xin bày tỏ lòng kính trọng và biết ơn sâu sắc tới thầy giáo hướng dẫn khoa học, người đã dành nhiều thời gian và công sức giúp đỡ tôi để hoàn thành bản luận văn này. 6 Tác giả xin bày tỏ lòng biết ơn tới các thầy cô giáo thuộc chuyên ngành Đại số và Lý thuyết số, Khoa Sư phạm Toán học, Phòng Đào tạo Sau Đại học – Trường Đại học Vinh đã tận tình giảng dạy và tạo mọi điều kiện thuận lợi cho tôi hoàn thành nhiệm vụ học tập và nghiên cứu. Xin trân trọng cảm ơn tới Trường Đại học Đồng Tháp đã tạo mọi điều kiện tổ chức cho chúng tôi hoàn thành khóa học sau đại học. Tôi xin chân thành cảm ơn bạn bè, đồng nghiệp, gia đình đã động viên và giúp đỡ tôi trong suốt quá trình học tập. Tôi xin gửi lời cảm ơn đến Ban giám hiệu Trường Trung học Phổ thông Lê Thanh Hiền (Sở Giáo dục và Đào tạo Tiền Giang) và các thầy cô đồng nghiệp, đã tạo điều kiện thuận lợi để tôi hoàn thành nhiệm vụ học tập. Luận văn còn nhiều thiếu sót, tác giả mong nhận được sự đóng góp của thầy cô giáo và các đồng nghiệp. TÁC GIẢ 7 CHƯƠNG 1 VỀ ĐỊNH LÍ CUỐI CÙNG CỦA FERMAT 1.1. Phương trình Pitago 1.1.1. Các bộ số Pitago. Bộ ba số nguyên dương  x, y, z  thoả mãn x 2  y 2  z 2 được gọi là bộ số Pitago. Tên gọi đó xuất phát từ Định lý Pitago quen thuộc: Trong một tam giác vuông, bình phương độ dài cạnh huyền bằng tổng bình phương các cạnh góc vuông. Như vậy, một bộ ba số nguyên dương  x, y, z  là một bộ số Pitago khi và chỉ khi tồn tại tam giác vuông có số đo các cạnh góc vuông là x và y, số đo cạnh huyền là z (chẳng hạn bộ  3, 4,5 ,  6,8,10 ,... ). Rõ ràng rằng, nếu  x, y, z là một bộ số Pitago thì  kx, ky, kz cũng là một bộ số Pitago với mọi số nguyên dương k . Do đó, ta chỉ cần xét các bộ ba số nguyên tố cùng nhau. Bộ ba số Pitago  x, y, z được gọi là nguyên thuỷ nếu (x, y, z) = 1. Ví dụ. Các bộ số  3, 4,5 ,  5,12,13 là nguyên thuỷ. Nếu bộ số Pitago  x, y, z là không nguyên thuỷ, chẳng hạn ( x, y, z )  d  1 , �x y z � �d d d thì � , , �là một bộ số Pitago nguyên thuỷ. Để tìm các bộ số Pitago ta cần: 1.1.2. Bổ đề. Nếu  x, y, z là bộ số Pitago nguyên thuỷ thì  x, y    x, z    y, z   1. Chứng minh. Giả sử  x , y , z là một bộ số Pitago nguyên thuỷ và  x, y   1 . Khi đó, tồn tại số nguyên tố p sao cho p  x, y  . Vì p x và p y nên p  x 2  y 2   z 2 . Do p là số nguyên tố mà p z 2 nên p z . Do đó, tồn tại 8 một số nguyên p là ước chung của x, y , z và điều này mâu thuẫn với giả thiết ( x, y, z )  1 . Vậy  x, y   1 . Tương tự ta có  x, z    y, z   1 . ■ 1.1.3. Bổ đề. Giả sử  x, y , z là một bộ số Pitago nguyên thuỷ. Khi đó, x và y không cùng tính chẵn, lẻ. Chứng minh. Giả sử  x, y, z là bộ số Pitago nguyên thuỷ. Theo Bổ đề 1.1.2,  x, y   1 nên x và y không thể cùng chẵn. Nếu x, y cùng lẻ thì z chẵn 2 2 hay z2 chia hết cho 4. Ta có: x �1 mod 4  ; y �1 mod 4  . Do đó z  x 2  y 2 � mod 4  . Điều này vô lý với việc z chia hết cho 4. Vậy x, y không cùng tính chẵn lẻ. ■ 1.1.4. Bổ đề. Giả sử r , s, t là các số nguyên dương sao cho  r , s   1 và rs  t 2 . Khi đó, tồn tại các số nguyên h và l sao cho r  l 2 và s  h 2 . Chứng minh. Nếu r = 1 hoặc s = 1 hoặc t = 1 thì Bổ đề là hiển nhiên đúng. Giả sử r > 1, s > 1, t > 1 và r, s, t có các phân tích tiêu chuẩn thành tích các thừa số nguyên tố như sau: r  p1 p2 L pn 1 n 2 s  pn 1 pn  2 L pm  n 1  n 2 m t  q  q  L qm . 1 m 2 Vì  r , s   1 nên các số nguyên tố xuất hiện trong các phân tích của r và s là khác nhau, hay rs có sự phân tích tiêu chuẩn là rs  p1 p2 L pn pn 1 pn  2 L pm . 1 n 2  n 1 n 2 m � � pn pn1 pn 2 � � � pm  q12  q22  � � � qk2  . Do rs  t 2 nên p1 p2 � 1 2 n n1 n 2 m 1 2 k Từ Định lý cơ bản của Số học ta suy ra rằng, các luỹ thừa nguyên tố xuất hiện ở hai vế của đẳng trên thức phải như nhau. Vậy mỗi pi phải bằng 9 một q j nào đó, đồng thời  i  2 j . Do đó, mỗi số mũ  i đều chẵn nên nguyên. Từ đó suy ra r  l 2 , s  h 2 , trong đó l , h là các số nguyên. i 2 ■ Bây giờ ta có thể mô tả tất cả các bộ số Pitago nguyên thuỷ. 1.1.5. Định lý. Bộ số nguyên dương {x, y, z} lập thành một bộ số Pitago nguyên thuỷ, với y chẵn, khi và chỉ khi tồn tại các số nguyên dương nguyên tố cùng nhau m, n với m > n, hơn nữa m và n không cùng tính chẵn lẻ sao cho �x  m 2  n 2 � �y  2 mn �z  m 2  n 2 . � Chứng minh. Giả sử {x, y, z} là một bộ số Pitago nguyên thuỷ. Theo Bổ đề 1.1.3 cho thấy x lẻ, y chẵn hoặc ngược lại. Vì ta đã giả thiết y chẵn nên x, z đều lẻ. Do z  x và zx zx  r; s 2 2 là những zx số đều là số chẵn, nên các số nguyên. x2  y 2  z 2 Vì nên y 2  z 2  x 2   z  x   z  x  . Vậy 2 �y � �z  x � �z  x � �z  x � �z  x � , s� � � � � � � rs; r  � � �. �2 � � 2 � �2 � �2 � �2 � Để ý rằng  r, s   1. Thật vậy, nếu  r, s   d thì do d r , d s nên d  r  s   z và d  r  s   x . Điều đó có nghĩa là d  z , x   1 nên d  1. Từ Bổ đề 1.1.4, tồn tại các số nguyên m và n sao cho r  m 2 , s  n 2 . Ta viết x, y, z thông qua m, n: z  x  2r x  r  s  m2  n2 z  x  2s hay y  4rs  2mn y  4rs z  r  s  m2  n2 . 10 Ta cũng có  m, n   1 , vì mọi ước chung của m và n cũng là ước của x  m 2  n 2 , y  2mn, z  m 2  n 2 , nên là ước chung của ( x, y , z ) . Mà x, y, z nguyên tố cùng nhau nên  m, n   1 . Mặt khác, m và n không thể cùng lẻ vì nếu ngược lại thì x, y và z đều chẵn, mâu thuẫn với điều kiện  x, y, z   1 . Vì  m, n   1 và m, n không đồng thời là hai số lẻ nên m chẵn, n lẻ hoặc ngược lại. Vậy mỗi bộ số Pitago nguyên thuỷ có dạng đã mô tả ở trên. Để chứng tỏ �x  m 2  n 2 � �y  2 mn �z  m 2  n 2 . � trong đó m, n là các số nguyên dương, m > n,  m, n   1 và m �n  mod 2  lập thành một bộ số Pitago nguyên thuỷ, ta nhận xét rằng  x 2  y 2  m2  n 2   2  (2mn) 2   m 4  2m 2 n 2  n 4  4m 2 n 2  m 4  2m 2 n 2  n 4   m2  n2  2  z2. Ta chứng minh x, y, z nguyên tố cùng nhau. Giả sử ngược lại,  x, y, z   d  1 . Khi đó tồn tại số nguyên tố p sao cho p  x, y, z  . Ta thấy rằng p \ 2 vì x lẻ (do x  m 2  n 2 , trong đó m 2 và n 2 không cùng tính 2 2 chẵn lẻ). Lại do p x , p z nên p  z  x   2m và p  z  x   2n . Vậy p m và p n : mâu thuẫn với  m, n   1 . Do đó  x, y, z   1, tức  x, y , z là một bộ số Pitago nguyên thuỷ. ■ Từ Định lý 1.1.5 nói trên, ta có thể thu được các ví dụ về bộ số Pitago nguyên thuỷ. Với m  5, n  2 ta có m �n  mod 2  và  m, n   1, m  n : 11 �x  m 2  n 2  52  2 2  21 � �y  2 mn  2.5.2  20 �z  m 2  n 2  52  2 2  29. � là một bộ số Pitago nguyên thuỷ: 212  202  292 1.2. Định lí sau cùng của Fermat 1.2.1. Giới thiệu về nhà toán học Pierre de Fermat. Pierre de Fermat sinh ngày 17 tháng 8 năm 1601 tại Pháp, ông mất vào năm 1665, thọ 63 tuổi. Fermat là một học giả vĩ đại, một nhà toán học nổi tiếng và là cha đẻ của Lý thuyết số hiện đại. Fermat xuất thân từ một gia đình khá giả, ông học ở Toulouse và lấy bằng cử nhân luật dân sự rồi làm chánh án nhưng lại vô cùng say mê toán học với thói quen nổi tiếng là ghi các ghi chú bên lề các quyển sách. Ông vừa là một luật sư, vừa là một nhà toán học đã đóng góp nhiều vào sự phát triển bước đầu của toán học. Đặc biệt, ông được nhớ đến qua sự khám phá một phương pháp đầu tiên để tìm cực đại và cực tiểu của tung độ của đường cong. Ông cũng nghiên cứu về Lý thuyết số và có nhiều đóng góp trong các lĩnh vực Hình học giải tích, Xác suất và Quang học. 1.2.2. Định lý sau cùng của Fermat (The Fermat’s LastTheorem). Định lý sau cùng của Fermat (còn gọi là Định lý lớn Fermat, hay còn gọi tắt là Định lý Fermat) được đưa ra năm 1637, khi Fermat nghiên cứu quyển sách toán cổ Hy lạp Arithmetica, viết bởi Diophantus vào khoảng năm 250 AD. Trang sách đã gợi ý cho Fermat bàn về các tính chất quanh Định lý Pythagore: Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng số bình phương của hai cạnh góc vuông. Nói khác đi, phương trình x 2  y 2  z 2 có vô số nghiệm nguyên và từ đó sẽ tìm được vô số bộ số Pitago. Từ Định lý Pitago, Fermat đã tìm xem có ba số nguyên x, y, z nào thỏa cho một phương trình như phương trình của Pitago nhưng ở bậc cao hơn hay không x n  y n  z n nhưng đều thất bại. Theo Fermat 12 thì phương trình này với ba ẩn số nguyên x, y, z và n > 2 không thể giải được. Ông đã viết điều này bên lề quyển sách Arithmetica của Diophant (xuất bản năm 1963) như sau: Không thể nào viết một số lập phương thành tổng số của hai số lập phương khác, hay một số tứ phương thành tổng số của hai số tứ phương khác. Và, một số tùy ý là lũy thừa bậc lớn hơn hai không thể viết như tổng của hai lũy thừa cùng bậc của hai số nguyên khác. Tôi đã có một chứng minh tuyệt vời cho mệnh đề này, nhưng lề sách này quá nhỏ để có thể ghi được. Định lý sau đây đã làm hao mòn không biết bao bộ óc vĩ đại của các nhà toán học lừng danh trong gần 4 thế kỉ. 1.2.3. Định lý. Phương trình x n  y n  z n không có nghiệm nguyên dương với n �3 . Trong toán học, số nguyên tố chính quy là một loại số nguyên tố do Ernst Kummer (nhà toán học người Đức) đặt ra, với định nghĩa: Một số nguyên tố p được gọi là chính quy nếu không tồn tại bất cứ một tử số nào của số Bernoulli Bk (khi k = 2, 4, 6, …, p − 3.) chia hết cho p. Một vài số nguyên tố chính quy nhỏ nhất là: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, ... Một giả thuyết của nhà toán học Siegel (1964) cho rằng có khoảng 61% các số nguyên tố là chính quy. Giả thuyết này vẫn chưa có ai chứng minh được cho đến 2008. Ernst Kummer đã tìm ra loại số này khi đang cố gắng chứng minh Định lý lớn Fermat là đúng với số mũ là các số này (và các số mũ là tích của các số này). Trái lại với số nguyên tố chính quy là số nguyên tố phi chính quy. Nếu tồn tại một tử số của số Bernoulli Bk mà chia hết cho p thì p được gọi là số nguyên tố phi chính quy. K. L. Jensen đã cho thấy có vô số phi chính quy. Một vài số nhỏ nhất của chúng là: 37, 59, 67, 101, 103, 131, 149, … Cho mãi tới đầu thế kỷ XX các nhà toán học chỉ chứng minh định lý này là đúng với n = 3, 4, 5, 7 và các bội số của nó. Nhà toán học người Đức Ernst Kummer đã chứng minh định lý này là đúng với mọi số nguyên tố tới 100 (trừ 3 số nguyên tố là 37, 59, 67). 13 Các dạng suy rộng khác của Định lý Fermat. 1.2.4. Định lí lớn Fermat tiệm cận. Phương trình x n  y n  z n không có nghiệm nguyên dương với n đủ lớn. 1.2.5. Định lí lớn Fermat mở rộng. Phương trình x1n  x2n  L  xkn  z n không có nghiệm nguyên dương với n �3, k �2. . n 1.2.6. Định lí lớn Fermat tổng quát. Phương trình x1n  x2n  L  xk  z n 1 2 k không có nghiệm nguyên dương với ni �3, k �2, n  k . . Trên cơ sở theo dõi và tham khảo các tài liệu số học có liên quan đã công bố trong thời gian gần đây, trong nội dung tiếp theo của luận văn, chúng tôi giới thiệu một số phương pháp tiếp cận để đi đến chứng minh của Định lý Fermat. 1.2.7. Nổ lực đầu tiên để giải phương trình Fermat (xem [10]) Một nỗ lực đầu tiên để giải phương trình Fermat là người ta tìm cách viết phương trình này dưới dạng tích: n n � n2 � � n2 � 2 2  xn. z  y z  y � � � � � � � � Từ đó, đặt n n � � � n2 � n1 n � n2 � n 2 2 z  y  2 p z  y � � � � 2 p � � � � � � � � hoặc � n � n n n �2 � �2 � � � z  y 2 � 2q n z  y 2 � 2 n1 q n . � � � � � � � � � � Giải hệ này theo y và z cho ta: � n2 � n2 n2 n n z  2 p  q � �z  p n  2n 2 q n hoặc � n �n �y 2  2n 2 p n  q n �y 2  p n  2n 2 q n . � � Vậy 2 n � � n2 n n n n n2 n 2 z  2 p  q z  p  2 q   �  �  hoặc � � 2 n �y   2 n 2 p n  q n  n �y   p n  2n 2 q n  2 . � � 14 Tuy nhiên, việc giải hệ các phương trình này lại không dễ hơn giải phương trình ban đầu, hơn nữa có điều đáng tiếc là phương pháp này không cung cấp cho ta bất kỳ cái nhìn nào sâu sắc hơn. 1.2.8. Mệnh đề. Nếu phương trình x n  y n  z n với n �3 , n �Z có nghiệm nguyên dương thì phương trình x p  y p  z p cũng có nghiệm nguyên dương, với p là ước của n. Chứng minh. Giả sử phương trình x n  y n  z n với n �3 , n �Z có một nghiệm nguyên dương (a, b, c ) , khi đó ta có: a n  b n  c n . Ta viết đẳng thức này lại như sau: p p p � np � � np � � np � a � � b � � c �. � � � � � � � n n n Do đó, phương trình x p  y p  z p có nghiệm nguyên dương (a p , b p , c p ) . 1.2.9. Mệnh đề. Nếu phương trình x n  y n  z n không có nghiệm nguyên dương khi n = 4 hoặc khi n là số nguyên tố �3 thì phương trình x n  y n  z n không có nghiệm nguyên dương với mọi số nguyên n �3 . Chứng minh. Từ giả thiết ta chỉ cần xét với những số nguyên n  4 và không phải là số nguyên tố. 1) Nếu n là số lẻ thì tồn tại ước nguyên tố lẻ p của n. Do đó, nếu phương trình x n  y n  z n có nghiệm nguyên dương thì theo Mệnh đề 1.2.8 phương trình x p  y p  z p cũng có nghiệm. Điều này mâu thuẫn với giả thiết. 2) Nếu n là số chẵn thì ta xét hai khả năng sau: a) n = 4k: Do n > 4 nên k > 1. Nếu phương trình x n  y n  z n có nghiệm nguyên dương thì do 4 là ước của n, nên theo Mệnh đề 1.2.8 phương trình x 4  y 4  z 4 cũng có nghiệm nguyên dương. Điều này mâu thuẫn với giả thiết. b) n = 4k + 2 = 2(2k + 1): Do n > 4 nên 2k + 1 > 2 hay 2k + 1 là số lẻ lớn hơn 3 và do đó n có một ước nguyên tố lẻ p. Giả sử ngược lại, phương trình 15 x n  y n  z n có nghiệm nguyên dương thì theo Mệnh đề 1.2.8 phương trình x p  y p  z p cũng có nghiệm. Điều này mâu thuẫn với giả thiết. ■ 1.2.10. Nhận xét. a) Nếu n có một ước nguyên tố lẻ p thì ta có thể viết phương trình Fermat dạng: p p p � np � � np � � np � �x � �y �  �z � � � � � � � và do đó trong trường hợp này có thể hạn chế chỉ xét phương trình với dạng x p  y p  z p , trong đó p là số nguyên tố lẻ. b) Nếu n không có ước nguyên tố lẻ thì n chỉ có ước nguyên tố là 2 hay n là bội của 4 và khi đó người ta viết phương trình dưới dạng 4 4 4 � np � � np � � np � �x � �y � �z �. � � � � � � c) Như vậy, về thực chất Định lý lớn Fermat chỉ cần xét với n là số nguyên tố lớn hơn 3 (Trường hợp n = 3, 4 đã được giải quyết). 1.3. Phương pháp quy nạp lùi vô hạn 1.3.1. Quy nạp lùi. Phép quy nạp có nhiều biến thể phong phú. Một trong các biến thể đó ngày nay được biết đến dưới tên gọi “quy nạp lùi” (còn được gọi là “quy nạp kiểu Cauchy”), do chính Cauchy sử dụng lần đầu khi chứng minh bất đẳng thức trung bình cộng – trung bình nhân: a1  a2  ...  an n � a1a2 ...an n (*) với mọi số nguyên dương n �2 và với mọi bộ n số thực không âm a1 , a2 ,..., an . Với n = 2, (1.2.1) được chứng minh trực tiếp. Với n tổng quát, Cauchy chứng minh rằng nếu (1.2.1) đã đúng với n = k ( trong đó, 2 �k ��* ) thì (1.2.1) cũng đúng khi n = 2k. Bằng cách như vậy, ta thấy (*) đúng với một dãy tăng vô hạn các số nguyên dương n  2 m ( m ��* ) . 16 Cuối cùng, ở bước mấu chốt (thường được gọi là bước lùi), Cauchy nhận xét rằng: Nếu (*) đúng với n = N ( N ��* , N  2 ) thì nó cũng đúng khi n  N  1 . Cách chứng minh cũng khá đơn giản: Với a1 , a2 ,..., aN 1 �0 , xét aN  a1  a2  ...  aN 1 (hoặc aN  N 1 a1a2 ...aN 1 ) N 1 và áp dụng bất đẳng thức (*) cho N số a1 , a2 ,..., aN �0 , ta có bất đẳng thức a1  a2  ...  aN 1 N 1 � a1a2 ...aN . N 1 Từ đó suy ra (*) đúng với mọi số nguyên dương n �2 . Ta có thể tổng quát hoá ý tưởng của Cauchy thành: 1.3.2. Định lý (Nguyên lý quy nạp lùi). Cho (mk )� k 1 là một dãy vô hạn các số mk  �. Giả sử P(n) là một hàm mệnh đề của biến n nguyên dương mà lim k �� biến thiên trên tập hợp �* tất cả các số nguyên dương sau cho P(mk ) đúng với mọi k ��* ; hơn nữa với mọi số nguyên dương n > 1, nếu P(n) đúng thì P(n - 1) cũng đúng. Khi đó, P(n) đúng đối với mọi số nguyên dương n. 1.3.3. Định lý. Phương trình x 4  y 4  z 2 không có nghiệm nguyên dương. Chứng minh. Giả sử phương trình x 4  y 4  z 2 có nghiệm nguyên dương. Khi đó, tồn tại nghiệm nguyên x  x0 , y  y0 , z  z0 trong đó z0 là nhỏ nhất. Ta có x0 4  y0 4  z0 2 . Ta chứng minh  x0 , y0   1. Thật vậy, nếu 2 ngược lại ta gọi p là ước chung nguyên tố của x0 , y0 thì z0 chia hết cho p4 hay z0 chia hết cho p2. Đặt x0  px1 , y0  py1 , z0  p 2 z1 . Thay vào x0 4  y0 4  z0 2 ta có x14  y14  z12 . Dó đó, x  x1 , y  y1 , z  z1 là một nghiệm của phương trình x 4  y 4  z 2 với z1 bé hơn z0. Ta gặp mâu thuẫn. 2 2 4 4 2 Vì x0  y0  z0 nên  x0 2    y0 2   z0 2 , nên  x0 , y0 , z0  là một bộ số 2 2 2 2 2 2 Pitago. Hơn nữa,  x0 , y0   1, vì nếu p là số nguyên tố, mà p x0 , p y0 17 thì p x0 , p y0 , mâu thuẫn với  x0 , y0   1. Như vậy,  x0 2 , y0 2 , z0  là một bộ số Pitago nguyên thuỷ và do đó tồn tại các số nguyên dương m, n với  m, n   1, m �n  mod 2  và �x0  m 2  n 2 � �y0  2mn �z  m 2  n 2 . �0 trong đó ta có thể xem y 2 là số chẵn. 2 2 2 2 Từ đẳng thức của x0 ta được x0  n  m . Do  x0 , n, m  m, n   1 nên là một bộ số Pitago nguyên thuỷ và do đó lại tồn tại các số nguyên dương r , s với  r , s   1, r �s  mod 2  và x0 2  r 2  s 2 n  2rs m  r 2  s2 . 2 Vì m lẻ và  m, n   1 , ta có  m, 2n   1. Do y0   2n  m nên theo Bổ đề 2 2 1.2.4, tồn tại các số nguyên dương z1 và w với m  z1 , 2n  w . Vì w chẵn, w  2u , trong đó u là số nguyên dương, nên u2  n  rs 2 Do  r , s   1, theo Bổ đề 1.1.4 tồn tại các số nguyên dương x1 , y1 sao cho r  x12 , s  y12 . Chú ý rằng, vì  r , s   1 nên suy ra  x1 , y1   1. Như vậy x14  y14  z12 , trong đó x1 , y1 , z1 là các số nguyên dương với  x1 , y1   1. Hơn nữa ta có z1  z0 , vì z1 �z14  m 2  m 2  n 2  z0 . Ta gặp mâu thuẫn với giả thiết ban đầu của chúng ta về nghiệm x  x0 , y  y0 , z  z0 của phương trình đang xét. ■ 4 4 4 1.3.4. Hệ quả. Phương trình x  y  z không có nghiệm nguyên dương. 18 Chứng minh. Giả sử phương trình x 4  y 4  z 4 có nghiệm nguyên dương (a, b, c). Ta có a 4  b 4  c 4 hay a 4  b4   c 2  . Do đó, phương trình 2 x 4  y 4  z 2 có nghiệm nguyên dương ( a, b, c 2 ) . Điều này mâu thuẫn với Định lý 1.3.3. ■ s s s 1.3.5. Hệ quả. Phương trình x 2  y 2  z 2 , s �2 không có nghiệm nguyên. Chứng minh. Với s = 2, Hệ quả 1.3.5 chính là Hệ quả 1.3.4. Giả sử phương trình x 2  y 2  z 2 , s �3 có nghiệm nguyên (a, b, c) . Khi đó, ta có a 2  b 2  c 2 s hay a 2 s 2 s .22  a2 s s2 .22 s  a2 s 2 .22 . Do đó,  a2 s2   4  a2 s 2   4  a2 s 2  4 s s hay x 4  y 4  z 4 có nghiệm nguyên dương (a s 2 , b s 2 , c s 2 ) . Điều này mâu thuẫn với Hệ quả 1.3.3.■ 1.4. Giả thuyết Mordell – Shafarevich – Tate Faltings đã đi đến kết quả tổng quát của Định lý Fermat bằng cách chứng minh một Giả thuyết nổi tiếng trong Hình học đại số - Giả thuyết Mordell – Shafarevich - Tate. Đây là một giả thuyết rất sâu sắc nói về tính hữu hạn sinh của nhóm Shafarevich – Tate, mà việc phát biểu nó đòi hỏi nhiều kiến thức chuyên sâu về Hình học đại số. 1.4.1. Mặt phẳng affine phức 2-chiều. Giả sử � là trường số phức. Mặt 2 2 phẳng affine phức 2-chiều là tập hợp A  �    x, y  | x, y �� . Mỗi cặp phần 2 tử  x, y  �A gọi là một điểm của mặt phẳng affine phức 2-chiều A2 . Giả sử F( x, y ) �� x, y  là một đa thức của hai biến  x, y  với hệ số phức. Khi đó, tập hợp sau đây gồm các không điểm (nghiệm) của đa thức F( x, y ) :   x, y  �� F  x, y   0 2 được gọi là một đường cong đại số trong mặt phẳng affine phức 2-chiều A2 . Ví dụ. Hai đường cong đại số trong A2 xác đinh bởi hai đa thức sau là trùng nhau: F( x, y )  ( x  y )( x  y) ; G ( x, y)  ( x  y)2 ( x  y). 19 1.4.2. Mặt phẳng xạ ảnh phức 2-chiều. Giả sử � là trường số phức. Trong tập hợp X  �3  (0,0,0) ta xét một quan hệ tương đương: ( x, y, z ) ~ ( x ', y ', z ') �ι�,  0 : x '  x; y '  y; z '  z. Khi đó, tập X được chia thành các lớp tương đương. Mỗi lớp tương đương chưa bộ ( x, y, z) �X được ký hiệu bởi  x, y , z  . Ta có quan hệ trong tập thương X / ~:  x, y, z     x,  y,  z  ,  ι �,  0. Tập thương X / ~ gồm các lớp tương đương  x, y , z  được gọi là mặt phẳng xạ ảnh phức 2- chiều và ký hiệu bởi P2 (�) . Mỗi  x, y , z  gọi là một điểm của P2 (�) . 1.4.3. Đường cong đại số bậc d trong mặt phẳng xạ ảnh phức P2 (�) . Giả sử F( x, y, z) �� x, y, z  là một đa thức thuần nhất bậc d của ba biến x, y, z, với hệ số phức nghĩa là: F( x,  y,  z )   d F ( x , y, z ),  ��. Khi đó, tập hợp điểm: C    x, y, z  �P 2 (�) F ( x, y, z )  0 lập thành một đường cong đại số bậc d trong mặt phẳng xạ ảnh P2 (�) . Đặc biệt, khi F( x, y, z) là đa thức bất khả quy thì đường cong đại số C được gọi đường cong bất khả quy. Phương trình F( x, y, z)  0 được gọi là phương trình thuần nhất của đường cong C . Ví dụ. 1) Đường cong conic (bậc 2): C    x, y, z  �P 2 (�) xz  y 2  0 ; 2) Đưòng cong Fermat (bậc n): C    x, y, z  �P 2 (�) x n  y n  z n  ; 3)Đưòng cong elliptic (bậc 3): C    x, y, z  �P 2 (�) 3x 3  4 y 3  5z 3  0 . Chúng ta sẽ quan tâm về tính hữu hạn điểm vô tỷ của các đường cong elliptic. Tổng quát, mặt phẳng xạ ảnh P2 ( K ) trên trường đóng đại số K là không gian gồm các điểm là các lớp tương đương của các bộ ba ( x, y, z) , trong 20 đó x, y, z �K không đồng thời bằng 0 và bộ ba ( x,  y,  z ) tương đương với bộ ba ( x,  y ,  z ) ,   K ,  0. Như vậy nếu z 0 thì lớp tương đương của ( x, y, z ) tương đương với bộ 2 ba ( x / z, y / z ,1) . Ta có thể đồng nhất mặt phẳng xạ ảnh P  K  với mặt phẳng Affine cùng với điểm tại vô hạn ứng với z = 0. Mỗi đường cong trong mặt phẳng Affine K 2 thông thường có thể ứng 2 với một đường cong trong mặt phẳng xạ ảnh P  K  bằng cách thêm vào các điểm tại vô cùng. Để làm được điều đó, trong phương trình xác định đường cong, ta chỉ cần thay x bởi x/z, y bởi y/z và nhân hai vế của phương trình với một luỹ thừa thích hợp của z để khử mẫu số. 1.4.4. Giống của đường cong đại số. Cho một đường cong đại số C với bậc d, không kỳ dị trên trường số phức. Giống g của của đường cong C là một số nguyên không âm để đo độ phức tạp hình của C và được định nghĩa bởi: g (d  1)(d  2) . 2 Ví dụ. 1) Đường cong conic C    x, y, z  �P 2 (�) xz  y 2  0 có giống 0; 2) Đường cong Fermat C    x, y, z  �P 2 (�) x n  y n  z n  có giống (n  1)(n  2) ; 2 3) Đường cong elliptic C    x, y, z  �P2 (�) 3 x 3  4 y 3  5z 3  0 có giống 1. 1.4.5. Giả thuyết Mordell. Các đường cong xạ ảnh không kỳ dị với giống g  1 xác định trên trường số phức chỉ chứa hữu hạn các điểm hữu tỉ. Gerd Faltings là một nhà toán học người Đức với các công trình về thuật toán trong Hình học đại số. Faltings được trao huy chương Fields năm 1986 nhờ chứng minh được Giả thuyết Mordell – Shafarevich - Tate. Đây là một giả thuyết rất sâu sắc nói về tính hữu hạn sinh của nhóm Shafarevich – Tate, mà việc phát biểu nó đòi hỏi nhiều kiến thức chuyên sâu về Hình học đại số. Tuy nhiên từ một hệ quả của nó (Giả thuyết Mordell), đối với một
- Xem thêm -