Mô hình markov ẩn và ứng dụng trong nhận dạng tiếng nói

  • Số trang: 89 |
  • Loại file: PDF |
  • Lượt xem: 14 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ ──────── * ─────── NGUYỄN DUY PHƯƠNG M Ô H ÌNH MARKOV ẨN VÀ ỨNG DỤNG TRONG NHẬN DẠNG TIẾNG NÓI Ngành: Công nghệ thông tin Mã số: 1.01.10 LUẬN VĂN THẠC SỸ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. HỒ THUẦN Hà Nội - 2007 2 MỤC LỤC CÁC THUẬT NGỮ VÀ TỪ VIẾT TẮT ................................................................. 5 DANH SÁCH CÁC HÌNH VẼ ................................................................................ 6 MỞ ĐẦU ................................................................................................................ 7 CHƢƠNG 1. MÔ HÌNH HMM VÀ ỨNG DỤNG TRONG NHẬN DẠNG TIẾNG NÓI ..................................................................................................... 13 1 Giới thiệu.................................................................................................... 13 2 Những khái niệm toán học liên quan tới HMM ........................................... 14 3 2.1 Giới thiệu về nhận dạng thống kê ........................................................ 14 2.2 Định lý Bayes ...................................................................................... 17 Mô hình HMM ........................................................................................... 27 3.1 Tính chất Markov ................................................................................ 27 3.2 Xích Markov ....................................................................................... 28 3.3 Quá trình Markov ................................................................................ 31 3.4 Mô hình HMM .................................................................................... 32 3.4.1 Các thành phần chính của HMM ........................................................ 33 3.4.2 Ví dụ về mô hình HMM ..................................................................... 35 3.5 Hai giả thuyết cơ bản để xây dựng hệ thống nhận dạng dựa trên HMM ... ............................................................................................................ 36 3.6 Ba vấn đề cơ bản của mô hình HMM và cách giải quyết ............ 38 3.6.1 Giải quyết vấn đề tính toán. Thuật toán tính xuôi và tính ngƣợc ......... 39 3.6.2 Giải quyết vấn đề ƣớc lƣợng tham số cho mô hình HMM. Thuật toán huấn luyện Baum-Welch ............................................................................. 41 3.6.3 Giải quyết vấn đề decoding. Thuật toán Viterbi.................................. 42 4 Nhận dạng tiếng nói và nhận dạng âm vị dựa trên HMM ............................ 44 4.1 Mô hình Nhận dạng ............................................................................. 44 4.2 Các thành phần cơ bản của hệ thống nhận dạng tiếng nói dựa trên HMM và mối liên hệ giữa chúng. ............................................................ 46 4.3 Ví dụ về nhận dạng từ đơn dựa trên HMM .......................................... 49 3 5 Mô hình HMM cho âm vị đƣợc sử dụng trong luận văn .............................. 53 6 Kết luận chƣơng 1....................................................................................... 55 CHƢƠNG 2. TIỀN XỬ LÝ TÍN HIỆU TIẾNG NÓI ......................................... 56 1 Ý nghĩa ....................................................................................................... 56 2 Một số thao tác tiền xử lý tín hiệu ............................................................... 57 3 2.1 Làm nổi tín hiệu (pre-emphais) ............................................................ 57 2.2 Lọc tiếng ồn......................................................................................... 58 Trích rút đặc trƣng ...................................................................................... 60 3.1 Giới thiệu ............................................................................................ 60 3.2 Một số phƣơng pháp trích rút đặc trƣng ............................................... 61 3.2.1 Phƣơng pháp Mã hoá dự báo tuyến tính (LPC) ................................... 61 3.2.2 Phƣơng pháp Mã hoá cepstral tần số Mel (MFCC) ............................. 63 3.2.3 Phƣơng pháp Mã hoá cepstral tần số Mel dựa trên LPC (MFCC) ....... 68 3.2.4 Các hệ số delta (D) và hệ số gia tốc (A) ............................................. 69 3.3 4 So sánh các phƣơng pháp trích đặc trƣng ............................................. 70 Kết luận chƣơng 2....................................................................................... 71 CHƢƠNG 3. THUẬT TOÁN HUẤN LUYỆN NHÚNG – XÂY DỰNG MÔ HÌNH HMM TỰ ĐỘNG CHO ÂM VỊ .................................................................. 72 1 Tách và nhận dạng âm vị tự động dựa trên HMM ....................................... 72 1.1 Thuật toán huấn luyện đối với những đơn vị độc lập - Huấn luyện trên dữ liệu gán nhãn ............................................................................ 72 1.2 Thuật toán huấn luyện nhúng - huấn luyện trên dữ liệu âm thanh không gán nhãn âm vị .................................................................................... 73 2 3 Các công thức ƣớc lƣợng tham số của mô hình HMM ................................ 76 2.1 Ƣớc lƣợng tham số khi huấn luyện các mô hình HMM độc lập ........... 76 2.2 Ƣớc lƣợng tham số trong thuật toán huấn luyện nhúng ........................ 78 Các vấn đề về tham số HMM khi sử dụng thuật toán huấn luyện nhúng...... 81 3.1 Khởi tạo tham số ................................................................................. 81 3.2 Ngƣỡng ............................................................................................... 81 3.3 Số lần lặp trong mỗi bƣớc luyện của thuật toán.................................... 81 4 3.4 4 Dữ liệu huấn luyện .............................................................................. 82 Kết luận chƣơng 3....................................................................................... 82 CHƢƠNG 4. CÀI ĐẶT THUẬT TOÁN – TỪ ĐIỂN TIẾNG NÓI .................... 83 1 Giới thiệu.................................................................................................... 83 2 Một số giao diện chƣơng trình .................................................................... 84 KẾT LUẬN ........................................................................................................... 87 TÀI LIỆU THAM KHẢO ..................................................................................... 89 5 CÁC THUẬT NGỮ VÀ TỪ VIẾT TẮT Thuật ngữ Từ viết tắt Ý nghĩa Artificial Neural Network ANN Mạng nơron nhân tạo Fast Fourier Transform FFT Biến đổi Fourier nhanh Dicrette Cosine Transform DCT Biến đổi cosin rời rạc. Hidden Markov Model HMM Mô hình Markov ẩn Linear predictive code LPC Mã hoá dự báo tuyến tính Mel-scale Frequency Cepstral Coefficient MFCC Mã hoá cepstral tấn số Mel Multi Layer Perceptron MLP Mạng perceptron truyền thẳng nhiều lớp Speech Recognition SR,ASR Nhận dạng tiếng nói Bias Ngƣỡng kích hoạt Pattern Recognition Nhận dạng mẫu Likelihood Mức độ giống, độ hợp lý Similarity Mức độ tƣơng tự Feature Đặc trƣng Spectral, spectrum Phổ tín hiệu 6 DANH SÁCH CÁC HÌNH VẼ HÌNH 1 – Mô hình HMM 5 trạng thái .......................................................... 34 HÌNH 2 – Sơ đồ huấn luyện mô hình HMM ................................................. 44 HÌNH 3 - Sơ đồ nhận dạng từ mô hình HMM đã đƣợc huấn luyện............... 44 HÌNH 4 – Mô hình nhận dạng theo 3 cấp ..................................................... 46 HÌNH 5 - Vấn đề nhận dạng từ tách rời ........................................................ 50 HÌNH 6 - Tách riêng một phần của mô hình Markov ................................... 51 HÌNH 7 - Dùng HMM cho nhận dạng từ tách rời ......................................... 53 HÌNH 8 – Sóng âm của chữ “hai” trƣớc khi (hình trái) và sau khi (hình phải) đƣợc làm phẳng ............................................................................................ 58 HÌNH 9 - Sơ đồ khối của quá trình trích chọn đặc trƣng MFCC ................... 64 HÌNH 10 - Các bộ lọc mel-scale tam giác (triangle mel-scale filters) ........... 66 HÌNH 11 – Sơ đồ của bộ lọc MFCC dựa trên biến đổi dự báo tuyến tính và các biến đổi Fourier ...................................................................................... 69 HÌNH 12 – Lƣu đồ huấn luyện từ đơn của công cụ HRest (HTK) ................ 72 HÌNH 13 – Dãy sóng âm “MO6T MO6T HAI HAI BA MO6T” .................. 74 HÌNH 14 – Mô hình huấn luyện nhúng ........................................................ 75 7 MỞ ĐẦU Ngay khi máy tính ra đời con ngƣời đã mơ ƣớc máy tính có thể nói chuyện với mình. Yêu cầu đơn giản nhất là máy có thể xác định đƣợc từ ngữ mà chúng ta nói với máy. Đó là mục tiêu của ngành nhận dạng tiếng nói. Nhận dạng tiếng nói đóng vai trò quan trọng trong giao tiếp giữa ngƣời và máy. Nó giúp máy móc hiểu và thực hiện các hiệu lệnh của con ngƣời. Hiện nay trên thế giới, lĩnh vực nhận dạng tiếng nói đã đạt đƣợc nhiều tiến bộ vƣợt bậc. Đã có nhiều công trình nghiên cứu về lĩnh vực nhận dạng tiếng nói (Speech recognition) trên cơ sở lý thuyết các hệ thống thông minh nhân tạo, nhiều kết quả đã trở thành sản phẩm thƣơng mại nhƣ ViaVoice, Dragon..., các hệ thống bảo mật thông qua nhận dạng tiếng nói, các hệ quay số điện thoại bằng giọng nói... Triển khai những công trình nghiên cứu và đƣa vào thực tế ứng dụng vấn đề này là một việc làm hết sức có ý nghĩa đặc biệt trong giai đoạn công nghiệp hoá hiện đại hoá hiện nay của nƣớc nhà. Nhận dạng tiếng nói là một quá trình nhận dạng mẫu, với mục đích là phân lớp (classify) thông tin đầu vào là tín hiệu tiếng nói thành một dãy tuần tự các mẫu đã đƣợc học trƣớc đó và lƣu trữ trong bộ nhớ. Các mẫu là các đơn vị nhận dạng, chúng có thể là các từ, hoặc các âm vị. Nếu các mẫu này là bất biến và không thay đổi thì công việc nhận dạng tiếng nói trở nên đơn giản bằng cách so sánh dữ liệu tiếng nói cần nhận dạng với các mẫu đã đƣợc học và lƣu trữ trong bộ nhớ. Khó khăn cơ bản của nhận dạng tiếng nói đó là tiếng nói luôn biến đổi theo thời gian và có sự khác biệt lớn giữa tiếng nói của những ngƣời nói khác nhau, tốc độ nói, ngữ cảnh và môi trƣờng âm học khác nhau. Xác định những thông tin biến thiên nào của tiếng nói là có ích và những thông tin nào là không có ích đối với nhận dạng tiếng nói là rất quan trọng. Đây là một nhiệm vụ rất khó khăn mà ngay cả với các kỹ thuật xác suất 8 thống kê mạnh cũng khó khăn trong việc tổng quát hoá từ các mẫu tiếng nói những biến thiên quan trọng cần thiết trong nhận dạng tiếng nói. Các nghiên cứu về nhận dạng tiếng nói dựa trên ba nguyên tắc cơ bản [1]:  Tín hiệu tiếng nói đƣợc biểu diễn chính xác bởi các biên độ phổ trong một khung thời gian ngắn (short-term amplitude spectrum). Nhờ vậy ta có thể trích ra các đặc điểm tiếng nói từ những khoảng thời gian ngắn và dùng các đặc điểm này làm dữ liệu để nhận dạng tiếng nói.  Nội dung của tiếng nói đƣợc biểu diễn dƣới dạng chữ viết, là một dãy các ký hiệu ngữ âm. Do đó ý nghĩa của một phát âm đƣợc bảo toàn khi chúng ta phiên âm phát âm thành dãy các ký hiệu ngữ âm.  Nhận dạng tiếng nói là một quá trình nhận thức. Thông tin về ngữ nghĩa (semantics) và suy đoán (pragmatics) có giá trị trong quá trình nhận dạng tiếng nói, nhất là khi thông tin về âm học là không rõ ràng. Lĩnh vực nghiên cứu của nhận dạng tiếng nói là khá rộng liên quan đến nhiều ngành khác nhau, nhƣ xử lý tín hiệu số (digital signal proccessing), vật lý hay âm học (acoustic), nhận dạng mẫu, lý thuyết thông tin và khoa học máy tính (information and computer science theory), ngôn ngữ học (linguistics), sinh lý học (physiology), tâm lý học ứng dụng (applied psychology). Các hệ thống nhận dạng tiếng nói có thể đƣợc phân chia thành hai loại khác nhau: hệ thống nhận dạng từ rời rạc và hệ thống nhận dạng từ liên tục. Trong hệ thống nhận dạng tiếng nói liên tục, ngƣời ta lại phân biệt hệ thống nhận dạng có kích thƣớc từ điển nhỏ và hệ thống nhận dạng với kích thƣớc từ điển trung bình hoặc lớn. 9 Ý tƣởng về xây dựng các hệ thống nhận dạng tiếng nói đã có từ những năm 50 của thế kỷ 20 và đến nay đã đạt đƣợc nhiều kết quả đáng kể. Có 3 hƣớng tiếp cận chính cho nhận dạng tiếng nói [8]:  Tiếp cận Âm học: Hƣớng tiếp cận này dựa vào các đặc điểm âm học đƣợc rút ra từ phổ âm thanh. Tuy nhiên kết quả của hƣớng tiếp cận này còn thấp vì trong thực tế, các đặc trƣng âm học có sự biến động rất lớn. Hơn nữa phƣơng pháp này đòi hỏi tri thức rất đầy đủ về âm học (Vốn tri thức âm học hiện nay chƣa thể đáp ứng).  Tiếp cận Nhận dạng mẫu thống kê: Sử dụng các phƣơng pháp máy học dựa trên thống kê để học và rút ra mẫu tham khảo từ lƣợng dữ liệu lớn. Hƣớng này đang đƣợc sử dụng nhiều, chủ yếu là dựa vào Mô hình Markov ẩn (HMM).  Tiếp cận Trí tuệ nhân tạo: là hƣớng kết hợp của cả hai hƣớng trên. Phƣơng pháp này kết hợp đƣợc cả tri thức của chuyên gia và phƣơng pháp mẫu thống kê. Đây sẽ là hƣớng tiếp cận tƣơng lai của nhận dạng tiếng nói. Việc nhận dạng tiếng nói gặp một số khó khăn sau:  Trong môi trƣờng sinh hoạt hàng ngày, chất lƣợng tiếng nói biến động rất lớn do chịu ảnh hƣởng của các yếu tố ngoại cảnh, tâm và sinh lý ngƣời nói: một câu của cùng một ngƣời nói khi thu vào máy sẽ khác nhau nếu nói ở hai tâm trạng khác nhau (lúc vui nói khác, lúc giận nói khác,…), sức khoẻ khác nhau (lúc khoẻ nói khác, lúc bệnh nói khác), tốc độ nói khác nhau (nói chậm thì rõ hơn nói nhanh), môi trƣờng xung quanh khác nhau (môi trƣờng có tiêng ồn thì âm thu vào sẽ bị nhiễu), v.v… Và còn nhiều yếu tố khác nữa tác động lên chất 10 lƣợng của lời nói nhƣ thiết bị thu không tốt, tín hiệu bị nhiễu điện,… Do đó, việc nhận dạng trở nên rất khó khăn.  Trong nhận dạng tiếng nói theo hƣớng nhận dạng từng âm vị, một khó khăn chúng ta gặp phải là: các âm vị liền nhau trong chuỗi tiếng nói không có vách ngăn rõ ràng (2 âm vị sát nhau có một phần giao nhau, khó xác định đƣợc phần giao nhau thuộc âm vị trƣớc hay âm vị sau). Ngay cả đối với con ngƣời, tách âm vị từ một âm tiết (xác định vị trí bắt đầu và vị trí kết thúc của âm vị đó trên sóng âm của âm tiết) cũng không phải là công việc đơn giản. Hiện nay, hầu hết các hƣớng tiếp cận để nhận dạng âm vị là nhận dạng theo học mẫu thống kê. Thông thƣờng để học mẫu ngƣời ta cung cấp cho chƣơng trình học một nguồn dữ liệu có nhiều mẫu đã đƣợc phân loại thành nhiều lớp và có gán nhãn (nhãn cho biết mỗi mẫu thuộc lớp nào). Nguồn dữ liệu này phải đƣợc phân lớp và gán nhãn chính xác hoàn toàn để máy học. Tuy nhiên do không thể tách âm vị một cách chính xác, nguồn dữ liệu âm vị đƣa vào khó đạt đƣợc mức độ chính xác, kết quả là việc huấn luyện giảm hiệu suất, làm cho hiệu suất của chƣơng trình nhận dạng cũng giảm theo. Chúng tôi xin nêu ra một hƣớng giải quyết để tránh việc gán nhãn âm vị không chính xác: thay vì đánh nhãn âm vị, chúng ta sẽ đánh nhãn âm tiết, đồng thời cho biết các âm vị cấu thành âm tiết đó. Nhƣ vậy, dữ liệu mẫu cung cấp cho quá trình học là các âm tiết. Thuật toán học đƣợc sử dụng để tách âm vị là thuật toán huấn luyện nhúng (Embedded training). Kết quả thu đƣợc là các mô hình HMM cho từng âm vị. Do mỗi dãy âm vị đƣợc chọn tƣơng đƣơng với một âm tiết, công việc đánh nhãn âm vị trên sóng âm thực chất là không có (chỉ đánh nhãn trên âm tiết, vốn đƣợc thực hiện dễ dàng). Vì vậy, có thể xem dữ liệu đƣa vào trong quá trình huấn luyện là dữ liệu không 11 gán nhãn và phƣơng pháp nhận dạng này đƣợc xem là nhận dạng âm vị tự động. Công việc gán nhãn âm vị bằng tay rất vất vả và mất nhiều thời gian. Ngoài ra, hiện nay có rất ít kho dữ liệu đã đƣợc gán nhãn âm vị. Vì vậy, hƣớng tiếp cận nhận dạng âm vị tự động, vốn hiệu quả hơn, tỏ ra là hƣớng tiếp cận đúng đắn. Tuy nhiên, huấn luyện trên dữ liệu không gán nhãn cũng có những khó khăn: đòi hỏi khối lƣợng dữ liệu lớn hơn nhiều so với huấn luyện trên dữ liệu có gán nhãn, đồng thời quá trình huấn luyện cũng lâu hơn. Với những ƣu thế vƣợt trội nhƣ trên đã nêu, hƣớng tiếp cận nhận dạng âm vị tự động hứa hẹn tạo ra những mô hình nhận dạng tiếng nói với độ chính xác cao. Đó cũng chính là hƣớng nghiên cứu mà tôi chọn lựa cho luận văn thạc sĩ của mình. Trong bản luận văn này, chúng tôi muốn chứng minh hai điều:  Nếu có đầy đủ dữ liệu tiếng nói (không gán nhãn), có thể nhận dạng đƣợc số lƣợng lớn các âm tiết với độ chính xác tƣơng đối cao theo hƣớng tiếp cận nhận dạng âm vị tự động.  Có thể nhận dạng đƣợc tiếng nói liên tục với tốc độ trung bình. Luận văn đƣợc tổ chức nhƣ sau:  Chƣơng 1 : Mô hình HMM và ứng dụng trong nhận dạng Giới thiệu mô hình HMM và sự lựa chọn mô hình HMM để nhận dạng tiếng nói.  Chƣơng 2 : Tiền xử lý tín hiệu tiếng nói Chƣơng này sẽ giới thiệu về tiền xử lý tiếng nói và một số phƣơng pháp trích đặc trƣng đƣợc sử dụng trong nhận dạng tiếng nói.  Chƣơng 3 : Thuật toán huấn luyện nhúng (Embedded training) 12 Giới thiệu thuật toán huấn luyện nhúng. Đây là quá trình xây dựng mô hình HMM tự động cho các âm vị từ kho dữ liệu không gán nhãn âm vị.  Chƣơng 4 : Cài đặt thuật toán - Giới thiệu phần mềm từ điển tiếng nói.  Kết luận 13 CHƢƠNG 1. MÔ HÌNH HMM VÀ ỨNG DỤNG TRONG NHẬN DẠNG TIẾNG NÓI 1 Giới thiệu Đầu thế kỷ XX, Andrei Andreyevich Markov (14/6/1856 – 20/7/1922) – nhà Toán học và Vật lý nổi tiếng ngƣời Nga đã đƣa ra một mô hình toán học để mô tả chuyển động của các phân tử chất lỏng trong một bình kín. Về sau mô hình này đƣợc phát triển và sử dụng rộng rãi trong nhiều lĩnh vực khác nhau nhƣ cơ học, sinh học, y học, kinh tế … và đƣợc gọi là Quá trình Markov [11] Mô hình Markov ẩn (tiếng Anh là Hidden Markov Model - HMM) là mô hình thống kê trong đó hệ thống đƣợc mô hình hóa đƣợc cho là một quá trình Markov với các tham số không biết trƣớc và nhiệm vụ là xác định các tham số ẩn từ các tham số quan sát đƣợc, dựa trên sự thừa nhận này. Các tham số của mô hình đƣợc rút ra sau đó có thể sử dụng để thực hiện các phân tích kế tiếp, ví dụ cho các ứng dụng thừa nhận mẫu. Trong một mô hình Markov điển hình, trạng thái đƣợc quan sát trực tiếp bởi ngƣời quan sát, và vì vậy các xác suất chuyển tiếp trạng thái là các tham số duy nhất. Mô hình Markov ẩn thêm vào các đầu ra: mỗi trạng thái có xác suất phân bổ trên các biểu hiện đầu ra có thể. Vì vậy, nhìn vào dãy của các biểu hiện đƣợc sinh ra bởi HMM không trực tiếp chỉ ra dãy các trạng thái. Trong mục này các nội dung cơ bản của mô hình HMM sẽ đƣợc giới thiệu bao gồm: các định nghĩa, các tập hợp tham số, các vấn đề thiết yếu, các thuật toán chính của mô hình HMM áp dụng vào nhận dạng tiếng nói. Tiếp đó 14 các thành phần chính của hệ thống nhận dạng, các công đoạn chính của nhận dạng dựa vào mô hình HMM cũng sẽ đƣợc giới thiệu sơ qua. Cụ thể nhƣ sau:  Mục 2 : Những khái niệm toán học liên quan tới HMM. Những khái niệm chung về nhận dạng thống kê, định lý Bayes..  Mục 3 : Mô hình HMM. Các định nghĩa, các tập tham số của mô hình HMM  Mục 4 : Giới thiệu về Nhận dạng tiếng nói và nhận dạng âm vị dựa trên HMM  Mục 5 : Mô hình HMM cho âm vị đƣợc sử dụng trong luận văn. 2 Những khái niệm toán học liên quan tới HMM Mô hình Markov ẩn HMM là một mô hình thống kê dựa vào mô hình Markov. Vì vậy để hiểu đƣợc mô hình HMM, trƣớc tiên chúng ta cần phải tìm hiểu xem xét về mô hình thống kê nói chung. 2.1 Giới thiệu về nhận dạng thống kê Quá trình thống kê [12] là quá trình xác định xác suất của một số sự kiện và xác suất mối quan hệ giữa các sự kiện trong một tiến trình tại các thời điểm khác nhau.  Biến cố ngẫu nhiên và hàm mật độ xác suất: Gọi X là tập các biến ngẫu nhiên X={X1, X2, …, Xn} mà tồn tại ít nhất một sự kiện của tập X này xuất hiện. Gọi xác suất của sự kiện Xi là P(Xi). Khi đó ta có xác suất của X là P(X)=1. Nếu gọi P(X i) là xác suất của biến cố Xi thì ta có: P(X) = Σ P(Xi) = 1 15  Xác suất có điều kiện: Xác suất có điều kiện (Conditional probability) là xác suất của một biến cố A nào đó, biết rằng một biến cố B khác xảy ra. Ký hiệu P(A|B), và đọc là "xác suất của A, biết B". Xác suất giao (Joint probability) là xác suất của hai biến cố cùng xảy ra. Xác suất giao của A và B đƣợc ký hiệu hoặc P(A,B). Xác suất biên duyên (Marginal probability) là xác suất của một biến cố mà không quan tâm đến các biến cố khác. Xác suất biên duyên đƣợc tính bằng cách lấy tổng (hoặc tổng quát hơn là tích phân) của xác suất giao trên biến cố không cần đến. Việc này đƣợc gọi là biên duyên hóa (marginalization). Xác suất biên duyên của A đƣợc kí hiệu là P(A), còn xác suất biên duyên của B đƣợc ký hiệu là P(B). Trong các định nghĩa này, lƣu ý rằng không cần có một quan hệ nhân quả hay thời gian giữa A và B. A có thể xảy ra trƣớc B hoặc ngƣợc lại, hoặc chúng có thể xảy ra cùng lúc. A có thể là nguyên nhân của B hoặc ngƣợc lại, hoặc chúng không hề có quan hệ nhân quả nào. Việc cập nhật các xác suất này để xét đến các thông tin (có thể mới) có thể đƣợc thực hiện qua Định lý Bayes. Định nghĩa Nếu A và B là các biến cố, và P(B) > 0, thì xác suất có điều kiện của A nếu biết B là Tƣơng đƣơng, ta có 16 Độc lập thống kê Hai biến cố A và B là độc lập thống kê khi và chỉ khi Do đó, nếu A và B độc lập, thì xác suất giao của chúng có thể đƣợc biểu diễn bởi tích của các xác suất của từng biến cố. Tƣơng đƣơng, với hai biến cố độc lập A và B, và Nói cách khác, nếu A và B độc lập thì xác suất có điều kiện của A nếu biết B chỉ đơn giản là xác suất của riêng A. Cũng nhƣ vậy, xác suất có điều kiện của B nếu biết A chỉ đơn giản là xác suất của riêng B. Loại trừ lẫn nhau Hai biến cố A và B loại trừ lẫn nhau khi và chỉ khi với điều kiện và thì và 17 Nói cách khác, xác suất xảy ra A nếu B xảy ra là bằng 0, do A và B không thể cùng xảy ra trong một tình huống; cũng nhƣ vậy, xác suất xảy ra B nếu A xảy ra cũng bằng 0. 2.2 Định lý Bayes Định lí Bayes [12] là một kết quả của lí thuyết xác suất. Nó đề cập đến phân bố xác suất có điều kiện của biến ngẫu nhiên A, với giả thiết là biết đƣợc:  Thông tin về một biến khác B: phân bố xác suất có điều kiện của B khi biết A, và  Phân bố xác suất của một mình A. Phát biểu định lý Định lý Bayes cho phép tính xác suất xảy ra của một sự kiện ngẫu nhiên A khi biết sự kiện liên quan B đã xảy ra. Xác suất này đƣợc ký hiệu là P(A|B), và đọc là "xác suất của A nếu có B". Đại lƣợng này đƣợc gọi xác suất có điều kiện hay xác suất hậu nghiệm vì nó đƣợc rút ra từ giá trị đƣợc cho của B hoặc phụ thuộc vào giá trị đó. Theo định lí Bayes, xác suất xảy ra A khi biết B sẽ phụ thuộc vào 3 yếu tố:  Xác suất xảy ra A của riêng nó, không quan tâm đến B. Kí hiệu là P(A) và đọc là xác suất của A. Đây đƣợc gọi là xác suất biên duyên hay xác suất tiên nghiệm, nó là "tiên nghiệm" theo nghĩa rằng nó không quan tâm đến bất kỳ thông tin nào về B.  Xác suất xảy ra B của riêng nó, không quan tâm đến A. Kí hiệu là P(B) và đọc là "xác suất của B". Đại lƣợng này còn gọi là hằng số chuẩn hóa 18 (normalising constant), vì nó luôn giống nhau, không phụ thuộc vào sự kiện A đang muốn biết.  Xác suất xảy ra B khi biết A xảy ra. Kí hiệu là P(B|A) và đọc là "xác suất của B nếu có A". Đại lƣợng này gọi là khả năng (likelihood) xảy ra A khi biết B đã xảy ra. Chú ý không nhầm lẫn giữa khả năng xảy ra A khi biết B và xác suất xảy ra A khi biết B. Khi biết ba đại lƣợng này, xác suất của A khi biết B cho bởi công thức: Từ đó dẫn tới Các dạng khác của định lý Bayes Định lý Bayes thƣờng cũng thƣờng đƣợc viết dƣới dạng hay trong đó AC là biến cố bù của biến cố A (thƣờng đƣợc gọi là "không A"). Tổng quát hơn, với {Ai} tạo thành một phân hoạch của không gian các biến cố, với mọi Ai trong phân hoạch. Công thức này còn đƣợc biết dƣới tên công thức xác suất đầy đủ. 19 Định lý Bayes với hàm mật độ xác suất Cũng có một dạng của định lý Bayes cho các phân bố liên tục. Đối với chúng, thay cho các xác suất trong định lý Bayes ta dùng mật độ xác suất. Nhƣ vậy ta có các công thức tƣơng tự định nghĩa xác suất điều kiện và công thức tƣơng tự công thức xác suất đầy đủ: Ý nghĩa của các thành phần trong các công thức trên là f(x, y) là mật độ phân phối của phân phối đồng thời của các biến ngẫu nhiên X và Y, f(x|y) là mật độ phân phối xác suất hậu nghiệm của X với điều kiện Y=y, f(y|x) = L(x|y) là (một hàm của x) hàm khả năng của X với điều kiện Y=y, và f(x) và f(y) là các mật độ phân phối của X và Y tách biệt nhau, với f(x) là mật độ phân phối tiền nghiệm của X. Điều kiện mặc định trong các công thức là hàm f khả vi và các tích phân công thức tồn tại. Suy luận Bayes (tiếng Anh: Bayesian inference) là một kiểu suy luận thống kê mà trong đó các quan sát hay bằng chứng đƣợc dùng để cập nhật hoặc suy luận ra xác suất cho việc một giả thuyết có thể là đúng. Cái tên "Bayes" bắt nguồn từ việc sử dụng thƣờng xuyên Định lý Bayes trong quá trình suy luận. Suy luận Bayes sử dụng các khía cạnh của phƣơng pháp khoa học, trong đó có việc thu thập các bằng chứng nhất quán hoặc không nhất quán với một giả thuyết nào đó. Khi các bằng chứng tích lũy, mức độ tin tƣởng vào 20 một giả thuyết thay đổi. Khi có đủ bằng chứng, mức độ tin tƣởng này thƣờng trở nên rất cao hoặc rất thấp. Do đó, theo lý thuyết, đây có thể đƣợc coi là một cơ sở lôgic thích hợp cho việc phân biệt đối xử giữa các giả thuyết mâu thuẫn nhau - các giả thuyết với mức độ tin tƣởng rất cao nên đƣợc chấp nhận là đúng; các giả thuyết với độ tin tƣởng rất thấp nên bị coi là sai và loại bỏ. Trong thực tiễn, tuy khung toán học tổng quát của suy luận Bayes là đúng đắn, nó đòi hòi việc gán các xác suất tiên nghiệm cho các giả thuyết, trong khi các xác suất này có thể là đối tƣợng của sự thiên lệch tùy ý (arbitrary bias). Một ví dụ về suy luận Bayes: Hàng tỉ năm nay, Mặt Trời đã mọc sau khi nó lặn. Tối nay Mặt Trời đã lặn. Ngày mai Mặt Trời sẽ mọc với xác suất rất cao (hoặc tôi rất tin tưởng vào điều đó hoặc điều đó là đúng). Với xác suất rất thấp (hoặc tôi không hề tin hoặc điều sau không đúng), ngày mai Mặt Trời sẽ không mọc. Suy luận Bayes sử dụng một ƣớc lƣợng bằng số về mức độ tin tƣởng vào một giả thuyết trƣớc khi quan sát đƣợc bằng chứng, và tính toán một ƣớc lƣợng bằng số về mức độ tin tƣởng vào giả thuyết đó sau khi đã quan sát đƣợc bằng chứng. Trong quá trình quy nạp, suy luận Bayes thƣờng dựa vào các mức độ tin tƣởng, hay là các xác suất chủ quan, và không nhất thiết khẳng định về việc cung cấp một phƣơng pháp quy nạp khách quan. Tuy nhiên, một số nhà thống kê theo trƣờng phái Bayes tin rằng các xác suất có thể có một giá trị khách quan, và do đó suy luận Bayes có thể cung cấp một phƣơng pháp quy nạp khách quan. Định lý Bayes điều chỉnh các xác suất khi đƣợc cho bằng chứng mới theo cách sau đây:
- Xem thêm -