Mô phỏng phân xưởng chưng cất khí quyển của nhà máy lọc dầu dung quất với nguyên liệu 100 dầu thô bạch hổ

  • Số trang: 28 |
  • Loại file: PDF |
  • Lượt xem: 12 |
  • Lượt tải: 0
nganguyen

Đã đăng 34173 tài liệu

Mô tả:

TRƯỜNG ĐẠI HỌC BÁCH KHOA HỒ CHÍ MINH KHOA KỸ THUẬT HÓA HỌC BỘ MÔN CÔNG NGHỆ CHẾ BIẾN DẦU KHÍ BÁO CÁO MÔN HỌC ĐỀ TÀI: MÔ PHỎNG PHÂN XƯỞNG CHƯNG CẤT KHÍ QUYỂN CỦA NHÀ MÁY LỌC DẦU DUNG QUẤT VỚI NGUYÊN LIỆU 100% DẦU THÔ BẠCH HỔ GVHD: TRẦN HẢI ƯNG HVTH: HOÀNG MẠNH HÙNG PHÙNG THỊ CẨM VÂN NGUYỄN HUỲNH HƯNG MỸ BÙI THANH HẢI NGUYỄN HỒNG THOAN LỚP: CAO HỌC HÓA DẦU K2010 TP. HỒ CHÍ MINH, THÁNG 02/2011 MỤC LỤC I. GIỚI THIỆU VỀ PHÂN XƯỞNG CHƯNG CẤT KHÍ QUYỂN (CDU – CRUDE DISTILLATION UNIT) CỦA NHÀ MÁY LỌC DẦU DUNG QUẤT……………………………………………………………………………3 II. GIỚI THIỆU VỀ PHẦN MỀM MÔ PHỎNG PRO/II .......................... 5 II.1. Tổng quan về phần mềm mô phỏng Pro/II .......................................... 5 II.2. Tổng quan về một dự án mô phỏng ..................................................... 7 III. MÔ PHỎNG PHÂN XƯỞNG CDU CỦA NHÀ MÁY LỌC DẦU DUNG QUẤT BẰNG PHẦN MỀM MÔ PHỎNG PRO/II ............................ 8 III.1. Nguyên liệu ..................................................................................... 8 III.2. Sơ đồ mô phỏng bằng phần mềm PRO/II ......................................... 9 III.3. Mô hình nhiệt động ........................................................................ 13 III.4. Xây dựng mô hình và các thông số mô phỏng cần thiết ................. 13 III.5. Xác định số đĩa lí thuyết thích hợp cho T-1101: ............................. 17 III.6. (FW) Số đĩa lí thuyết là 26 đĩa, các số liệu khác giống như Foster Wheeler :...................................................................................................... 17 2 I. GIỚI THIỆU VỀ PHÂN XƯỞNG CHƯNG CẤT KHÍ QUYỂN (CDU – CRUDE DISTILLATION UNIT) CỦA NHÀ MÁY LỌC DẦU DUNG QUẤT Phân xưởng chưng cất khí quyển CDU có thể được xem là phân xưởng “cửa ngõ” của một nhà máy lọc dầu với nhiệm vụ phân tách dầu thô thành những phân đoạn nhỏ hơn theo những khoảng nhiệt độ sôi khác nhau. Phân xưởng CDU của Nhà máy Lọc dầu Dung Quất được thiết kế với công suất 6,5 triệu tấn dầu thô/năm tương đương với 812.500 kg/h (tính cho 8.000 giờ làm việc/năm). Phân xưởng CDU được thiết kế để vận hành với hai nguồn dầu thô là dầu Bạch Hổ của Việt Nam và dầu Dubai của Trung Đông. Theo kế hoạch, giai đoạn đầu hoạt động, nhà máy sẽ sử dụng nguồn nguyên liệu là 100 % dầu thô Bạch Hổ. Sau đó sẽ sử dụng nguồn nguyên liệu là dầu hỗn hợp (Dầu Mixed) gồm 84,6 % dầu Bạch Hổ và 15,4 % dầu Dubai. Các sản phẩm của phân xưởng CDU bao gồm Offgas, LPG, Full Range Naphta, Kerosen, LGO, HGO và cặn chưng cất khí quyển. Hầu hết các sản phẩm của CDU đều đi vào các phân xưởng khác của nhà máy lọc dầu như: NHT (Unit 012: Naphta Hydrotreatment Unit), KTU (Unit 014: Kerosen Treating Unit), RFCC (Unit 015: Residue Fluidised Catalytic Cracking Unit ) … Sơ đồ các phân xưởng của Nhà máy Lọc dầu Dung Quất được thể hiện tròn Hình 1 bên dưới. Trên sơ đồ nhà máy, dòng dầu thô nguyên liệu sau khi đi qua hệ thống tiền gia nhiệt (Preheater), tách muối sẽ được đưa vào tháp chưng cất chính T1101 (Main fractionator). Tại đây dầu thô sẽ được phân tách ra thành các sản phẩm: 1. Over head – Phần đi ra trên đỉnh: phần này sẽ được đưa qua hệ thống làm nguội và phân tách để tách nước ra khỏi dòng Hydrocarbon lỏng trước khi cho dòng hydrocarbon vào tháp ổn định T-1107 (Stabiliser). Tháp ổn định sẽ phân tách ra các sản phẩm Offgas, LPG ở đỉnh và Full Range Naphta ở đáy; 2. Các sản phẩm cạnh sườn như Kerosen, LGO và HGO được lấy ra từ các Side colum T-1102, T-1103 và T-1104; 3. Cặn chưng cất khí quyển được lấy ra ở đáy tháp T-1101. 3 Nguồn: Nhà máy Lọc dầu Dung Quất Hình 1: Sơ đồ các phân xưởng của Nhà máy Lọc dầu Dung Quất Theo Sơ đồ các phân xưởng của Nhà máy Lọc dầu Dung Quất (Hình 1), vùng được bao bọc bằng khung hình chữ nhật là phân xưởng chưng cất khí quyển CDU. Với hai thiết bị chính là tháp T-1101 (Main FRACTIONATOR) và tháp T-1107 (Stabiliser). Mô hình 3D của phân xưởng chưng cất khí quyển CDU nhìn theo hướng Đông Nam và Tây Nam được thể hiện trong Hình 2 và Hình 3 theo sau. 4 Nguồn: Nhà máy Lọc dầu Dung Quất Hình 2: Mô hình 3D của phân xưởng CDU của Nhà máy Lọc dầu Dung Quất nhìn theo hướng Đông Nam Nguồn: Nhà máy Lọc dầu Dung Quất Hình 3: Mô hình 3D của phân xưởng CDU của Nhà máy Lọc dầu Dung Quất nhìn theo hướng Tây Nam II. GIỚI THIỆU VỀ PHẦN MỀM MÔ PHỎNG PRO/II II.1. Tổng quan về phần mềm mô phỏng Pro/II Phần mềm Pro/II là một trong những sản phẩm của tổ hợp SIMSCI. Công ty này được thành lập từ năm 1957 chuyên về thiết kế các phần mềm mô phỏng dùng trong công nghệ hóa học, đặc biệt là ngành công nghiệp lọc - hóa dầu. 5 Hiện nay sản phẩm của tổ hợp này khá đa dạng, bao gồm các phần mềm thiết kế các thiết bị, đường ống, tính toán kinh tế,... Hình 4: Biểu tượng phần mềm mô phỏng Pro/II Phần mềm thiết kế mô phỏng Pro/II là sản phẩm đầu tiên của SIMSCI, là kết quả của nhiều lần nâng cấp từ năm 1967 đến năm 1988 và chính thức ra đời với tên gọi Pro/II. Hiện nay phần mềm này vẫn không ngừng nâng cấp và đã có phiên bản Pro/II 8.1 (Trong báo cáo này sử dụng phiên bản 8.0). Phần mềm này có thể sử dụng vào nhiều quá trình khác nhau như sau:  Xử lí dầu và khí  Tinh chế  Hóa dầu  Polyme  Dược phẩm Các ứng dụng mô phỏng gồm :  Thiết kế mới các quá trình  Ước tính cấu hình thiết bị  Hiện đại hóa và nâng cấp các thiết bị cũ  Gỡ rối và làm thông suốt hệ thống thiết bị  Đánh giá vấn đề môi trường của nhà máy  Kiểm tra, tối ưu hóa, cải tiến hiệu suất và lợi nhuận của nhà máy. 6 II.2. Tổng quan về một dự án mô phỏng Pro/II cho phép người dùng có nhiều phương pháp lựu chọn để nhập dữ liệu. Mặc dù vậy Pro/II có những cảnh báo khi dữ liệu bắt buộc bị thiếu. Vì vậy khi xây dựng một sơ đồ công nghệ để mô phỏng thì cần theo các bước sao cho mang tính logic. Dưới đây là một trình tự: 1. Xây dựng sơ đồ 2. Lựa chọn hệ đơn vị 3. Xác định các cấu tử cho dự án 4. Chọn các phương pháp nhiệt động học và tính chất vận chuyển 5. Cung cấp các dữ liệu cho dòng và thiết bị 6. Cung cấp các điều kiện làm việc cho quá trình 7. Chạy dự án mô phỏng Đây chỉ là những bước cơ bản để chương trình chạy, thực tế để mô phỏng một lưu trình hay một phân xưởng thì bước đầu tiên và vô cùng quan trọng là lập mô hình mô phỏng. Ở bước này người dùng phải đơn giản hóa sơ đồ công nghệ thực, bỏ đi những thiết bị không cần thiết, chuyển đổi các mô hình thực thành mô hình lí thuyết, tinh chỉnh mô hình. Hình 5: Sơ đồ một quá trình mô phỏng bằng Pro/II Sau khi chương trình chạy và có kết quả thì bước cuối cùng là đọc và phân tích kết quả mô phỏng. Vì ngôn ngữ của chương trình là tiếng Anh, nên các báo cáo được trình bày bằng ngôn ngữ này. Tuy nhiên cách trình bày cũng giúp người dùng dễ theo dõi, điều quan trọng là người dùng sẽ khai thác được 7 những gì từ các kết quả đó. Từ đó xem xét số liệu đó có khớp với các số liệu thực không hoặc sai khác thế nào, nếu có sự chênh lệch nhiều phải tìm ra nguyên nhân dẫn đến sai số. Pro/II là một phần mềm mô phỏng tính toán, các quá trình mô phỏng đều ở trạng thái tĩnh – Mô tả trạng thái hoạt động ổn định của hệ thống. Đó là cân bằng vật chất, các tính chất hóa lí, các tính chất đặc trưng của chất như RVP, điểm vẩn đục, RON... Như vậy Pro/II là phần mềm rất hữu ích, là công cụ đắc lực trong việc mô phỏng một mô hình hệ thống ở trạng thái tĩnh. Tuy nhiên, Pro/II không có các thiết bị điều khiển và đo lường như ở phần mềm Dynsim (Một phần mềm của SIMSCI chuyên mô phỏng một quá trình thay đổi theo thời gian). Kết quả mô phỏng ở trạng thái tĩnh không cho phép mô tả các ảnh hưởng của việc thay đổi các thông số điều khiển đến quá trình làm việc của thiết bị. III. MÔ PHỎNG PHÂN XƯỞNG CDU CỦA NHÀ MÁY LỌC DẦU DUNG QUẤT BẰNG PHẦN MỀM MÔ PHỎNG PRO/II III.1. Nguyên liệu Nguyên liệu sử dụng trong quá trình mô phỏng này là 100% dầu thô Bạch Hổ. Các đặc trưng kỹ thuật của dầu thô Bạch Hổ được thể hiện như sau:  Thành phần cất: - Đường TBP: Số liệu đường cong TBP của dầu thô Bạch Hổ Phần trăm khối lượng, %kl Phần trăm khối lượng tổng (%kl cummulative) Tỷ trọng (Density) Lights end 2,86 2,86 - 155-200 1,53 4,39 0,6816 200-315 8,43 12,82 0,7460 315-400 7,24 20,06 0,7734 400-500 8,38 28,44 0,7972 500-600 10,21 38,65 0,8160 Phân đoạn (Fraction) 8 600-700 12,11 50,76 0,8285 700-800 12,58 63,34 0,8437 800-900 12,84 76,18 0,8539 900-1050 9,74 85,92 0,8904 >1050 13,81 99,73 0,9313 Mất mát (Loss) - 0,27 Thành phần phần nhẹ (Lights end): Cấu tử % khối lượng Cấu tử % khối lượng Methane 0,0002 Cyclopentane 0,0300 Ethane 0,0031 2,2-dimetylbutane 0,0243 Propane 0,0327 2,3-dimetylbutane 0,0530 Isobutane 0,0488 2-metyl-pentane 0,3885 n-butane 0,2122 3-metyl-pentane 0,2099 isopentane 0,3741 n-hexane 0,8528 n-pentane 0,6270  Tính chất khác: - API=39,2 - Kw=12,3 III.2. Sơ đồ mô phỏng bằng phần mềm PRO/II Mô hình mô phỏng phân xưởng chưng cất khí quyển với nguyên liệu 100% dầu thô Bạch Hổ được thể hiện trong Hình 6 theo sau. Dầu thô qua tiền gia nhiệt, tách muối, vào tháp chính sau đó qua NHT và tách thành Light Naphtha, Heavy Naphtha. 9 Hình 6: Sơ đồ mô hình mô phỏng phân xưởng CDU trên PRO/II của NMLD Dung Quất theo bản vẽ PFD 10 Tuy nhiên do gặp một số vấn đề và mục đích chủ yếu là xác định tính chất và lưu lượng các dòng LPG, Light Naphta, Heavy Naphtha, Kerosen, LGO, HGO và cặn chưng cất khí quyển. Nên chúng tôi đã quyết định rút gọn mô hình. Với các lí do sau: - Dầu thô trước khi nạp liệu vào tháp T-1101 cần phải đi qua hệ thống gia nhiệt , tách muối…Nhưng quá trình đó ảnh hưởng rất ít đến tính chất của dầu thô và cũng không ảnh hưởng đến kết quả mô phỏng. Bởi vậy chúng tôi bỏ qua khâu mô phỏng phần này và lấy điều kiện nạp liệu của dầu thô giống như trong tài liệu thiết kế của Nhà máy; - Các dòng lỏng lấy ra ở Pumparound thực tế được tận dụng nhiệt để sử dụng vào việc khác như đun nóng dầu thô. Hoặc các dòng sản phẩm trích ngang như Kerosen, LGO, HGO cũng tương tự như vậy. Nhưng vì chỉ quan tâm đến lưu lượng và chất lượng các dòng sản phẩm trên cơ sở tôn trọng công suất của các Pumpapound, lưu lượng các dòng nóng lấy ra ở cạnh sườn tháp, chúng tôi đã rút gọn mô hình mà không làm ảnh hưởng đến kết quả mô phỏng. - Trong thực tế phân xưởng CDU không bao gồm phân xưởng NHT. Tuy nhiên do cần tìm tính chất của dòng Light Naphtha và Heavy Naphtha do đó chúng tôi mô phỏng luôn NHT. Theo sơ đồ công nghệ của nhà máy thì dòng Full Range Naphta sau khi đi ra khỏi tháp ổn định T-1107 thì sẽ đi vào phân xưởng NHT trước khi qua tháp Naphtha Splitter T-1202. Tuy nhiên do số liệu về các phản ứng xảy ra trong NHT chưa có một cách cụ thể. Mặt khác nhược điểm của phần mềm Pro/II cũng như những phần mềm mô phỏng khác là cho tới thời điểm này vẫn chưa mô phỏng được phản ứng với xúc tác rắn một cách chính xác mà đặc biệt chất tham gia lại là các cấu tử giả của dầu thô. Điều đáng quan tâm ở đây là để mô phỏng một thiết bị phản ứng thì ta phải biết trước về nguyên liệu và sản phẩm. Đặc điểm này khác với tháp (Colunm) ở chỗ là đối với mỗi loại dầu khi nhập các thông số của dầu mới và các thông số hoạt động của tháp thì kết quả sẽ thay đổi tương ứng ở đầu ra. Còn đối với thiết bị phản ứng, khi ta thay đổi dầu thô nguyên liệu khác thì phải nhập lại hệ số phản ứng và khó khăn nhất là ta không có được sản phẩm để nhập vào vì sản phẩm là cái mà ta đang cần tìm do đó sẽ không thiết lập được các phản ứng xảy ra. Tóm lại thiết bị phản ứng trong Pro/II hiện nay chỉ có thể mô phỏng một 11 phản ứng đã có sẵn chất tham gia và chất tạo thành. Nếu không có đủ cả hai yếu tố này thì không thể nào thiết lập được phản ứng. Và càng không chính xác khi các chất tham gia phản ứng lại là các cấu tử giả của dầu thô do Pro/II đưa ra chứ không phải là một cấu tử cụ thể; - Nhiệm vụ chính của NHT là xử lí S, N để đảm bảo chất lượng đầu vào cho hai phân xưởng Izomer hóa và CCR. Hàm lượng của S và N trong Full Range Naphta là khá nhỏ. Do đó một cách gần đúng ta có thể xem như cân bằng vật chất của quá trình NHT gần như không thay đổi. Như vậy ta có thể cho dòng Full Range Naphta đi thẳng vào Splitter để tách ra thành Light Naphta và Heavy Naphta mà không cần cho qua NHT. Sau khi rút gọn ta được mô hình như Hình 7 theo sau: Calculator Name S4 GAS_MAINCOL TOPPING D-1103 CA2 WATER1 T-1101 CA1 Calculator Description E-1111 GAP Kero -Naphta 10.1840 GAP LGO-KER 10.3804 OVERLAP HGO-LGO CA1 4.5990 C101 2 3 5 1 OFFGAS_STA 4 KER-V 2 3 6 P1110 1 4 6 7 8 9 KER1 T-1102 NUOC 1 S6 5 6 7 8 3 9 4 10 10 KEROSEN 11 12 11 5 LGO-V 13 7 1 2 3 4 14 STEAM2 FEED_T1107 14 15 8 LPG 9 16 17 FEED_T1202 10 15 11 T-1103 16 17 12 E1 6 E-1113 13 LGO1 LGO 22 23 14 24 15 25 16 HGO-V STEAM3 FEED M1 STEAM1 24 T-1202 18 19 22 23 26 17 1 2 3 21 WATER 19 21 S3 13 19 20 18 20 12 18 CRUDE-BH LIGH_NAPHTA 4 2 7 HGO1 T-1104 25 HGO T-1107 27 28 29 30 31 20 32 NAPHTA_FULL V2 33 H_NAPHTA 26 RES Hình 7: Sơ đồ mô hình mô phỏng rút gọn phân xưởng CDU trên PRO/II của NMLD Dung Quất Theo nguyên tắc và thực tế mô phỏng cho thấy, kết quả các dòng sản phẩm cần tính ở mô hình đơn giản ( Hình 7 ) và mô hình phức tạp (Hình 6) gần như không thay đổi. Đặc biệt là LPG, Kerosen, LGO, HGO và Cặn chưng cất khí quyển. Còn Light Naphtha và Heavy Naphta thì có sai khác tuy nhiên trong mức độ chấp nhận được. Vì vậy chúng tôi quyết định chọn mô hình đơn giản để khảo sát. 12 III.3. Mô hình nhiệt động Sử dụng mô hình Grayson Street cho các tháp chính (Main Fractionator) (GS1) và xem như không có ngưng tụ hơi nước, mô hình Grayson Street (GS2) có xét đến quá trình ngưng tụ hơi nước cho hệ thống ngưng tụ hơi đỉnh tháp và tách pha lỏng – hơi. III.4. Xây dựng mô hình và các thông số mô phỏng cần thiết Để mô phỏng quá trình chúng ta cần xây dựng một mô hình lí thuyết căn cứ vào các số liệu của mô hình thực tế. Những số liệu trong các bản vẽ PFD trong tài liệu của Technip về cấu trúc của tháp: số đĩa, vị trí lấy ra và đưa vào của các side column và tháp Stripping… đều là số liệu thực tế. Chẳng hạn về số đĩa của tháp, Pro/II sẽ mô phỏng dựa trên số đĩa lí thuyết. Vì vậy nếu chúng ta muốn có một mô hình chính xác và có độ tin cậy thì cần phải xác định được hiệu suất đĩa của tháp và từ đó đưa ra số đĩa lí thuyết phù hợp cho tháp. Hoặc chi tiết hơn nếu có đầy đủ số liệu về hiệu suất của từng đĩa thì kết quả chúng ta càng chính xác. Giả sử ta xem hiệu suất đĩa là 100% thì số đĩa lí thuyết trong mô hình Pro/II chính bằng số đĩa thực tế của tháp. Tuy nhiên, hiệu suất đĩa trong thực tế sản xuất rất khó đạt được 100%. Do đó số đĩa lí thuyết thường nhỏ hơn số đĩa thực tế. Vì thế nếu ta chọn số đĩa lí thuyết quá ít hoặc quá nhiều thì kết quả tính của Pro/II cũng sẽ không chính xác. Xét về chất lượng các dòng sản phẩm sẽ xấu hơn hoặc tốt hơn. Bởi vậy khi chạy Pro/II cần phải so sánh với các chỉ tiêu trong các tài liệu như Basic of Design, mass balance… Theo thứ tự của quá trình, dầu thô sẽ vào tháp T-1101 trước. Các sản phẩm của T-1101 sẽ đi vào các tháp T-1107. Nhưng trước tiên phải xét độ tin cậy của tháp T-1101. Khi mô hình của T-1101 cho kết quả tin cậy rồi ta tiếp tục mô phỏng các thiết bị tiếp theo. Dưới đây là những thông số cần thiết để mô phỏng T-1101.  Lưu lượng dòng nguyên liệu và các dòng sản phẩm chính như sau: o Nguyên liệu: Dầu thô Bạch Hổ, lưu lượng 812.500 (kg/h). o Các sản phẩm: Sản phẩm LPG Naphtha (Full Range Naphtha) Kerosen Lưu lượng (Kg/h) 2.181 108.314 51.188 13 LGO (Light Gasoil Oil) 170.716 HGO (Heavy Gasoil Oil) 69.822 Cặn (Residue) 407.324  Thông số dòng dầu thô Bạch Hổ và tháp chính: Theo tài liệu Feed thì dòng dầu thô ban đầu được bơm từ bể trước khi đi vào hệ thống tiền gia nhiệt để nạp vào tháp chính (Main FRACTIONATOR) có nhiệt độ 50 oC và áp suất 20 Kg/cm2g. Trước khi vào tháp chính chọn dầu thô có nhiệt độ vào tháp 360 oC và áp suất là 2,45 Kg/cm2.g. Thông số các dòng hơi nước quá nhiệt sử dụng trong mô phỏng được thể hiện trong Bảng theo sau. Steam Lưu lượng kg/h Nhiệt độ oC Áp suất kg/cm2g Ghi chú Steam 1 16.000 350 2,40 Stripping đáy tháp chính Steam 2 5.070 350 2,32 Stripping LGO Steam 3 2.600 350 2,31 Stripping HGO  Các thông số thiết kế và vận hành của tháp chính T-1101: o Thông số tháp chính T-1101 Số đĩa thực tế 48 Nhiệt độ đỉnh, oC 124 Nhiệt độ đáy, oC 349 Áp suất đỉnh, kg/cm2g 1,5 Áp suất đáy, kg/cm2g 1,9 Các hệ thống Pumparound Pumparound PA1 Pumparound PA3 Từ đĩa 4 Từ đĩa 26 Đến đĩa 1 Đến đĩa 23 Công suất nhiệt, KW -20.900 Nhiệt độ vào tháp, oC 77 Công suất nhiệt, KW -31.000 Lưu lượng, kg/h 758.719 14 Pumparound PA2 Pumparound PA4 Từ đĩa 15 Từ đĩa 38 Đến đĩa 12 Đến đĩa 35 Công suất nhiệt, KW Lưu lượng, kg/h -9.000 211.124 Dầu thô vào tháp ở đĩa Công suất nhiệt, KW Lưu lượng, kg/h -4.925 134.995 43 o Các dòng hơi từ tháp stripping vào lại tháp chính ở các đĩa KEROSENE-V 12 LGO-V 23 HGO-V 35 Dòng hơi stripping vào tháp ở đĩa đáy o Các dòng sản phẩm lỏng lấy ra từ các đĩa: Naphtha (full range) 1 KEROSENE-1 15 LGO-1 26 HGO-1 38 Cặn (Residue) 48  Các tiêu chuẩn kỹ thuật: Sử dụng các ràng buộc về lưu lượng các dòng sản phẩm cuối cùng là KEROSENE, LGO, HGO và nhiệt độ đỉnh tháp T-1101 (đã trình bày ở trên) bằng cách khống chế các yếu tố gồm: lưu lượng các dòng sản phẩm lỏng trích ngang tháp chính (KEROSENE-1, LGO-1, HGO-1) và công suất nhiệt của Pumparound PA1.  Các thông số thiết kế và vận hành của tháp stripping o Tháp Stripping KEROSENE T-1102 Số đĩa thực tế (bao gồm Reboiler) 11 15 Nhiệt độ đỉnh, oC 209 Nhiệt độ đáy, oC 222 Áp suất đỉnh, kg/cm2g 1,6 Áp suất đáy, kg/cm2g 1,7 Công suất nhiệt reboiler, kW Nạp liệu đĩa 2.800 1 o Tháp Stripping LGO T-1103 Số đĩa thực tế 6 Nhiệt độ đỉnh, oC 246 Nhiệt độ đáy, oC 239 Áp suất đỉnh, kg/cm2g 1,7 Áp suất đáy, kg/cm2g 1,8 Nạp liệu đĩa 1 Hơi nước quá nhiệt vào ở đĩa 6 o Tháp Stripping HGO T-1104 Số đĩa thực tế 6 Nhiệt độ đỉnh, oC 327 Nhiệt độ đáy, oC 320 Áp suất đỉnh, kg/cm2g 1,9 Áp suất đáy, kg/cm2g 2,0 Nạp liệu đĩa 1 Hơi nước quá nhiệt vào ở đĩa 6 Mô hình Tháp T-1101 trong mô phỏng PRO/II được thể hiện như Hình 8 dưới đây: 16 Hình 8: Mô hình tháp T-1101 trong mô phỏng PRO/II III.5. Xác định số đĩa lí thuyết thích hợp cho T-1101: Hiệu suất đĩa phụ thuộc vào nhiều yếu tố. Nó thường được tính toán và cân nhắc kĩ trong quá trình thiết kế để sao cho vừa đảm bảo được chỉ tiêu về kĩ thuật vừa có hiệu quả về kinh tế. Có khá nhiều tài liệu nói về khoảng dao động của hiệu suất đĩa. Thông thường trong thiết kế ta thường chọn hiệu suất đĩa nằm trong khoảng 60% đến 80%. Nhóm báo cáo khảo sát các giá trị hiệu suất khác nhau và so sánh đối chiếu với tài liệu thiết kế để lựa chọn hiệu suất phù. Sau quá trình chạy thử nhiều Bên trên đã xét trường hợp hiệu suất đĩa là 100 %. Tiếp theo sẽ khảo sát trường hợp 60% và trường hợp với các số liệu giống như Foster Wheeler đã mô phỏng để có được những nhận xét cụ thể. III.6. Số đĩa lí thuyết là 26 đĩa, các số liệu khác giống như Foster Wheeler (FW) : FW sử dụng các thông số vận hành khác với bản vẽ PFD mới cập nhật bỡi Technip. FW chỉ đưa ra một vài đoạn kết quả Pro/II về tháp (Số đĩa, vị trí nạp liệu, vị trí lấy sản phẩm của các tháp Stripping và Pumparound…) mà không cung cấp file input có đầy đủ tất cả thông số đầu vào cần thiết cho mô phỏng. Và 17 cũng không có file General report của Pro/II. Do đó khi mô phỏng trường hợp này chúng tôi vẫn sử dụng các thông số trong tài liệu PFD năm 2007 của phân xưởng CDU. Và sử dụng nguồn nguyên liệu như trường hợp 48 đĩa lí thuyết. Như vậy mô hình tháp T-1101 sử dụng trong trường hợp này như sau:  Tập tin input: $ Generated by PRO/II Keyword Generation System $ Generated on: Wed Jan 16 14:58:53 2008 TITLE PROJECT=DAU THAY THE, PROBLEM=SO LIEU FW PRINT STREAM=ALL, RATE=WT, FRACTION=WT, PERCENT=WT, TBP, KVT1=38, & KVT2=50 DIMENSION METRIC, PRES=KG/CMG, DUTY=KW, STDTEMP=0, STDPRES=0 OUTDIMENSION ADD, METRIC, PRES=KG/CMG, DUTY=KW, STDTEMP=0, & STDPRES=-2.20145E-8, PBASIS=1.03323 SEQUENCE SIMSCI CALCULATION TRIALS=25, RVPBASIS=APIN, TVP=37.778, RECYCLE=ALL COMPONENT DATA LIBID 1,H2/2,NH3/3,H2S/4,H2O/5,METHANE/6,ETHANE/7,PROPANE/ & 8,IBUTANE/9,BUTANE/10,22PR/11,IPENTANE/12,PENTANE/ & 13,CYPNTANE/14,22MB/15,23MB/16,2MP/17,3MP/18,HEXANE, & BANK=PROCESS,SIMSCI 18 CUTPOINTS TBPCUTS=35.333,70,1/93.333,1/565.556,17/787.78,4, & BLEND=NGUYEN THERMODYNAMIC DATA METHOD SYSTEM=GS, TRANSPORT=PETR, REFPROPS=SIMSCI, KVIS(LV)=SIMS, & CLOU(LV)=SIMS, POUR(LV)=INDEX, FLPO=NELS, SULF(WT)=SUM, & CETA=API, AROM(TOTA,LV)=SUM, NAPH(LV)=SUM, & PARA(TOTAL,LV)=SUM, PARA(ISO,LV)=SUM, OLEF(MONO,LV)=SUM, & VANA(WT)=SUM, NICK(WT)=SUM, FRZP(LV)=INDEX, RON(C,LV)=SIMS, & MON(C,LV)=SIMS, SMOK(LV)=SUM, SET=GS01, DEFAULT WATER DECANT=OFF KVIS GAMMA=-3.5, REFINDEX=71.5, REFVALUE=1, NCFILL=SIMSCI, & NCBLEND=EXCL CLOU GAMMA=0.05, REFINDEX=10000, REFVALUE=60, NCFILL=NOFILL, & NCBLEND=EXCL POUR GAMMA=0.08, REFINDEX=10000, REFVALUE=60, NCFILL=API, & NCBLEND=EXCL SULF(PCT) NCFILL=NOFILL, NCBLEND=MISS AROM(TOTA,PCT) NCFILL=NOFILL, NCBLEND=MISS NAPH(PCT) NCFILL=SIMSCI, NCBLEND=MISS PARA(TOTAL,PCT) NCFILL=SIMSCI, NCBLEND=MISS PARA(ISO,PCT) NCFILL=SIMSCI, NCBLEND=MISS OLEF(MONO,PCT) NCFILL=SIMSCI, NCBLEND=MISS VANA(PPM) NCFILL=NOFILL, NCBLEND=ZERO NICK(PPM) NCFILL=NOFILL, NCBLEND=ZERO FRZP GAMMA=1, REFINDEX=10000, REFVALUE=60, NCFILL=NOFILL, & NCBLEND=EXCL RON(C) GAMMA=0.05, REFINDEX=10000, REFVALUE=333.15, NCFILL=SIMSCI, & NCBLEND=MISS MON(C) GAMMA=0.05, REFINDEX=10000, REFVALUE=333.15, NCFILL=SIMSCI, & NCBLEND=MISS SMOK NCFILL=SIMSCI, NCBLEND=EXCL METHOD SYSTEM=GS, TRANSPORT=PETR, REFPROPS=SIMSCI, KVIS(LV)=SIMS, & CLOU(LV)=SIMS, POUR(LV)=INDEX, FLPO(LV)=NELS, SULF(WT)=SUM, & CETA(WT)=API, AROM(TOTA,LV)=SUM, NAPH(LV)=SUM, & PARA(TOTAL,LV)=SUM, PARA(ISO,LV)=SUM, OLEF(MONO,LV)=SUM, & VANA(WT)=SUM, NICK(WT)=SUM, FRZP(LV)=INDEX, RON(C,LV)=SIMS, & MON(C,LV)=SIMS, SET=GS02 KVIS GAMMA=-3.5, REFINDEX=71.5, REFVALUE=1, NCFILL=SIMSCI, & NCBLEND=EXCL CLOU GAMMA=0.05, REFINDEX=10000, REFVALUE=60, NCFILL=NOFILL, & NCBLEND=EXCL 19 POUR GAMMA=0.08, REFINDEX=10000, REFVALUE=60, NCFILL=API, & NCBLEND=EXCL FLPO NCFILL=NOFILL, NCBLEND=EXCL SULF(PCT) NCFILL=NOFILL, NCBLEND=MISS AROM(TOTA,PCT) NCFILL=NOFILL, NCBLEND=MISS NAPH(PCT) NCFILL=SIMSCI, NCBLEND=MISS PARA(TOTAL,PCT) NCFILL=SIMSCI, NCBLEND=MISS PARA(ISO,PCT) NCFILL=SIMSCI, NCBLEND=MISS OLEF(MONO,PCT) NCFILL=SIMSCI, NCBLEND=MISS VANA(PPM) NCFILL=NOFILL, NCBLEND=ZERO NICK(PPM) NCFILL=NOFILL, NCBLEND=ZERO FRZP GAMMA=1, REFINDEX=10000, REFVALUE=60, NCFILL=NOFILL, & NCBLEND=EXCL RON(C) GAMMA=0.05, REFINDEX=10000, REFVALUE=333.15, NCFILL=SIMSCI, & NCBLEND=MISS MON(C) GAMMA=0.05, REFINDEX=10000, REFVALUE=333.15, NCFILL=SIMSCI, & NCBLEND=MISS METHOD SYSTEM=SRK, SET=SRK01 STREAM DATA PROPERTY STREAM=CRUDE-BH, TEMPERATURE=360, PRESSURE=2.3, PHASE=M, & RATE(WT)=812498, ASSAY=WT TBP STREAM=CRUDE-BH, DATA=4.39,200/12.82,315/20.06,400/28.44,500/ & 38.65,600/50.76,700/63.34,800/76.18,900/85.92,1050, TEMP=F SPGR STREAM=CRUDE-BH, AVERAGE=0.82894, DATA=4.39,0.6816/ & 12.82,0.746/20.06,0.7734/28.44,0.7972/38.65,0.816/ & 50.76,0.8285/63.34,0.8437/76.18,0.8539/85.92,0.8904/ & 99.73,0.9313 LIGHTEND STREAM=CRUDE-BH, COMPOSITION(WT)=5,2E-6/6,3.1E-5/ & 7,0.000327/8,0.000488/9,0.002122/11,0.003741/12,0.00627/ & 13,0.0003/14,0.000243/15,0.00053/16,0.003885/17,0.002099/ & 18,0.008528, PERCENT(WT)=2.86, NORMALIZE SULF STREAM=CRUDE-BH, AVERAGE(PCT)=0.03, DATA(PCT)=10.73,0.001/ & 15.04,0.0015/19.86,0.003/24.23,0.01/28.56,0.016/33.19,0.02/ & 38.3,0.022/43.88,0.025/49.87,0.028/55.98,0.031/62.15,0.033/ & 68.83,0.036/74.89,0.04/79.06,0.042/82.17,0.045/85.03,0.05/ & 93.22,0.09 WAX STREAM=CRUDE-BH, AVERAGE(PCT)=29.8 POUR STREAM=CRUDE-BH, AVERAGE=33, DATA=33.19,-10.556/38.3,-5.556/ & 43.88,5/49.87,10/55.98,35/62.15,41.667/68.83,50.444/ & 74.89,52.222/79.06,61/82.17,63/85.03,63.333 CARB STREAM=CRUDE-BH, AVERAGE(PCT)=85.31 20
- Xem thêm -