MỘT SỐ DẠNG TOÁN SỐ HỌC TRONG TRUNG HỌC CƠ SỞ

  • Số trang: 94 |
  • Loại file: PDF |
  • Lượt xem: 54 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

Đề tài: Một số dạng toán Số học trong THCS ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ---------------------- NGUYỄN THỊ OANH MỘT SỐ DẠNG TOÁN SỐ HỌC TRONG TRUNG HỌC CƠ SỞ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - Năm 2012 1 Đề tài: Một số dạng toán Số học trong THCS ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN KHOA TOÁN – CƠ – TIN HỌC Nguyễn Thị Oanh MỘT SỐ DẠNG TOÁN SỐ HỌC TRONG TRUNG HỌC CƠ SỞ LUẬN VĂN THẠC SĨ KHOA HỌC Chuyên ngành : Phƣơng pháp toán sơ cấp Mã số : 60 46 40 NGƢỜI HƢỚNG DẪN KHOA HỌC TS. Phạm Văn Quốc Hà Nội - Năm 2012 2 Đề tài: Một số dạng toán Số học trong THCS LỜI NÓI ĐẦU Số học, ngành lâu đời nhất và đầy hấp dẫn của Toán học đã từng đƣợc một nhà Toán học nổi tiếng gọi là:" Bà chúa của Toán học". Các bài toán số học đã làm say mê nhiều ngƣời, từ các nhà toán học lỗi lạc của mọi thời đại đến đông đảo các bạn yêu Toán. Thế giới các con số, rất quen thuộc với chúng ta trong đời sống thƣờng hàng ngày, là một thế giới hết sức kì lạ, đầy bí ẩn. Điều lý thú là nhiều mệnh đề khó nhất của Số học đƣợc phát biểu rất đơn giản; nhiều bài toán khó có thể giải sáng tạo với những kiến thức rất phổ thông. Số học đƣợc chia ra làm nhiều mảng rất đa dạng và phong phú nhƣ: Tính chia hết, lý thuyết đồng dƣ, số nguyên tố - hợp số, phƣơng trình nghiệm nguyên, số chính phƣơng… Tuy nhiên, trong khuôn khổ luận văn của mình, em chỉ xin phép trình bày về một số dạng cơ bản phù hợp với kiến thức và trình độ của học sinh THCS, trong đó đặc biệt chú trọng phần chuyên đề về phƣơng trình nghiệm nguyên. Để các Thầy cô giáo cũng nhƣ các em học sinh có thể coi đây là một tài liệu tham khảo hữu ích phục vụ cho việc ôn thi vào các trƣờng chuyên, lớp chọn thì trong mỗi một phần, đầu tiên em đƣa ra các kiến thức cơ bản, sau đó phân loại bài tập theo dạng đồng thời đƣa ra các ví dụ tiêu biểu và cuối cùng là đề xuất các bài tập tƣơng tự. Vì thời gian có hạn và trình độ còn hạn chế nên khóa luận của em không thể tránh khỏi những thiếu sót. Kính mong nhận đƣợc sự chỉ bảo của thầy giáo. Hà Nội, ngày 22 tháng 09 năm 2012 Học viên Nguyễn Thị Oanh 3 Đề tài: Một số dạng toán Số học trong THCS MỤC LỤC LỜI NÓI ĐẦU ................................................................................................................... 3 Chƣơng 1: SỰ CHIA HẾT VÀ CHIA CÕN DƢ ............................................................ 3 1.1 Những kiến thức cần thiết ........................................................................................ 3 1.2 Các dạng toán thƣờng gặp ......................................................................................... 5 1.3 Một số bài tập tự luyện........................................................................................... 24 Chƣơng 2: SỐ NGUYÊN TỐ - HỢP SỐ....................................................................... 24 2.1 Các định nghĩa......................................................................................................... 24 2.2 Các định lý ............................................................................................................. 24 2.3 Các dạng toán thƣờng gặp ...................................................................................... 25 2.4 Một số bài tập tự luyện............................................................................................ 31 Chƣơng 3: ƢỚC CHUNG LỚN NHẤT - BỘI CHUNG NHỎ NHẤT ....................... 33 3.1 Ƣớc chung lớn nhất ................................................................................................. 33 3.2 Bội chung nhỏ nhất ................................................................................................. 34 3.3. Các bài toán về ƣớc chung lớn nhất ....................................................................... 35 3.4 Các bài toán về bội chung nhỏ nhất ........................................................................ 39 3.5 Một số bài tập tự luyện............................................................................................ 40 Chƣơng 4: SỐ CHÍNH PHƢƠNG ................................................................................. 42 4.1 Kiến thức cần thiết .................................................................................................. 42 4.2 Bài tập về số chính phƣơng ..................................................................................... 45 4.3 Một số bài tập tự luyện............................................................................................ 56 Chƣơng 5: PHƢƠNG TRÌNH NGHIỆM NGUYÊN ................................................... 58 5.1 Phƣơng trình vô định bậc nhất hai ẩn ..................................................................... 58 5.2 Phƣơng trình bậc hai hai ẩn..................................................................................... 66 5.3 Một số phƣơng trình nghiệm nguyên khác và cách giải ......................................... 85 KẾT LUẬN ...................................................................................................................... 93 TÀI LIỆU THAM KHẢO .............................................................................................. 94 4 Đề tài: Một số dạng toán Số học trong THCS Chƣơng 1: SỰ CHIA HẾT VÀ CHIA CÕN DƢ Trong tập hợp các số nguyên với các phép tính cộng, trừ, nhân, chia; phép chia không phải bao giờ cũng thực hiện được. Đối với những phép chia thực hiện được thì số bị chia và số chia có quan hệ chia hết. Việc nghiên cứu các quan hệ này có tác dụng rất lớn trong việc giải quyết các bài tập toán học và rèn luyện tư duy giải toán. Vì vậy, chuyên đề này là một trong những chuyên đề quan trọng nhất của Số học. 1.1. NHỮNG KIẾN THỨC CẦN THIẾT 1.1.1 Định nghĩa  Định lý cơ bản Với hai số nguyên tùy ý a và b ( b  0 ) thì tồn tại duy nhất cặp số nguyên q; r sao cho: a = bq + r  0  r  b  .  Định nghĩa sự chia hết: Cho hai số nguyên a và b, b  0 . Nếu tìm đƣợc số nguyên q mà a = bq thì ta nói rằng a chia hết cho b. Kí hiệu: a  b. Hoặc có thể nói: b chia hết a. Kí hiệu: b a . Khi đó, ta nói: a là bội của b; b là ƣớc của a. 1.1.2 Các tính chất về sự chia hết  Tính chất 1: a  a với mọi a  0.  Tính chất 2: ab   a  c. b c   Tính chất 3: 0 b với mọi b  0.  Tính chất 4: a  b  a  b  a  b.  b a  a  b  Tính chất 5: a  b   a  b  .  Tính chất 6: am     a  b  m. b m  5 Đề tài: Một số dạng toán Số học trong THCS  Tính chất 7: Nếu một trong hai số a, b chia hết cho m mà số kia không chia hết cho m thì a  b không chia hết cho m. Hệ quả: Nếu tổng hai số chia hết cho m và một trong hai số chia hết cho m thì số còn lại cũng chia hết cho m.  Tính chất 8: Nếu một thừa số của tích chia hết cho m thì tích chia hết cho m.  Tính chất 9: am   ab mn. b n   Tính chất 10: Nếu am   a  BCNN  m, n  . an  Hệ quả: Nếu a  m và a  n , mà  m,n   1 thì a  mn  .  Tính chất 11: Nếu  ab  m , mà  b,m   1 thì a  m.  Tính chất 12: Nếu a  b thì ka  b với mọi số nguyên k  Hệ quả: a  b  a n  b với mọi n   *.  Tính chất 13: am     ka  lb  m với mọi k, l là số nguyên. b m  1.1.3 Các dấu hiệu chia hết 1) Dấu hiệu chia hết chia hết cho 2 (hoặc 5): Một số chia hết cho 2 (hoặc 5) khi và chỉ khi chữ số tận cùng của nó chia hết cho 2 (hoặc 5). 2) Dấu hiệu chia hết chia hết cho 4 (hoặc 25):Một số chia hết cho 4 (hoặc 25) khi và chỉ khi số tạo bởi hai chữ số tận cùng của nó chia hết cho 4 (hoặc 25). 3) Dấu hiệu chia hết chia hết cho 8 (hoặc 125): Một số chia hết cho 8 (hoặc 125) khi và chỉ khi số tạo bởi ba chữ số tận cùng của nó chia hết cho 8 (hoặc 125). 4) Dấu hiệu chia hết chia hết cho 3 (hoặc 9): Một số chia hết cho 3 (hoặc 9) khi và chỉ khi tổng các chữ số của nó chia hết cho 3 (hoặc 9). 5) Dấu hiệu chia hết chia hết cho 11: Một số chia hết cho 11 khi và chỉ khi hiệu giữa tổng các chữ số "đứng ở vị trí lẻ" và tổng các chữ số " đứng ở vị trí chẵn", kể từ trái qua phải chia hết cho 11. 1.1.4 Một số kết quả thƣờng sử dụng 6 Đề tài: Một số dạng toán Số học trong THCS 1) Trong k số nguyên liên tiếp luôn có một số chia hết cho k. 2) Khi chia số nguyên n cho số nguyên m khác 0 có thể nhận m giá trị dƣ từ 0 đến m  1. 3) Một số tự nhiên và tổng các chữ số của nó có cùng số dƣ khi chia cho 3 (hoặc 9). 4) Một số chính phƣơng khi chia cho 3 (hoặc 4) chỉ có thể có số dƣ là 0 hoặc 1, khi chia cho 5 (hoặc 8) chỉ có thể có số dƣ là 0; hoặc 1 hoặc 4.  a  n n 5) a  b  a  b  n   *. 2n 1  b2n 1  a  b  n   *.  a  b   B(a)   1 n  a  b   B(a)  bn . n n .bn . 1.1.5 Đồng dƣ thức  Định nghĩa: Nếu hai số a và b chia cho c ( c  0 ) có cùng số dƣ ta nói a đồng dƣ với b theo môđun c. Kí hiệu: a  b  mod c  . Vậy: a  b  mod c   a  bc.  Một số tính chất: Với mọi a, b,c,d  và m   * a) a  a  mod m  . a  b  mod m  và b  c  mod m   a  c  mod m  . b) a  b  mod m  ; c  d  mod m   a  c  b  d  mod m  . c) a  b  mod m  ; c  d  mod m   ac  bd  mod m  . Nếu d là ƣớc chung dƣơng của a, b, và m thì a  b  mod m   a b m   mod  . d d d d) a  c  mod m  ; c là ƣớc chung của a và b và  c, m   1 thì a b   mod m  . c c e) a  b  mod m  ;n   *  ac  bc  mod mc  . 1.2 CÁC DẠNG TOÁN THƢỜNG GẶP Nhìn chung, loại bài toán về chia hết là phong phú và đa dạng, đồng thời có nhiều cách giải khác nhau. Song, chúng ta có thể chia ra một số loại bài toán thường gặp sau: 1.2.1 DẠNG I Giải các bài tập thông thƣờng về cấu tạo số 7 Đề tài: Một số dạng toán Số học trong THCS Bài tập thuộc dạng này thường là các bài toán "Tìm số" hoặc “điền các chữ số” mà các điều kiện ràng buộc có liên quan tới tính chất và dấu hiệu chia hết do vậy đòi hỏi học sinh phải nắm chắc các tính chất và dấu hiệu chia hết. Để làm dạng bài này, ta cũng thường sử dụng tính chất sau:   Ta có: m  a1.a 2 ....a n với các a i i  1,n là đôi một nguyên tố cùng nhau. Khi đó: A m  Aa1;Aa 2 ;...;Aa m . Ví dụ 1: Hãy thay các chữ số vào các chữ a, b để số Giải 2a44b180  2a44b phải chia hết cho 9 và 10. + Vì 2a44b 10  b  0. + Vì 2a4409  2  a  4  4  0  10  a 9   a  19. là bội số của 180. Mà a là chữ số nên 1  a  1  10 nên a +1 = 9  a  8. Vậy a = 8; b = 0, ta đƣợc số: 28440. Thử lại: 28440 : 180 = 158. Ví dụ 2: Tôi nghĩ hai số tự nhiên liên tiếp, trong đó có một số chia hết cho 9. Tổng của hai số đó là một số có những đặc điểm sau: a) Có 3 chữ số. b) Là bội số của 5. c) Tổng chữ số hàng trăm và chữ số hàng đơn vị là bội số của 9. d) Tổng chữ số hàng trăm và chữ số hàng chục chia hết cho 4. Bạn hãy đoán xem tôi đã nghĩ ra hai số nào? Giải Gọi hai số đã cho là: N và N + 1. Theo bài ra ta có: N + N +1 = abc (a, b, c là các chữ số). (1) (2) (3) (4) abc5. a + c chia hết cho 9. a + b chia hết cho 4. Từ (2)  c = 0 hoặc c = 5. Từ (1)  abc lẻ. Do đó c = 5, thay vào (3) ta đƣợc:  a  59  a  4. Thay a = 4 vào (4) ta đƣợc:  4  b  4  b  0;4;8. + Nếu b = 0 thì N + ( N +1) = 405  N  202 , N + 1 = 203 (loại vì không có số nào chia hết cho 9). + Nếu b = 4 thì N   N  1  445  N  222 và N + 1 = 223 (loại). + Nếu b = 8 thì 485 = N + (N +1)  N  242 và N + 1 = 243 (Thỏa mãn 243 9 ). Vậy hai số cần tìm là: 242; 243. Ví dụ 3: Tìm các chữ số trong đẳng thức: . 8 Đề tài: Một số dạng toán Số học trong THCS Giải Đặt 23673xy674592117233400  A.     10 10 Vì 109  1 108 . Mà 108 = 9.3. 2 2  109  1 9  A9.  Tổng các chữ số của A = 72 +x + y chia hết cho 9   x  y 9.        (1) 10 2 10 10 Mặt khác: 109  1  109  1  109  1 110.108  109  1 110  A110.  A11 . Sử dụng dấu hiệu chia hết cho 11, ta có:  y  x  811. Từ (1) và (2)  x  6 và y = 3. (2) LỜI BÌNH: Trên đây là các bài toán có thể sử dụng dấu hiệu chia hết. Tuy nhiên, không phải số nào cũng có dấu hiệu chia hết, do đó để giải quyết những bài toán như vậy ta có thể dùng cấu tạo số kết hợp cùng các tính chất và lập luận một cách linh hoạt. Dưới đây là hai ví dụ minh họa cho những bài toán không thể sử dụng dấu hiệu chia hết. Ví dụ 4: Biết rằng vừa chia hết cho 7; cho 11 và cho 13. Tìm số đó? Giải Vì số a7b8c9 vừa chia hết cho 7, cho 11 và cho 13. Mà 7, 11, 13 là 3 số đôi một nguyên tố cùng nhau nên a7b8c9 phải chia hết cho 7.11.13 = 1001 và thƣơng tìm đƣợc là số có 3 chữ số. Gọi số có 3 chữ số đó là: def. d  a  8 Khi đó ta có: def .1001  a7b8c9  defdef  a7b8c9   e  7  c . f  b  9  Vậy số phải tìm là: 879879. Kiểm tra lại ta thấy kết quả là đúng. Ví dụ 5: Hãy thay các chữ số vào các chữ x, y trong số N = chia hết cho 13. Giải 6 4 2 Ta có: N = 3.10  x.10  y.10  3 (1) với 0  x, y  9.  N = B(13) + 3  x  3y  2  3 x  3y  2 chia hết cho 13. Mà 0  x, y  9  2  x  3y  2  38. Nên x  3y  2  13;26. Ta xét hai trƣờng hợp: sao cho N x 1 . Do y nguyên nên x +1 chia hết cho 3 3  x 2,5,3 . Tƣơng ứng y 3;2;1. + Nếu x + 3y + 2 = 13  y  4  9 Đề tài: Một số dạng toán Số học trong THCS + Nếu x + 3y +2 = 26  3y  24  x  x chia hết cho 3  x  0,3,6,9. Tƣơng ứng: y  9;7;6;5. Vậy ta đƣợc các kết quả sau: 3020303; 3050203; 3080103; 3000803; 3030703; 3060603; 3090503. 1.2.2 DẠNG II Bài tập về chứng minh sự chia hết trực tiếp theo định nghĩa và tính chất Bài tập loại này chủ yếu là các bài toán dạng A chia hết cho m, trong đó A là một số cụ thể hoặc một biểu thức chứa chữ còn m là một số cụ thể. Thông thường ta phân tích m thành các thừa số đôi một nguyên tố cùng nhau. Rồi lần lượt chứng minh A chia hết cho từng thừa số ấy. Ví dụ 1: Cho A = . Chứng minh rằng: n là số tự nhiên không chia hết cho 5 thì A chia hết cho 285. Giải Do 285 = 5.57. Trƣớc hết ta chứng minh A chia hết cho 5:         4 2 2 2 2 2 Ta có: n  1  n  1 n  1  n  1 n  4  5 n  1   2 =  n  2 n  1 n  1 n  2 + 5 n  1 . Do n không chia hết cho 5 nên ta thấy n có dạng 5k  1 hoặc 5k  2. + Nếu n = 5k +1 thì (n - 1)  5. + Nếu n = 5k - 1 thì (n + 1)  5. + Nếu n = 5k + 2 thì (n - 2)  5. + Nếu n = 5k - 2 thì (n + 2)  5. Vậy  n  2 n  1 n  1 n  2  chia hết cho 5 với mọi n không chia hết cho 5. Vậy, ta đƣợc A chia hết cho 5. (1) Ta cần chứng minh thêm: A 57.   2n 6n n n Thật vậy: 11  2  121  64 121  64   A57. Từ (1) và (2)  A 285  dpcm  . (2) NHẬN XÉT: Nhận thấy n 4  1 luôn chia hết cho 8 với mọi n lẻ và 112n  26n cũng luôn chia hết cho 185 = 112  26 với n lẻ,mà (8, 185) =1, do đó ta có thể tạo ra bài toán mới như sau: Cho A = . Chứng minh rằng: A luôn chia hết cho 1480 với mọi n là số tự nhiên lẻ. Với cách làm như vậy, ta có thể tự đặt ra những bài toán tương tự như sau: Chứng minh rằng:  n n 1) A = 46  296.13  n 3  n 354 với n. 10 Đề tài: Một số dạng toán Số học trong THCS  C  6   5 n n n 2) B  n  n 20  16  3  1 9690 với n chẵn. 3) 2n  19n  n 2  11320 với n thỏa mãn  n,6   1 . Ví dụ 2: Biết rằng a, b, c là các số cùng chẵn hoặc cùng lẻ. Chứng minh rằng: chia hết cho 24. Giải   Đặt A =  a  b  c   a 3  b3  c3  3  b  c  a  c  a  b  . 3  A luôn chia hết cho 3. Mặt khác: vì a, b, c cùng tính chẵn lẻ Từ (1) và (2)  A 24  a + b; b + c; c + a đều là số chẵn.   a  b  b  c  a  c 8.  A8. (1) (2) Ví dụ 3: Cho a, b, c, d là 4 số nguyên. Chứng minh rằng: chia hết cho 12. Giải Ta chứng minh rằng: A chia hết cho 3 và 4. Ta thấy A là tích các thừa số là hiệu đôi một các số trong 4 số a, b, c, d nên: + Trong 4 số a, b, c, d phải tồn tại ít nhất 2 số có cùng số dƣ khi chia cho 3 nên hiệu của chúng chia hết cho 3  A3. (1) + Trong 4 số a, b, c, d chỉ có thể xảy ra một trong hai khả năng sau: a) Có 2 số chẵn và 2 số lẻ. Khi đó: hiệu hai số chẵn chia hết cho 2 và hiệu hai số lẻ cũng chia hết cho 2. Do đó: A chia hết cho 4. b) Có ít nhất 3 số cùng tính chẵn lẻ. Từ 3 số ấy ta đƣợc hai hiệu chia hết cho 2 hay A chia hết cho 4. Vậy, A luôn chia hết cho 4. (2) Từ (1) và (2)  A12. Ví dụ 4: Chứng minh rằng: A = 192021…7980 chia hết cho 1980. Giải Ta có: 1980 = 9.11.20. Ta thấy: A  1920...79.100  80 chia hết cho 20 Tổng các chữ số của A = 9.62 chia hết cho 9. Tổng các chữ số đứng ở vị trí lẻ của A là 9.31. Tổng các chữ số đứng ở vị trí chẵn của A là 9. 31. Do đó A chia hết cho 11. Từ (1), (2) và (3)  A chia hết cho 180. Ví dụ 5: Cho a, b, c thỏa mãn phƣơng thì abc chia hết cho 30. (1) (2) (3) đồng thời là các số chính 11 Đề tài: Một số dạng toán Số học trong THCS Giải Ta lần lƣợt chứng minh: abc chia hết cho 2, 3, và 5. a) Chứng minh chia hết cho 2 + Nếu b chẵn thì abc  2 . + Nếu b lẻ thì b2  8k  1 . Mà b2  4ac cũng là số chính phƣơng lẻ nên b2  4ac  8m  1.  4ac8   ac  2   abc  2. b) Chứng minh chia hết cho 3 + Nếu b3 thì  abc 3. (1) + Nếu b = 3k  1 thì b  3q  1 . Khi đó: + nếu ac = 3m + 1 thì b2  4ac chia 3 dƣ 2 không thể là số chính phƣơng. + nếu ac = 3m + 2 thì b2  4ac chia 3 dƣ 2 không thể là số chính phƣơng.  ac = 3m hay  abc 3. (2) c) Chứng minh chia hết cho 5 2 + Nếu b = 5k  1 hoặc b  5k  2 thì b  5q  1. Giả sử ac không chia hết cho 5  ac chia cho 5 sẽ dƣ 1 hoặc dƣ 2. Khi đó: hoặc b2  4ac hoặc b2  4ac có dạng 5p  2 không phải là số chính phƣơng. Vậy  ac 5   abc 5. (3) Từ (1) (2) và (3) ta có: abc chia hết cho 30. 2 Bài toán tƣơng tự: Dùng tính chất về số chính phương ta có thể làm bài toán tương tự như sau: Nếu x, y, z là các số nguyên thỏa mãn: thì xyz NHẬN XÉT: Trên đây là những bài toán yêu cầu chứng minh chia hết cho một số cụ thể nên ta có thể chia thành những bài toán nhỏ bằng cách chứng minh chia hết cho các bộ số đôi một nguyên tố cùng nhau và có tích bằng số chia ban đầu. Song, những bài toán yêu cầu chứng minh chia hết cho một số tổng quát lại không thể làm như vậy. Do đó, ta cần vận dụng các tính chất về sự chia hết của một tổng hoặc một hiệu hay một lũy thừa để dẫn đến điều phải chứng minh. Sau đây là một vài ví dụ cho những bài toán như vậy: Ví dụ 6: Chứng minh rằng: Nếu chia hết cho m với mọi n > 0 (a, b, c, d ) thì chia hết cho m. Giải Cho n lần lƣợt các giá trị 1, 2, 3 ta nhận đƣợc:  ab  c  d  m. (1)  ab 12 2  2c  d  m. (2) Đề tài: Một số dạng toán Số học trong THCS Từ (1) và (2)  ab  b  1  c chia hết cho m.  ab 3  3c  d  m. (3) (4)  ab  b  1  c chia hết cho m. Từ (4) và (5)  ab  b  12 chia hết cho m. Từ (2) và (3) 2 (5) (6) Mặt khác, từ (4)  a 2 b2  b  1  c2 chia hết cho m. 2 Từ (6) và (7) suy ra: (7) c 2 chia hết cho m. Ví dụ 7: Giả sử a, b, c, d là những số nguyên tố cùng nhau với m = ad - bc. Chứng minh rằng: Nếu ax + by chia hết cho m thì cx + dy cũng chia hết cho m. Giải Đặt U = ax + by, V = cx + dy. Khi đó: dU - bV = mx chia hết cho m. Mà dU chia hết cho m  bV chia hết cho m, nhƣng vì  m,b   1  V m (đpcm). Ví dụ 8: Giả sử m, n, k là các số nguyên dƣơng thỏa mãn Chứng minh rằng: . Giải Từ giả thiết mn  n m  mnk  n mk . Và n k  k n  n km  k nm . và  mnk  k nm   mk   k m   mk  k m (đpcm). n n 1.2.3 DẠNG III Dùng phƣơng pháp qui nạp và nguyên tắc Đirichle để chứng minh sự chia hết Để nhận biết khi nào bài toán nên dùng phương pháp quy nạp và khi nào có thể dùng nguyên tắc Dirichle ta có thể dự đoán dựa vào yêu cầu của bài toán. Đặc điểm nhận dạng những bài toán chứng minh chia hết dùng phương pháp quy nạp là khi cần chỉ ra bài toán đúng với mọi giá trị của n (hay m); còn những bài toán dùng nguyên tắc Dirichle thường là những bài toán về chứng minh sự tồn tại. Ví dụ 1: Chứng minh rằng: . Giải Ta chứng minh bằng phƣơng pháp quy nạp: + Với n = 1, ta có: A1  5  2  1  88 (bài toán đúng).   * + Giả sử bài toán đúng với n = k. Tức là: Ak  5k  2.3k 1  18 k   . + Ta cần chứng minh bài toán đúng với n = k + 1. Tức là: Ak 1  5k 1  2.3k  18 . 13 Đề tài: Một số dạng toán Số học trong THCS   k 1 k k k 1 k k 1 Thật vậy: Ak 1  5  2.3  1  5.5  6.3  1  Ak  4 5  3 .     k k 1 k k 1 Mà 5k  3k 1 là số chẵn nên 5  3  2  4. 5  3 8 . Mặt khác: A k 8 .  A k 1 8 . Vậy theo nguyên lí quy nạp bài toán đƣợc chứng minh. CHÚ Ý: Ví dụ trên minh họa cho một lớp những bài toán có thể dùng phương pháp quy nạp để chứng minh mà dạng tổng quát của chúng như sau: Chứng minh rằng: a n x n  a n 1x n 1  .....  a1x  a 0  bn chia hết cho m với mọi n * Ví dụ 2: Đặt A = m.(m + 1).(m + 2)…(m + n - 1). B = 1.2.3…n. Chứng minh rằng: A chia hết cho B với m, n nguyên dƣơng. Giải Ta chứng minh quy nạp theo n: + Rõ ràng, tích của hai số tự nhiên liên tiếp bao giờ cũng chia hết cho 1.2 (đúng). + Giả sử tích của k số tự nhiên liên tiếp chia hết cho 1.2…k ta phải chứng minh rằng tích của k + 1 số tự nhiên liên tiếp cho 1.2.3…(k +1). Hay: m  m  1 ...  m  k  1 m  k  P nguyên với m là số nguyên dƣơng tùy ý 1.2.3... k  1 .k. k  1 Thật vậy, ta có: m(m  1)...(m  k  1) (m  1).m.(m  1)...(m  k  1) P= = Q1  P1.  1.2...k 1.2...k.(k  1) (m  1).m.(m  2)...(m  k  2) (m  2)(m  1)...(m  k  2) = Q2  P2 . P1   1.2.3...k 1.2...k(k  1) …………………………………………………………………….. Pm2  2.3...k(k  1) 1.2.3...k.(k  1)   Qm1  Pm1. 1.2....k 1.2.3...k Theo giả thiết quy nạp thì Q1 ,Q2 ,...,Qn 1 là những số nguyên . Mà Pm1  k  1  Pm2 nguyên  Pm3 nguyên  P nguyên (đpcm). … P 2 nguyên  P1 nguyên Ví dụ 3: Chứng minh rằng luôn tồn tại số tự nhiên có n chữ số chia hết cho mà khi viết chỉ dùng các chữ số 1 và 2. Giải 2 Khi n = 2, ta có 12 2 (bài toán đúng). Giả sử bài toán thỏa mãn với n = k, k  2 . Khi đó tồn tại số A có k chữ số, các chữ số trong A là 1 và 2, và A  2k . Đặt A  2k.B. Ta xét hai trƣờng hợp: 14 Đề tài: Một số dạng toán Số học trong THCS + Nếu B chẵn ta xét số 2A . Số này có k +1 chữ số, chỉ gồm các chữ số 1 và 2.   k 1 k k k 1 k Ngoài ra, 2A = 2.10k  A = 2 .5  2 .B  2 5  q . Trong đó: B = 2q với q nguyên dƣơng. Ta thấy 2A chia hết cho 2k 1. + Nếu B lẻ ta xét số 1A , số này có k + 1 chữ số chỉ gồm các chữ số 1 và 2.   k k Ngoài ra, 1A  10k  A = 2k.5k  2k.B = 2 5  B . Do 5 và B là số lẻ nên 5  B  2q . Vậy 1A  2k.2q  2k 1.q chia hết cho 2k 1. Nhƣ vậy bài toán vẫn đúng khi n = k +1. Vậy bài toán đúng n  2. k k NHẬN XÉT: Trong ví dụ 3, mặc dù đề bài có xuất hiện cụm từ “tồn tại” nhưng bản chất của bài toán là chứng minh mệnh đề luôn đúng với mọi giá trị của n vì vậy dễ gây băn khoăn cho người giải toán trong việc dự đoán dùng phương pháp quy nạp hay nguyên tắc Dirichle. Do vậy, để quyết định lựa chọn phương pháp nào cho bài toán ta cần đọc và phân tích thật kĩ đề bài chứ không phải chỉ nhận biết qua những dấu hiệu bên ngoài. Ví dụ 4: Cho m, n là hai số nguyên dƣơng nguyên tố cùng nhau. Chứng minh có thể tìm đƣợc số tự nhiên sao cho chia hết cho m. Giải 1 2 m1 Xét m +1 số sau: n ,n ,...,n . (1) Khi chia m +1 số này cho m ta nhận đƣợc m +1 số dƣ tƣơng ứng, mà khi chia một số cho m thì chỉ có thể có m khả năng xảy đối với số dƣ. Do vậy, trong m + 1 số ở dãy (1) có ít nhất 2 số có cùng số dƣ khi chia cho m. Ta giả sử đó là n i và n j (1 < i < j  m  1 ).   i ji Ta có: n j  n i chia hết cho m hay n n  1 chia hết cho m.   i Vì  n,m   1  n ,m  1 . Nên ta có: n ji  1 chia hết cho m ( k  j  i nguyên dƣơng) (đpcm). NHẬN XÉT: Với bài toán tổng quát trên ta có thể cho m, n, k nhận các giá trị cụ thể để tạo ra những bài toán mới. Chẳng hạn cho m = 2012 (năm hiện tại); n = 13 (hoặc bất kì một số nguyên tố nào đó), ta được bài toán: Chứng minh rằng luôn tồn tại số tự nhiên k khác 0 sao cho: . Ngoài ra, ta nhận thấy “mấu chốt” của VD4 là ở chỗ sử dụng nguyên tắc Dirichle thông qua tính chất:“ Khi ta chia m + 1 số nguyên bất kì cho m thì luôn tồn tại ít nhất hai số đồng dư. Do vậy hiệu hai số đó sẽ chia hết cho m”. Vận dụng tính chất trên, ta có thể tự đặt ra một số những bài toán về chia hết áp dụng nguyên tắc Dirichle: 15 Đề tài: Một số dạng toán Số học trong THCS 1) Chứng minh rằng: Luôn tồn tại số có dạng: chia hết cho 2011. 2) Có tồn tại hay không một số nguyên dƣơng là bội của 1987 và có 4 chữ số tận cùng là 1988. 1.2.4 DẠNG IV Các bài tập về tìm giá trị của tham số sao cho biểu thức này chia hết cho biểu thức kia Ví dụ 1: Tìm số tự nhiên n sao cho: a) n + 2 chia hết cho n – 1. b) 2n + 7 chia hết cho n + 1. c) 2n + 1 chia hết cho 6 – n. Giải a)  n  2  n  1    n  2    n  1   n  1  3 n  1 .  n  1 n  1    n  1 1; 3  n  4;0;2. b) và c) Tƣơng tự. NHẬN XÉT: Để giải các bài toán dạng như trên, chúng ta thường dựa vào tính chất sau: Nếu A chia hết cho B thì  mA  nB chia hết cho B ( m,n  ) để tạo ra được số cụ thể chia hết cho biểu thức chứa chữ. Ví dụ 2: Tìm n nguyên dƣơng để 1.2.3…(n - 1) chia hết cho n. Giải Ta thấy n  2 (bài toán có nghĩa). Ta xét hai trƣờng hợp: + TH1: Nếu n nguyên tố thì tất cả các thừa số của tích 1.2.3…(n - 1) đều nguyên tố cùng nhau với n do đó: 1.2….(n -1) không chia hết cho n. + TH2: Nếu n là hợp số khi đó: n = p.q (1 4 ta có p > 2 và p  2p  2p < n do đó p và 2p là hai thừa số khác nhau của tích 1.2.3…(n - 1) nên 1.2.3…(n – 1) chia hết cho n. Khi n = 4 ta có: 1.2.3 không chia hết cho 4. Vậy các số phải tìm là các hợp số lớn hơn 4. 2 Ví dụ 3: Tìm 2 để cho chia hết cho 5. Giải Nhận xét: a  1 chia hết cho 5 khi  a,5  1. 4k 16 Đề tài: Một số dạng toán Số học trong THCS Mặt khác: Mọi số tự nhiên n, ta đều có: n = 4q + r; r  0,1,2,3.         r 4q r 4q r 4q r r r Nên Sn  2 2  1  3 3  1  4 4  1  1  2  3  4 . Theo nhận xét trên ta suy ra: Sn chia hết cho 5  1  2r  3r  4r chia hết cho 5. Thay r = 0, 1, 2, 3 thì chỉ có r = 0 là cho ta: 1  2r  3r  4r không chia hết cho 5. Vậy Sn chia hết cho 5  n  4q  r ( q  N và r = 1, 2, 3). NHẬN XÉT: Ví dụ trên được giải dựa vào khẳng định: a 4k  1 chia hết cho 5 với mọi  a,5  1 . Do đó, cũng với khẳng định này ta có thể sáng tạo ra những bài toán tương tự như sau: Tìm n  để: 1) chia hết cho 5. 2) chia hết cho 5. 3) chia hết cho 5. Dựa vào khẳng định trên ta cũng có thể tự tìm ra một số khẳng định tương tự, chẳng hạn: + Xét phép chia cho 3, ta có: a 2k  13 với mọi (a,3) = 1.   6k + Xét phép chia cho 7, ta có: a  1  7 với mọi a 7 . Từ đó, đặt ra nhiều bài toán mới: Tìm n N để: 1) chia hết cho 3. 2) chia hết cho 3. 3) chia hết cho 7. 4) chia hết cho 7. 5) chia hết cho 7. Ví dụ 4: Với giá trị nào của n để (n nguyên dƣơng). chia hết cho 323 Giải Do 323 = 17.19. Ta xét hai trƣờng hợp: + Với n chẵn đặt n = 2k ta có: Sn chia hết cho 17 và chia hết cho 19  Sn 323 . + Với n lẻ thì n = 2k +1, ta có: 20n  3n chia hết cho 17.   2k 1  1  162k 1  16  16  1  16 162k  1  15 không chia hết Nhƣng, 16n  1 = 16 cho 17. Vậy, n chẵn. Ví dụ 5: Tìm số tự nhiên nhỏ nhất chia hết cho 63 thỏa mãn tổng các chữ số của nó chia hết cho 63. Giải 17 Đề tài: Một số dạng toán Số học trong THCS Ta thấy: 63 = 7.9. Mọi số tự nhiên có tổng các chữ số bằng 63 đều chia hết cho 9. Do vậy bài toán quy về tìm số tự nhiên nhỏ nhất có tổng các chữ số bằng 63 mà chia hết cho 7. Gọi số phải tìm là n. Số phải tìm phải thỏa mãn các điều kiện sau: a) Nó có ít chữ số nhất. b) Tổng các chữ số bằng 63. c) Nó chia hết cho 7. d) Chữ số ở hàng cao nhất là nhỏ nhất có thể có. Ta xét các trƣờng hợp sau: (vì 63 = 9.7 nên số n có ít nhất 7 chữ số) + Nếu n có 7 chữ số thì n = 9999999 không chia hết cho 7. + Nếu n có 8 chữ số thì vì để tìm số n nhỏ nhất ta xét chữ số hàng cao nhất của n lần lƣợt bằng 1, 2…. - Với chữ số hàng cao nhất của n bằng 1 thì trong 7 chữ số còn lại phải có 6 chữ số bằng 9 và một chữ số bằng 8. Để ý: 18999999 < 19899999 < 19989999 < …<1999998 ta có: 18999999 không chia hết cho 7 và 19899999 chia hết cho 7. Vậy số cần tìm là: 19899999. NHẬN XÉT: Vì trong các dấu hiệu chia hết chỉ có dấu hiệu chia hết cho 3 hoặc cho 9 liên quan đến tổng các chữ số. Vì vậy, ta có thể đề xuất những bài toán dạng: “Tìm số tự nhiên nhỏ nhất chia hết cho a thoả mãn tổng các chữ số của nó bằng a với a = 3k ((3,k) = 1) hoặc a = 9k (trong đó (9, k)= 1)”. Ví dụ: Cho a = 12 ta được số 48. Cho a = 15 ta được số 195. Cho a = 30 ta được số 3990. Cho a = 45 ta được số 499995. …….. Ví dụ 6: Hãy tìm số n nguyên dƣơng để chia hết cho 5. Giải n  n  1 2n  1 Đặt S  1  22  32  ...  n 2  là một số nguyên. 6  n  n  1 2n  1  6q  q  . + Mặt khác nếu n = 5k hoặc n = 5k +2 hoặc n = 5k + 4 thì đều có: n  n  1 2n  1 đều chia hết cho 5   6q 5  q5  q  5q '. n  n  1 2n  1  5q ' hay S chia hết cho 5. 6 + Còn nếu n = 5k +1 hay n = 5k +3 thì tổng đã cho đều có dạng:  5k  1 5k  2 10k  3 không chia hết cho 5. S1  6 Khi đó: S = 18 Đề tài: Một số dạng toán Số học trong THCS S2   5k  3 5k  4 10k  7  không chia hết cho 5. 6 Vậy giá trị cần tìm là: n = 5k1 , n = 5k 2  2 , n = 5 k 3  4 với k1  N * , k 2 ,k 3  N. 1.2.5 DẠNG V Chứng minh sự không chia hết và tìm số dƣ của phép chia Trước tiên ta đề cập đến dạng bài tìm số dư của một phép chia. Ở dạng bài tập này ta thường gặp kiểu bài cho biết số dư của một số A khi chia lần lượt cho m và n với m, n nguyên tố cùng nhau và yêu cầu tìm số dư trong phép chia A cho m.n. Khi đó, có hai trường hợp xảy ra: + Trường hợp 1: Nếu A chia m và A chia n cùng dư r thì A chia m.n cũng dư r; + Trường hợp 2: Nếu A chia m và A chia n nhận hai giá trị dư khác nhau, khi đó ta cần đưa A về dạng tổng quát trong từng phép chia và dùng tính chất chia hết của một tổng hoặc hiệu để tìm ra dạng tổng quát của A khi chia A cho m.n. Ví dụ 1: a) M chia 9 dƣ 1 và M chia 13 dƣ 1. Hỏi M chia 117 dƣ bao nhiêu? b) M chia 17 dƣ 2 và M chia 20 dƣ 5. Hỏi M chia 340 dƣ bao nhiêu? Giải a) Vì M chia 9 dƣ 1   M  19. Vì M chia 13 dƣ 1   M  113 .   M  1117 (vì 9 và 13 là hai số nguyên tố cùng nhau). Vậy M chia 117 cũng dƣ 1. b) Cách 1: Vì M chia 17 dƣ 2   M  1517. Vì M chia 20 dƣ 5   M  15 20 .   M  15340 (vì 17 và 20 là hai số nguyên tố cùng nhau). Vậy M chia 340 dƣ 325. Cách 2: Vì M chia 17 dƣ 2  M  17k  2  k    . Vì M chia 20 dƣ 5  M  20q  5 ( q   ).  17k  2  20q  5  17k  17q  3q  3  3q  317  3  q  117  q  117 .  q có dạng: q = 17m +16 thay vào ta đƣợc: M = 20(17m  16)  5  340m  325 . Vậy M chia 340 dƣ 325. NHẬN XÉT: Ta thấy cách làm ở câu a có ưu điểm là nhanh gọn bằng cách chuyển phép chia có dư về phép chia hết tuy nhiên có mặt hạn chế là chỉ áp dụng được khi hai phép chia có cùng số dư. Sang câu b, cách 1 vẫn dựa trên cách làm ở câu a nhưng đòi hỏi sự linh hoạt khi chuyển về phép chia hết, mà điều quan trọng là sau khi chuyển về phép 19 Đề tài: Một số dạng toán Số học trong THCS chia hết thì cả hai phép chia phải có cùng số bị chia; còn cách 2 là ta tìm dạng tổng quát dựa vào tính chất chia hết.Ưu điểm ở cách 1 câu b so với cách 2 là lời giải ngắn gọn hơn nhưng đòi hỏi quá trình mò mẫm mà không phải lúc nào cũng thực hiện được ngay; còn ưu điểm của cách 2 là tuy lời giải “có vẻ” dài hơn nhưng luôn thực hiện được. Ví dụ 2: Khi chia một số A cho 7 ta đƣợc số dƣ là 6, còn khi chia nó cho 13 ta đƣợc số dƣ là 3, hỏi khi chia A cho 91 thì số dƣ là bao nhiêu? Giải Cách 1: Vì A chia cho 7 dƣ 6 nên A = 7k + 6  k     A  36  7k  427 . Vì A chia cho 13 dƣ 3 nên A = 13q + 3  q     A  36  13q  3913  A  3691 (vì 7 và 13 nguyên tố cùng nhau). Vậy A chia cho 91 dƣ 55. Cách 2: Vì A chia cho 7 dƣ 6 nên A = 7k + 6. Vì A chia cho 13 dƣ 3 nên A = 13q + 3  k,q  .  7k  6  13q  3  q  3  7  2q  k    q  37. Đặt: q + 3 = 7m (m  ). Do đó: q = 7m - 3. Vậy A  13q  3  13 7m  3  3 = 91m - 36 = 91 m  1  55. Kết luận: A chia cho 91 dƣ 55. NHẬN XÉT: Với cách làm như trên ta có thể thêm điều kiện về các phép chia hoặc thêm diều kiện ràng buộc để tìm số A cụ thể. Ví dụ: 1) Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia 8 dƣ 7, n chia 31 dƣ 28. 2) Tìm số tự nhiên là số có 4 chữ số, chia hết cho 5, chia hết cho 7, chia cho 11 dƣ 2 và chia cho 13 dƣ 4. Ví dụ 3: Biết rằng chia cho 73 dƣ 2. chia cho 73 dƣ 69. Hỏi a chia cho 73 dƣ bao nhiêu? Giải Gọi số dƣ khi chia A cho 73 là r ( 0  r  73 ). Ta có: a = 73q + r  q   . Theo giả thiết ta có: a  73p  2 và a  73q  69 ( p,k  ). Từ đó ta có: a  73p  2  73k  69  2a  73 k  pa   69. 100 101  2r  73 k  pa  2q   69. Chứng tỏ 2r chia cho 73 dƣ 69, mà 0  2r  146 suy ra 2r chỉ có thể bằng 69 hoặc 142, nhƣng 2r chẵn suy ra 2r = 142, hay r = 71. 20
- Xem thêm -