Đăng ký Đăng nhập
Trang chủ Môđun chính tắc trên vành artin địa phương...

Tài liệu Môđun chính tắc trên vành artin địa phương

.PDF
52
172
111

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA TOÁN ĐỖ THỊ KIM DUNG MÔĐUN CHÍNH TẮC TRÊN VÀNH ARTIN ĐỊA PHƯƠNG KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Hà Nội – Năm 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA TOÁN ĐỖ THỊ KIM DUNG MÔĐUN CHÍNH TẮC TRÊN VÀNH ARTIN ĐỊA PHƯƠNG Chuyên ngành: Đại số KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: ThS: ĐỖ VĂN KIÊN Hà Nội – Năm 2017 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Lời cảm ơn Sau một thời gian dài nghiêm túc, miệt mài nghiên cứu cùng với sự giúp đỡ tận tình của các thầy cô giáo và các bạn sinh viên. Đến nay, Khóa luận của tôi đã được hoàn thành. Tôi xin bày tỏ lòng cảm ơn chân thành, sâu sắc tới các thầy cô giáo tổ đại Số (Khoa Toán), các thầy cô trong khoa Toán đặc biệt là thầy giáo - Thạc Sĩ Đỗ Văn Kiên người đã trực tiếp tạo mọi điều kiện giúp đỡ, chỉ bảo tận tình cho tôi trong suốt thời gian nghiên cứu, hoàn thành khóa luận này. Do còn hạn chế về thời gian cũng như kiến thức của bản thân nên khóa luận của tôi không thể tránh khỏi những thiếu sót. Kính mong nhận được sự góp ý từ thầy cô và các bạn sinh viên. Cuối cùng tôi xin cảm ơn gia đình, bạn bè đã luôn bên cạnh, ủng hộ, động viên tinh thần để tôi hoàn thành khóa luận này! Hà Nội, tháng 4 năm 2017 Tác giả khóa luận Đỗ Thị Kim Dung i Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Lời cam đoan Khóa luận tốt nghiệp "Môđun chính tắc trên vành Artin địa phương" được hoàn thành do sự cố gắng, nỗ lực tìm hiểu và nghiên cứu cùng với sự giúp đỡ tận tình của thầy giáo - Thạc Sĩ Đỗ Văn Kiên Trong quá trình thực hiện tôi đã tham khảo một số tài liệu như đã viết trong phần tài liệu tham khảo. Vì vậy, tôi xin cam đoan kết quả trong khóa luận này là trung thực và không trùng với kết quả của tác giả nào khác. Hà Nội, tháng 4 năm 2017 Tác giả khóa luận Đỗ Thị Kim Dung 1 Mục lục Mở đầu 1 1 Kiến thức chuẩn bị 5 1.1 Vành và iđêan . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Môđun . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Đối ngẫu của không gian véctơ và môđun nội xạ 19 2.1 Đối ngẫu của không gian véctơ hữu hạn chiều . . . . . 19 2.2 Môđun nội xạ . . . . . . . . . . . . . . . . . . . . . . . 23 3 Môđun chính tắc trên vành Artin địa phương 28 3.1 Hàm tử đối ngẫu trên phạm trù môđun. . . . . . . . . 28 3.2 Đỉnh và đế của một môđun . . . . . . . . . . . . . . . 35 3.3 Môđun chính tắc trên vành Artin địa phương . . . . . 39 KẾT LUẬN 1 Tài liệu tham khảo 2 1 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung MỞ ĐẦU 1. Lý do chọn đề tài Vành Cohen-Macaulay là một lớp vành rộng và vô cùng quan trọng trong đại số và hình học. Trong khoảng hơn 50 năm trở lại đây, lớp vành này được rất nhiều nhà toán học trên thế giới nghiên cứu. Một trong các bất biến rất quan trọng của vành Cohen-Macaulay là môđun chính tắc của nó. Cho A là một vành Cohen-Macaulay, A là ảnh đồng cấu của một vành Gorenstein, khi đó A có một môđun hữu hạn sinh với chiều nội xạ hữu hạn. Hơn nữa các môđun này có thể được chọn là các môđun Cohen-Macaulay cực đại với kiểu 1 ([BH]). Các môđun như vậy là duy nhất sai khác đẳng cấu ([BH], [HK])và được gọi là môđun chính tắc. Môđun chính tắc đóng một vai trò trung tâm trong lý thuyết đối ngẫu và lý thuyết vành Cohen-Macaulay. Nó là một trong các đối tượng để phân loại các lớp vành. Nó "đo" sự sai khác giữa vành Gorenstein và Cohen-Macaulay ([GTT]). Đặc biệt một vành CohenMacaulay là vành Gorenstein khi và chỉ khi nó đẳng cấu với môđun chính tắc của nó. Một ứng dụng rất quan trọng của môđun chính tắc là môđun chính tắc cho phép ta xây dựng được tất cả các hàm tử đối ngẫu trên phạm trù môđun. Trong luận văn này chúng tôi chỉ xét môđun chính tắc của vành Norther địa phương (A, m) chiều không. Trong trường hợp này môđun chính tắc của A chính là bao nội xạ của 1 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung trường thặng dư A/m. Với những lý do như vậy tôi đã chọn đề tài này để nghiên cứu trong luận văn của mình. 2. Mục đích nghiên cứu Quá trình nghiên cứu và thực hiện đề tài đã giúp tôi bước đầu làm quen với nghiên cứu khoa học và có cơ hội tìm hiểu sâu hơn về đại số, đặc biệt là về môđun chính tắc và cụ thể là môđun chính tắc trên vành Artin địa phương. Đó là một cơ sở để định nghĩa vành Gorentein. 3. Đối tượng nghiên cứu Đề tài nghiên cứu về tính đối ngẫu của không gian véctơ; môđun nội xạ, bao nội xạ và tính chất của bao nội xạ; hàm tử đối ngẫu trên phạm trù môđun; đỉnh và đế của một môđun; môđun chính tắc trên vành Artin địa phương. 4. Phương pháp nghiên cứu Nghiên cứu giáo trình, sách tham khảo và các tài liệu liên quan đến nội dung nghiên cứu. 5. Cấu trúc khóa luận Luận văn gồm 3 chương • Chương 1: Kiến thức chuẩn bị Trong Chương 1, chúng tôi trình bày một số kiến thức cơ sở 2 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung của đại số giao hoán đó là: Vành, iđêan và môđun. Các kiến thức này phục vụ cho việc chứng minh các mệnh đề và định lý của các chương sau. • Chương 2: Đối ngẫu của không gian véctơ và môđun nội xạ Trong Chương 2, chúng tôi đưa ra một số tính chất cơ bản về lý thuyết đối ngẫu của không gian véctơ. Dựa trên những tính chất này, trong chương sau chúng tôi sẽ xây dựng định nghĩa hàm tử đối ngẫu cho các môđun. Phần thứ hai của chương, chúng tôi nhắc lại khái niệm môđun nội xạ, môđun xạ ảnh, bao nội xạ và một số tính chất của bao nội xạ. Những kết quả này là cơ sở để chứng minh các mệnh đề trong chương sau. • Chương 3: Môđun chính tắc trên vành Artin địa phương Trong Chương 3, chúng tôi trình bày về hàm tử đối ngẫu trên phạm trù môđun, đưa ra định nghĩa về môđun chính tắc của một vành Artin địa phương A. Phần đầu của chương chúng tôi đưa ra định nghĩa hàm tử đối ngẫu trên phạm trù các môđun dựa trên các tính chất của đối ngẫu của không gian véctơ và xây dựng hàm tử đối ngẫu trên các môđun trên một đại số hữu hạn trên một trường. Đưa ra một số tính chất của hàm tử đối ngẫu như bảo toàn linh hóa tử, bảo toàn độ dài, bảo toàn môđun các đồng cấu. Phần thứ hai của chương chúng tôi trình bày về đỉnh (top) và đế (socle) của một môđun. Sau khi trình bày về định nghĩa đỉnh và đế của một môđun chúng tôi nêu ra một số ví dụ tính toán cụ thể tìm đỉnh và đế của một môđun. Các khái niệm này sẽ được dùng để đặc trưng vành Gorenstein. Trong phần cuối 3 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung của chương chúng tôi trình bày định nghĩa của môđun chính tắc trên vành Artin địa phương và một số tính chất của môđun chính tắc. Môđun này là cơ sở để định nghĩa vành Gorenstein. 4 Chương 1 Kiến thức chuẩn bị Trong chương này chúng tôi trình bày một số kiến thức cơ sở của đại số giao hoán, phục vụ cho việc xây dựng khái niệm và chứng minh các tính chất của các chương sau. Phần đầu tiên chúng tôi nhắc lại một số kiến thức về vành và iđêan. Phần thứ hai của chương chúng tôi nêu ra khái niệm của môđun, một số tính chất của môđun và một số môđun đặc biệt. Cụ thể là môđun Noether và môđun Artin. 1.1 Vành và iđêan Định nghĩa 1.1.1. Cho A là một tập hợp khác rỗng, trên A trang bị hai phép toán hai ngôi gọi là phép cộng và phép nhân, kí hiệu là (+) và (.) tương ứng. Khi đó A được gọi là một vành nếu nó thỏa mãn các điều kiện sau (i) A cùng với phép cộng là một nhóm abel; (ii) A cùng với phép nhân là một nửa nhóm; (iii) Phép nhân phân phối đối với phép cộng, tức là với mọi x, y, z ∈ A 5 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung thì (x + y).z = xz + yz và z.(x + y) = zx + zy Vành A được gọi là vành có đơn vị nếu A là một vị nhóm nhân. Vành A được gọi là một vành giao hoán nếu phép nhân có tính chất giao hoán. Vành A được gọi là vành giao hoán có đơn vị nếu A là một vị nhóm nhân giao hoán. Chú ý 1.1.2. Trong toàn bộ luận văn này phần tử không của vành luôn được ký hiệu là 0. Phần tử đơn vị của vành (nếu có) luôn được ký hiệu là 1. Mệnh đề sau đưa ra một số tính chất cơ bản trong vành Mệnh đề 1.1.3. Cho A là một vành. Khi đó 1. 0.x = x.0 = 0, ∀x ∈ A; 2. (−x).y = x.(−y) = −(xy), ∀x, y ∈ A; 3. (−x).(−y) = xy, ∀x, y ∈ A; 4. x.(y − z) = xy − xz; (x − y).z = xz − yz, ∀x, y, z ∈ A; 5. Trong X có luật phân phối tổng quát, tức là m P n P (x1 + x2 + ... + xm )(y1 + y2 + ... + yn ) = xi yj , ∀xi , yj ∈ A; i=1 j=1 6. (nx)y = x(ny) = n(xy), ∀x, y ∈ A, n ∈ Z; ở đó n(x) :=    x · · + x}  | + ·{z    n   nếu n > 0 0 nếu n = 0       (−x) + ... + (−x) nếu n < 0  | {z } −n 6 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung 7. Nếu A là một vành giao hoán thì n (x + y) = n X Cni xi y n−i ∀x, y ∈ A, n ∈ N∗ i=0 . Định nghĩa 1.1.4. Cho A, B là hai vành. Một ánh xạ f : A → B được gọi là đồng cấu vành nếu với mọi a, b ∈ A thì (i) f (a + b) = f (a) + f (b); (ii) f (ab) = f (a).f (b); Nếu A, B đều là hai vành có đơn vị thì đòi hỏi thêm điều kiện (iii) f (1) = 1. Định nghĩa 1.1.5. Cho đồng cấu f : A → B. Ta nói f là đơn cấu (toàn cấu hay đẳng cấu) nếu ánh xạ f là đơn ánh (toàn ánh hay song ánh, tương ứng). Trong trường hợp f là đẳng cấu thì ta nói hai vành A và B là đẳng cấu với nhau, ký hiệu A ∼ = B. Các mệnh đề dưới đây đưa ra một số tính chất cơ bản của đồng cấu vành, việc chứng minh chúng dễ dàng suy ra từ định nghĩa. Mệnh đề 1.1.6. Cho đồng cấu vành f : A → B. Khi đó 1. f (0) = 0; 2. f (−a) = −f (a) với mọi a ∈ A; 3. f (a − b) = f (a) − f (b) với mọi a, b ∈ A. Mệnh đề 1.1.7. Nếu f : A → B, g : B → C là hai đồng cấu vành thì tích (ánh xạ hợp thành) g ◦ f : A → C cũng là một đồng cấu vành. 7 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Định nghĩa 1.1.8. Một iđêan a của vành A là một tập con của A thoả mãn các điều kiện sau (i) a 6= φ; (ii) a − b ∈ a với mọi a, b ∈ a; (iii) ax ∈ a và xa ∈ a với mọi x ∈ A và mọi a ∈ a. Định nghĩa 1.1.9. Các phép toán trên iđêan a) Giao của một họ các iđêan của vành A là một iđêan của vành A. b) Nếu A là một vành có đơn vị, a là một iđêan của vành A chứa đơn vị của A thì a = A. c) Cho a, b là hai iđêan của vành A, khi đó ta định nghĩa a + b = {a + b | a ∈ a, b ∈ b}. n X ab = { ai bi | ai ∈ a, bi ∈ b}. i=1 là các iđêan của A, gọi là tổng, tích của hai iđêan. a :A b = {x ∈ A | xb ⊆ a} là iđêan của A và được gọi là iđêan chia. Trong đó xb = {xb | b ∈ b}. Khái niệm iđêan cho ta một đối tượng quan trọng trong vành là vành thương. Định nghĩa 1.1.10. Cho a là một iđêan của vành A. Dễ thấy rằng quan hệ hai ngôi v trên A cho bởi a v b ⇔ a − b ∈ a với mọi a, b ∈ A 8 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung là một quan hệ tương đương. Đặt tập thương A/a = {x + a : x ∈ A}. Trên A/a ta trang bị hai phép toán (x + a) + (y + a) = (x + y) + a với mọi x + a, y + a ∈ A/a (x + a)(y + a) = (xy) + a với mọi x + a, y + a ∈ A/a Khi đó A/a cùng với hai phép toán này lập thành một vành và được gọi là vành thương của vành A theo iđêan a. Định nghĩa 1.1.11. Đồng cấu tự nhiên ϕ : A −→ A/a x 7−→ x + a là một toàn cấu vành, gọi là toàn cấu chính tắc từ A lên vành thương A/a. Hơn nữa, Kerϕ = a. Mệnh đề dưới đây là một trong các tính chất quan trọng nhất của đồng cấu vành. Mệnh đề 1.1.12. Cho f : A → B là một đồng cấu vành. Khi đó hạt nhân Kerf := f −1 (0) là một iđêan của A, ảnh Imf = f (A) là một vành con của B và f cảm sinh một đẳng cấu vành A/Kerf ∼ = Imf . Định nghĩa 1.1.13. Một iđêan thực sự p của vành A được gọi là iđêan nguyên tố nếu xy ∈ p thì suy ra x ∈ p hoặc y ∈ p. Một iđêan thực sự m của vành A được gọi là iđêan tối đại nếu chỉ có hai iđêan của A chứa m là m và A. Đặc trưng của iđêan nguyên tố và tối đại được cho bởi mệnh đề sau mà việc chứng minh là sơ cấp. 9 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Mệnh đề 1.1.14. Cho I là một iđêan của vành A. Khi đó 1. I là iđêan nguyên tố khi và chỉ khi A/I là một miền nguyên 2. I là iđêan tối đại khi và chỉ khi A/I là một trường Hệ quả là mọi iđêan tối đại đều là iđêan nguyên tố. Nhận xét 1.1.15. Nhờ bổ đề Zorn ta dễ dàng suy ra mọi vành A đều chứa ít nhất một iđêan tối đại. Định nghĩa 1.1.16. Một vành được gọi là vành địa phương nếu nó chỉ có một iđêan tối đại. Định nghĩa 1.1.17. Cho a là một iđêan của vành A. Khi đó r(a) = {x ∈ A | ∃n ∈ N∗ : xn ∈ a} là một iđêan của a và được gọi là căn của a. Đặc biệt r(0) = {x ∈ A | ∃n ∈ N∗ : xn = 0} được gọi là căn lũy linh của A. Nhận xét 1.1.18. Cho a là một iđêan của vành A, p và m lần lượt là iđêan nguyên tố và iđêan tối đại của A, khi đó r(a) = \ p, J(A) = \ m m∈M axA p∈SpecA Trong đó: SpecA là phổ của vành A - là tập hợp gồm tất cả các iđêan nguyên tố của A. J(A) được gọi là căn Jacobson của vành A. MaxA là tập tất cả các iđêan tối đại của A. 10 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Định nghĩa 1.1.19. Cho A là một vành. Đặt (0 :A x) là tập gồm tất cả các phần tử a ∈ A thoả mãn a.x = 0. Khi đó (0 :A x) là một iđêan của A và được gọi là linh hoá tử của x trong A, kí hiệu AnnA (x) hoặc Ann(x). Tức là AnnA (x) = (0 :A x) = {a ∈ A | ax = 0} . Đặc biệt AnnA 1 = 0, AnnA 0 = A Định nghĩa 1.1.20. Cho A là một vành giao hoán có đơn vị 1. Một xích các iđêan nguyên tố trong A là một dãy tăng thực sự các iđêan nguyên tố trong A có dạng p0 $ p1 $ · · · $ pn Số nguyên n được gọi là độ dài của xích này. Ta gọi cận trên đúng của độ dài tất cả các xích trong A là chiều (Krull) của A, ký hiệu dim A, tức là dim A = sup{n | ∃p0 $ p1 $ · · · $ pn , pi là xích trongA} Ví dụ 1.1.21. (1) dim Z = 1 vì các xích cực đại trong Z là 0 j pZ với p là số nguyên tố. (2) dim k = 0 với k là một trường tùy ý. (3) dim A = 0 nếu A là một vành Artin. 11 Khóa luận tốt nghiệp Đại học 1.2 Đỗ Thị Kim Dung Môđun Định nghĩa 1.2.1. Cho A là một vành có đơn vị 1. Một A - môđun là một tập hợp M cùng với hai phép toán (+) : M × M → M và (·) : A × M → M thoả mãn (i) M là một nhóm abel đối với phép cộng, với phần tử trung lập là 0; (ii) a(x + y) = ax + ay với mọi a ∈ A và mọi x, y ∈ M ; (iii) (a + b)x = ax + bx với mọi a, b ∈ A và mọi x ∈ M ; (iv) a(bx) = (ab)x với mọi a, b ∈ A và mọi x ∈ M ; (v) 1x = x với mọi x ∈ M . Mệnh đề 1.2.2. Cho M là một A - môđun, p là iđêan nguyên tố của A. Khi đó hai khẳng định sau là tương đương. (i) Tồn tại phần tử 0 6= x ∈ M sao cho AnnA (x) = p; (ii) M chứa một môđun con đẳng cấu với A/p. Định nghĩa 1.2.3. Cho M là một A - môđun. Một iđêan nguyên tố p của A được gọi là iđêan nguyên tố liên kết của M nếu một trong hai điều kiện của mệnh đề 1.2.2 được thỏa mãn. Tập các iđêan nguyên tố liên kết của M được kí hiệu là AssA M (hoặc AssM nếu không để ý đến vành A). Định nghĩa 1.2.4. Cho M , N là hai A - môđun. Một ánh xạ f : M −→ N là một đồng cấu A - môđun (hay A - tuyến tính) nếu (i) f (x + y) = f (x) + f (y) với mọi x, y ∈ M ; (ii) f (ax) = a.f (x) với mọi a ∈ A và mọi x ∈ M . 12 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Chú ý 1.2.5. Nếu A là trường thì một đồng cấu A – môđun giống như một ánh xạ tuyến tính của các không gian véctơ. Đồng cấu A – môđun được gọi là đơn cấu, toàn cấu hay đẳng cấu nếu ánh xạ f tương ứng là đơn ánh, toàn ánh hay song ánh. Nếu có một đẳng cấu A – môđun từ M đến N thì ta nói M và N đẳng cấu với nhau, ký hiệu M ∼ = N. Mệnh đề 1.2.6. Nếu f : M −→ N , g : N −→ L là hai đồng cấu A – môđun thì tích (ánh xạ hợp) g ◦ f : M −→ L cũng là đồng cấu A – môđun. Định nghĩa 1.2.7. Cho A – môđun M và N là tập con của M . Khi đó, N được gọi là môđun con của M nếu (i) N 6= φ; (ii) x − y ∈ N với mọi x, y ∈ N ; (iii) ax ∈ N với mọi x ∈ N , a ∈ A. Định nghĩa 1.2.8. Cho N là môđun con của A – môđun M . Tập thương M/N có cấu trúc A – môđun với hai phép toán • Với mọi x + N, y + N ∈ M/N : (x + N ) + (y + N ) = (x + y) + N ; • Với mọi x + N ∈ M/N , a ∈ A : a(x + N ) = ax + N . Ta gọi đó là môđun thương của môđun M trên môđun con N . Mệnh đề 1.2.9. Nếu f : M → N là một đồng cấu A – môđun thì Kerf := f −1 (0) là một môđun con của M , Imf = f (M ) là một môđun con của N và f cảm sinh một đẳng cấu A – môđun: M/Kerf ∼ = Imf . Định nghĩa 1.2.10. Cho M là một A - môđun. M được gọi là môđun đơn nếu M có hai môđun con tầm thường là 0 và M . 13 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung Mệnh đề 1.2.11. (Bổ đề Nakayama) Cho M là một A - môđun hữu hạn sinh và a là một iđêan của A được chứa trong căn Jacobson của A, tức là giao của tất cả các iđêan cực đại trong A. Khi đó, nếu aM = M thì suy ra M = 0. Chú ý 1.2.12. Nếu A là một vành địa phương, m là iđêan tối đại của nó, M là một A – môđun hữu hạn sinh. Khi đó M/mM được triệt tiêu bởi m, do đó M/mM là một A/m – môđun, nghĩa là A/m – không gian véctơ hữu hạn chiều. Chiều của M/mM bằng số phần tử sinh tối tiểu của M . Mệnh đề 1.2.13. Cho x1 , . . ., xn là những phần tử của M mà ảnh của chúng trong M/mM tạo thành một cơ sở của không gian véctơ này. Khi đó {x1 , x2 , ..., xn } là một hệ sinh của M . Một đối tượng quan trong trong lý thuyết đồng điều là dãy khớp. Định nghĩa 1.2.14. Một dãy các A – môđun và A – đồng cấu fn+1 fn · · · −→ Mn−1 −→ Mn −→ Mn+1 −→ · · · (*) được gọi là khớp tại Mi nếu Imfi = Kerfi+1 , với mọi i. Dãy (*) được gọi là dãy khớp nếu dãy đó khớp tại mọi Mi . f g Một dãy khớp dạng 0 −→ M 0 −→ M −→ M 00 −→ 0 được gọi là dãy khớp ngắn. Nếu dãy (*) chỉ đòi hỏi Imfi ⊆ Kerfi+1 thì dãy này được gọi là một phức. Mệnh đề sau chỉ ra một điều kiện tương đương của dãy khớp ngắn. 14 Khóa luận tốt nghiệp Đại học Đỗ Thị Kim Dung f g Mệnh đề 1.2.15. Dãy 0 −→ M 0 −→ M −→ M 00 −→ 0 (∗) các A môđun và các A - đồng cấu là dãy khớp ngắn khi và chỉ khi (i) f là đơn cấu; (ii) g là toàn cấu; (iii) Imf = Kerg. Định nghĩa 1.2.16. Cho M là A - môđun, M được gọi là môđun Noether (Artin) nếu mọi tập khác rỗng các môđun con của M luôn chứa ít nhất một phần tử cực đại (cực tiểu) theo quan hệ bao hàm. Một vành được gọi là vành Noether hay Artin nếu nó là môđun Noether hay Artin trên chính vành đó. Định lý 1.2.17. Điều kiện tương đương môđun Noether Cho M là A - môđun, các điều kiện sau là tương đương (i) M là A - môđun Noether; (ii) Mọi môđun con của M đều hữu hạn sinh; (iii) Mọi dãy tăng các môđun con của M M1 ⊆ M2 ⊆ . . . ⊆ Mn ⊆ . . . đều dừng, tức tồn tại k > 0 để Mk = Mk+1 = . . . Ví dụ 1.2.18. Z là Z - môđun Noether. Định lý 1.2.19. Điều kiện tương đương môđun Artin Cho M là một A - môđun. Các điều kiện sau là tương đương (i) Mọi tập khác rỗng các môđun con của M đều có phần tử cực tiểu. (ii) Dãy giảm bất kì các môđun con của M 15
- Xem thêm -

Tài liệu liên quan