Đăng ký Đăng nhập
Trang chủ Metric kobayashi trên không gian phức (lv01871)...

Tài liệu Metric kobayashi trên không gian phức (lv01871)

.PDF
61
359
134

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 VŨ THỊ DIỄM LỆ METRIC KOBAYASHI TRÊN KHÔNG GIAN PHỨC Chuyên ngành: Toán giải tích Mã số: 60 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC Người hướng dẫn khoa học: TS. LÊ TÀI THU HÀ NỘI, 2016 LỜI CẢM ƠN Luận văn được hoàn thành tại trường Đại học Sư phạm Hà Nội 2 dưới sự hướng dẫn của TS. Lê Tài Thu. Tác giả xin bày tỏ lòng biết ơn sâu sắc nhất tới TS. Lê Tài Thu, người đã định hướng chọn đề tài và tận tình hướng dẫn để tác giả hoàn thành luận văn này. Tác giả xin bày tỏ lòng biết ơn chân thành tới Phòng Sau đại học, các thầy cô giáo dạy cao học chuyên ngành Toán Giải tích, trường Đại học Sư phạm Hà Nội 2 đã giúp đỡ tác giả trong suốt quá trình học tập và hoàn thành luận văn tốt nghiệp. Tác giả xin được gửi lời cảm ơn chân thành tới gia đình, bạn bè, người thân đã luôn động viên, cổ vũ, tạo mọi điều kiện thuận lợi cho tác giả trong quá trình học tập và hoàn thành luận văn. Hà Nội, tháng 7 năm 2016 Tác giả Vũ Thị Diễm Lệ LỜI CAM ĐOAN Tôi xin cam đoan, dưới sự hướng dẫn của TS. Lê Tài Thu, luận văn Thạc sỹ chuyên ngành Toán Giải tích với đề tài “Metric Kobayashi trên không gian phức” do tôi tự làm. Các kết quả và tài liệu trích dẫn được chỉ rõ nguồn gốc. Trong quá trình nghiên cứu thực hiện luận văn, tôi đã kế thừa những thành tựu của các nhà khoa học với sự trân trọng và biết ơn. Hà Nội, tháng 7 năm 2016 Tác giả Vũ Thị Diễm Lệ Mục lục Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chương 1. Kiến thức chuẩn bị . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1. Không gian metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. Không gian topo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1. Một số khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2. Tập bị chặn và tập compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3. Hàm chỉnh hình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.1. Hàm một biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.2. Hàm nhiều biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3.3. Định lý Hartogs cho hàm chỉnh hình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4. Giả khoảng cách Kobayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1. Giả khoảng cách Kobayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2. Một số tính chất của giả khoảng cách Kobayashi . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5. Không gian phức hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.1. Không gian phức hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5.2. Một số tính chất của không gian phức hyperbolic . . . . . . . . . . . . . . . . . . . . . . . . . Chương 2. Metric Kobayashi trên không gian phức . . . . . . . 8 9 11 11 15 22 25 25 26 27 27 27 29 2.1. Đánh giá Hölder đối với khoảng cách Kobayashi . . . . . . . . . . . . 30 2.2. Không gian mật tiếp J k (X, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 k 2.3. Metric Kobayashi KX ...................................... 40 k 2.4. Tích phân của metric Kobayashi KX ....................... 43 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1 Mở đầu 1. Lí do chọn đề tài Lý thuyết các không gian phức hyperbolic được Kobayashi xây dựng lần đầu tiên vào những năm 70 của thế kỷ XX, là một trong những hướng nghiên cứu quan trọng của giải tích phức. Trong những năm gần đây, lý thuyết này đã thu hút sự quan tâm của nhiều nhà toán học trên thế giới. Một số kết quả sâu sắc và đẹp đẽ của lý thuyết này đã được chứng minh bởi Kobayashi, Kwack, Noguchi, Zaidenberg, Demailly,. . . Những công trình nghiên cứu đó đã thúc đẩy hướng nghiên cứu này phát triển mạnh mẽ và đã hình thành nên một chuyên ngành mới của giải tích toán học, đó là giải tích phức hyperbolic. Trong những năm gần đây, lý thuyết này đã tìm thấy những mối liên hệ bất ngờ và sâu sắc với những lĩnh vực khác của toán học, đặc biệt là bài toán thác triển ánh xạ chỉnh hình trong giải tích phức và bài toán về tính hữu hạn của tập tất cả các ánh xạ phân hình giữa hai lớp nào đó các không gian phức. Theo quan điểm của A. Weil, S. Lang và P. Vojta, bài toán sau cùng này có liên quan mật thiết với hình học đại số và hình học số học. Có thể nói giải tích phức hyperbolic đang là một lĩnh vực nghiên cứu nằm ở chỗ giao nhau của nhiều bộ môn lớn của toán học: Hình học vi phân phức, Giải tích phức, Hình học đại số và Lý thuyết số. Như chúng ta đã biết, với mỗi đa tạp phức M với phân thớ tiếp xúc T M , 2 giả khoảng cách Kobayashi trên M là δM : M × M → [0, +∞) và giả metric Kobayashi - Royden trên M là KM : T M → [0, +∞) Royden đã chứng minh nếu M là miền trong Cn , δM là dạng tích phân của KM , điều này có nghĩa là với mỗi cặp điểm p và q trong M , δM (p, q) là giá trị bị chặn dưới lớn nhất của tích phân Z1 FM (γ(t), γ̇(t))dt 0 ở đó γ : [a, b] → M là đường cong trơn từng khúc nối hai điểm p và q . Sau đó cách chứng minh của Royden được mở rộng lần lượt cho trường hợp M là miền trong không gian phức chuẩn tắc, đa tạp phức vô hạn chiều. Tuy nhiên việc mở rộng kết quả của Royden sang trường hợp không gian phức đòi hỏi cách tiếp cận hoàn toàn khác. Với mong muốn tìm hiểu cách xây dựng metric Kobayashi trên không gian phức, được sự hướng dẫn của TS. Lê Tài Thu, tôi đã lựa chọn đề tài nghiên cứu: "Metric Kobayashi trên không gian phức" Luận văn gồm 2 chương: • Chương 1. Kiến thức chuẩn bị. • Chương 2. Metric Kobayashi trên không gian phức. 3 2. Mục đích nghiên cứu Mục đích của luận văn là nghiên cứu việc xây dựng metric Kobayashi trên không gian phức. 3. Nhiệm vụ nghiên cứu Nhiệm vụ nghiên cứu của luận văn là: - Hệ thống một số kiến thức cơ bản về không gian metric, không gian topo và hàm chỉnh hình. - Nghiên cứu việc xây dựng metric Kobayashi trên không gian phức. 4. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu của luận văn là các vấn sau: 1. Đánh giá Hölder đối với khoảng cách Kobayashi. 2. Không gian J k (X, p). 3. Metric Kobayashi. 4. Tích phân của metric Kobayashi. Phạm vi nghiên cứu của luận văn là không gian phức. 5. Phương pháp nghiên cứu Nghiên cứu tài liệu tham khảo, phân tích, tổng hợp và hệ thống lại các kiến thức có liên quan. 4 6. Đóng góp mới của luận văn Trình bày một cách tổng quan về việc xây dựng metric Kobayashi trên không gian phức. 5 Chương 1 Kiến thức chuẩn bị Trong chương này, chúng tôi trình bày một số kiến thức cơ bản về không gian metric, không gian topo, hàm chỉnh hình, giả khoảng cách Kobayashi và không gian phức hyperbolic nhằm phục vụ cho chương sau của luận văn. Nội dung trình bày ở chương này chủ yếu dựa vào các tài liệu [1], [2] và [3]. 1.1. Không gian metric Định nghĩa 1.1.1. Một metric trong X là một ánh xạ d:X ×X →R của tích X × X vào đường thẳng thực R, thỏa mãn các điều kiện sau đây 1) d (x, y) ≥ 0, ∀x, y ∈ X và d (x, y) = 0 ⇔ x = y; 2) d (x, y) = d (y, x) , ∀x, y ∈ X; 3) d (x, y) ≤ d (x, z) + d (z, y) , ∀x, y, z ∈ X . (bất đẳng thức tam giác). Tập hợp X cùng với d là một không gian metric, ánh xạ d là hàm khoảng cách (hay metric) trong X . Các phần tử của một không gian metric gọi là các điểm của không gian ấy, số d (x, y) gọi là khoảng cách giữa các điểm x và y . 6 Ví dụ. C [a, b] là một không gian metric với khoảng cách d (x, y) = max |x(t) − y(t)| . a≤t≤b Định nghĩa 1.1.2. Một dãy điểm (xn ) , n = 1, 2, ... trong không gian metric X được gọi là hội tụ đến điểm a ∈ X nếu lim d (xn , a) = 0. Khi n→∞ đó, ta ký hiệu lim xn = a hoặc xn → a, khi n → ∞. n→∞ Nếu một dãy {xn } hội tụ tới x thì mọi dãy con {xnk } của nó cũng hội tụ tới x, đồng thời ta có tính chất sau: 1. Nếu xn → x và xn → x0 thì x = x0 , nghĩa là giới hạn của một dãy điểm nếu có là duy nhất; 2. Nếu xn → x và yn → y thì ρ(xn , yn ) → ρ(x, y) nghĩa là khoảng cách ρ(x, y) là một hàm số liên tục đối với x và y . Định nghĩa 1.1.3. Dãy điểm (xn ) , n = 1, 2... được gọi là dãy cơ bản (hay dãy Cauchy) trong không gian metric X nếu với mọi ε > 0 cho trước, đều tồn tại một số n0 sao cho với mọi n ≥ n0 và m ≥ n0 ta đều có d (xn , xm ) < ε. Dễ thấy mọi dãy điểm hội tụ trong không gian metric đều là dãy cơ bản. Định nghĩa 1.1.4. Một không gian metric X được gọi là đầy đủ nếu với mọi dãy cơ bản trong X đều hội tụ đến một phần tử trong X . Định nghĩa 1.1.5. Cho X và Y là hai không gian metric tùy ý. Ánh xạ A : X → Y được gọi là liên tục tại x0 ∈ X nếu như với mọi ε > 0, ∃δ > 0 sao cho với mọi x ∈ X thỏa mãn d (x, x0 ) < δ thì d (A (x) , A (x0 )) < ε. 7 Định lý 1.1.1. Đối với một ánh xạ f từ một không gian metric X vào một không gian metric Y thì ba mệnh đề sau đây là tương đương (i) f liên tục; (ii) Nghịch ảnh của mọi tập đóng (trong Y ) là tập đóng (trong X ); (iii)Nghịch ảnh của mọi tập mở (trong Y ) là tập mở (trong X ). Chứng minh. (i) ⇒ (ii). Cho F là một tập đóng bất kỳ của Y , f −1 (F ) là nghịch ảnh của nó bởi f . Nếu xn ∈ f −1 (F ), xn → x0 thì f (xn ) ∈ F và f (xn ) → f (x0 ) do giả thiết f liên tục. Nhưng F là đóng trong Y nên f (x0 ) ∈ F , do đó x0 ∈ f −1 (F ) chứng tỏ rằng f −1 (F ) là đóng trong X . (ii) ⇒ (iii). Cho G là một tập mở bất kỳ của Y , f −1 (G) là nghịch ảnh của nó bởi f . Vì G mở nên Y \ G đóng trong Y . Vậy nếu có (ii) thì f −1 (Y \ G) đóng trong X . Nhưng f −1 (Y \ G) = X \ f −1 (G), vậy f −1 (G) mở. (iii) ⇒ (i). Cho một điểm bất kỳ x0 ∈ X . Do (iii) nên nghịch ảnh của mỗi ε−lân cận của f (x0 ) là một tập W mở trong X . Dĩ nhiên, x0 ∈ W nên theo tính chất của tập mở, phải có một δ−lân cận nào đó của x0 nằm trọn trong W . Ảnh của δ− lân cận này nằm trọn trong ε−lân cận nói trên của f (x0 ), do đó với mỗi x ∈ X : dX (x, x0 ) < δ ⇒ dY (f (x), f (x0 )) < ε. Vì ε tùy ý, điều này có nghĩa f liên tục. Định nghĩa 1.1.6. Một tập M trong không gian metric X gọi là bị chặn (giới nội) nếu nó nằm trọn trong một hình cầu nào đó, nghĩa là nếu có một điểm a ∈ X và một số C > 0 sao cho ρ(x, a) ≤ C với mọi x ∈ M . Định nghĩa 1.1.7. Một tập M trong không gian metric X được gọi là compact nếu mọi dãy {xn } ⊂ M đều có chứa một dãy con {xnk } hội tụ tới một điểm thuộc M . Một tập bất kỳ mà có bao đóng compact thì gọi là một tập compact tương đối. 8 Định lý 1.1.2 (Hausdorff). Một tập compact thì đóng và hoàn toàn bị chặn. Ngược lại một tập đóng và hoàn toàn bị chặn trong một không gian metric đủ thì compact. Định nghĩa 1.1.8. Một không gian metric X được gọi là không gian compact nếu nó là một tập compact trong chính nó, nghĩa là mọi dãy {xn } trong X đều có chứa một dãy con hội tụ. Định nghĩa 1.1.9. Cho hai không gian metric X và Y (metric trên X kí hiệu bằng ρX , metric trên Y bằng ρY ). Một ánh xạ f từ X vào Y gọi là liên tục tại điểm x0 ∈ X nếu (∀ε > 0)(∃δ > 0)(∀x ∈ X) : ρX (x, x0 ) < δ ⇒ ρY (f (x), f (x0 )) < ε. Ánh xạ f gọi là liên tục nếu nó liên tục tại mọi điểm x ∈ X . 1.2. Không gian topo 1.2.1. Một số khái niệm Định nghĩa 1.2.1. Cho một tập hợp X 6= ∅. Họ τ các tập hợp con nào đó của X được gọi là một topo trên X nếu i) ∅ ∈ τ, X ∈ τ ; ii) {Gα }α∈I ⊂ τ ⇒ S Gα ∈ τ ; α iii) ∀G1 , G2 ∈ τ ⇒ G1 ∩ G2 ∈ τ . Tập hợp X cùng với topo trên X được gọi là một không gian topo. Ký hiệu là (X, τ ). Ví dụ. Cho X là tập hợp tùy ý khác rỗng. Họ τ = (∅, X) là một topo trên X . (X, τ ) được gọi là không gian topo thô (không gian phản rời rạc). 9 Họ τ = {A|A ⊂ X} là một topo trên X . (X, τ ) gọi là không gian topo rời rạc. Cho tập hợp X vô hạn. τ = {A ⊂ X|A = ∅ hoặc X \ A hữu hạn}. τ là một topo trên X . Tập X với topo này được gọi là không gian topo bù hữu hạn. Định nghĩa 1.2.2. Lân cận của một điểm a ∈ C là tập bất kỳ bao hàm hình tròn D(a, r) tâm a bán kính r > 0. D(a, r) = {z ∈ C : |z − a| < r}. Nếu D(a, r) là một lân cận của a và được gọi là r lân cận. Rõ ràng: a) Nếu U là lân cận của a ∈ C thì mọi tập hợp bao hàm U là lân cận của a; b) Giao hữu hạn và hợp của họ bất kỳ các lân cận của a là lân cận của a; c) Nếu U là lân cận của a thì tồn tại lân cận V của a sao cho V là lân cận của mọi z ∈ V và V ⊂ U . Định nghĩa 1.2.3. Tập G ∈ C gọi là mở nếu G là lân cận của mọi điểm của nó. Hiển nhiên ∅ và C là các tập mở, hợp của một họ bất kỳ và giao của một họ hữu hạn các tập mở là tập mở. Tập F ∈ C được gọi là đóng nếu phần bù của nó CF = C \ F là mở. Từ tính chất của các tập mở ta suy ra hợp của một số hữu hạn và giao của họ bất kỳ các tập đóng là tập đóng. 1.2.2. Tập bị chặn và tập compact Định nghĩa 1.2.4. Tập X ⊂ C gọi là bị chặn nếu tồn tại R > 0 sao cho |z| ≤ R, ∀z ∈ X. 10 Tập X được gọi là compact nếu mọi dãy trong X có chứa một dãy con hội tụ tới một điểm thuộc X . Tính chất: a) Giao của một họ bất kỳ và hợp của một họ hữu hạn các tập compact là compact; b) Tập compact là tập đóng và bị chặn; c) Mội tập con đóng của một tập compact là tập compact. Định lý 1.2.1 (Heine - Borel). Giả sử X là tập con của C. Các điều kiện sau là tương đương: (i) X là compact; (ii) Mọi phủ mở của X chứa một phủ con hữu hạn; (iii) X đóng và bị chặn. Ở đây một phủ mở của X là một họ các tập mở {Gi }i∈I trong C sao cho S X⊂ Gi . i∈I Ta nói phủ mở {Gi }i∈I chứa một phủ con hữu hạn nếu tồn tại i1 , . . . , in sao cho X ⊂ Gi1 ∪ . . . ∪ Gin . Chứng minh. (i) ⇒ (ii). Giả sử tồn tại phủ mở {Gi }i∈I của X sao cho mọi hệ hữu hạn các tập Gi không đủ phủ X . Vậy với mọi n ≥ 1 tồn tại hình tròn Dn bán kính 1/n sao cho Dn ∩ X không thể phủ bởi một số hữu hạn các tập Gi . Lấy tùy ý zn ∈ Dn ∩ X . Vì X compact, tồn tại a ∈ X là điểm tụ của dãy {zn }. Chọn i0 ∈ I để a ∈ Gi0 . Do Gi0 là mở nên tồn tại r > 0 để D = D(a, r) ⊂ Gi0 . Lấy N và n0 đủ lớn để 2/N < r, n10 < |zn0 − a| < 1 N. r 4 và Với một điểm z bất kỳ của Dn0 ta có |z − a| < r, do đó Dn0 ⊂ D ⊂ Gi0 . Điều này mâu thuẫn với giả thiết Dn0 không bị phủ bởi Gi0 .  (ii) ⇒ (iii). Lấy tùy ý z ∈ C \ X . Đặt Gk = C \ D z, k1 . Khi đó S Gk là mở và nk=1 Gk ⊃ X . Theo giả thiết tồn tại Gk1 , . . . , Gkn sao cho 11 X ⊂ Gk1 ∪ . . . ∪ Gkn . Vì vậy X ⊂ GN với N = max kj . Điều này 1≤j≤n  1 / X . Điều này chứng tỏ X đóng. nghĩa là D z, N ∩ X = ∅, tức là z ∈ Ta cần chứng minh X là bị chặn. Phủ X bởi họ {D(z, 1) : z ∈ X}. Từ giả thiết có z1 , . . . , zp sao cho {D(zi , 1) : 1 ≤ i ≤ p} phủ X . Đặt R = max{|zi | : 1 ≤ i ≤ p} thì với mọi z ∈ X : |z < R. (iii) ⇒ (i). Lấy tùy ý {zn } ⊂ X và viết zn = xn + iyn . Vì X bị chặn nên các dãy số thực {xn } và {yn } cũng bị chặn. Theo bổ đề BolzanoWeierstrass dãy {xn } và {yn } có điểm tụ lần lượt là x và y . Hiển nhiên z = x + iy là điểm tụ của dãy {zn } do X đóng nên z = x + iy ∈ X . Định nghĩa 1.2.5. Cho X , Y là hai không gian topo. Một ánh xạ f từ X vào Y được gọi là liên tục tại x0 , nếu với mọi lân cận U của điểm y0 = f (x0 ) đều có một lân cận V của điểm x0 sao cho f (V ) ⊂ U , nghĩa là x ∈ V ⇒ f (x) ∈ U . Ánh xạ f gọi là liên tục nếu nó liên tục tại mọi x ∈ X. Định lý 1.2.2. Một ánh xạ f từ không gian topo X vào một không gian topo Y là liên tục khi và chỉ khi nó có một trong hai điều kiện sau: (i) Nghịch ảnh (bởi f ) của mọi tập mở (trong Y ) đều là tập mở (trong X ); (ii) Nghịch ảnh (bởi f ) của mọi tập đóng (trong Y ) đều là tập đóng (trong X ). 1.3. Hàm chỉnh hình 1.3.1. Hàm một biến Định nghĩa 1.3.1. Giả sử Ω ⊂ C là một tập tùy ý cho trước. Một hàm biến phức trên Ω với giá trị phức là một ánh xạ f : Ω → C. 12 Hàm như vậy được ký hiệu là ω = f (z), z ∈ Ω. Ví dụ. a) Ánh xạ z → f (z) = az + b xác định một hàm (gọi là hàm nguyên tuyến tính) trên C. az + b , c 6= 0 xác định hàm (gọi là hàm phân cz + d d tuyến tính) trên tập Ω = C \ {− }.  c  1 1 c) Ánh xạ z → f (z) = z+ xác định một hàm (hàm Jukovski) 2 z trên Ω = C \ {0}. b) Ánh xạ z → f (z) = Định nghĩa 1.3.2. Cho hàm f xác định trên tập tùy ý Ω ⊂ C với giá trị trong C và z0 là điểm tụ của Ω hữu hạn hay là điểm xa vô tận. Số phức a ∈ C gọi là giới hạn của hàm f (z) khi z dần đến z0 và viết lim f (z) = a, z→z0 nếu với mọi lân cận V của a tồn tại lân cận U của z0 sao cho f (z) ∈ V với mọi z ∈ U ∩ Ω, z 6= z0 . Hàm f được gọi là liên tục tại z0 nếu một trong hai điều kiện sau được thỏa mãn (i) z0 là điểm cô lập của Ω. Nói cách khác tồn tại lân cận U của z0 (trong Ω) sao cho U ∩ Ω = {z0 } (ii) Nếu z0 không là điểm cô lập của Ω thì lim f (z) = f (z0 ). z→z0 13 Hàm f được gọi là liên tục trên Ω nếu nó liên tục tại mọi z ∈ Ω. Hàm f được gọi là liên tục đều trên Ω nếu: ∀ε > 0, ∃δ > 0, ∀z1 , z2 6= ∞, z1 , z2 ∈ Ω, |z1 − z2 | < δ |f (z2 ) − f (z1 )| < ε. Rõ ràng nếu f liên tục đều trên Ω thì nó là hàm liên tục trên Ω. Định lý 1.3.1. Nếu f liên tục trên tập compact K ⊂ C thì f liên tục đều trên K . Định lý 1.3.2. Nếu f liên tục trên tập compact K ⊂ C thì hàm z → |f (z)| đạt cận trên đúng và cận dưới đúng trên K , tức là tồn tại a, b ∈ K để |f (a)| = sup |f (z)| và |f (b)| = inf |f (z)|. z∈K Định lý 1.3.3. Nếu f liên tục trên tập compact K ⊂ C, thì f (K) ⊂ C là compact. Định nghĩa 1.3.3. Cho hàm số f xác định trên miền Ω ⊂ C. Xét giới hạn f (z + ∆z) − f (z) , z, z + ∆z ∈ Ω. ∆z→0 ∆z Nếu tại điểm z giới hạn này tồn tại thì nó được gọi là đạo hàm phức của df f tại z , ký hiệu là f 0 (z) hay (z). dz Như vậy f (z + ∆z) − f (z) f 0 (z) = lim ∆z→0 ∆z Hàm f có đạo hàm phức tại z cũng được gọi là khả vi phức hay C- khả vi lim tại z . Định nghĩa 1.3.4. Hàm f xác định trong miền Ω ⊂ C với giá trị trong C gọi là hàm chỉnh hình tại z0 ∈ Ω nếu tồn tại r > 0 để f là C- khả vi tại mọi z ∈ D(z0 , r) ⊂ D. Nếu f chỉnh hình tại mọi z ∈ Ω thì ta nói f chỉnh hình trên Ω. 14 Dưới đây là một số tính chất của hàm chỉnh hình. Định lý 1.3.4. Giả sử Ω ⊂ C là một miền và H(Ω) là tập các hàm chỉnh hình trên Ω. Khi đó (i) H(Ω) là một không gian vectơ trên C; (ii) H(Ω) là một vành; (iii) Nếu f ∈ H(Ω) và f (z) 6= 0 ∀z ∈ Ω thì 1/f ∈ H(Ω); (iv) Nếu f ∈ H(Ω) và f chỉ nhận giá trị thực thì f là không đổi. Định nghĩa 1.3.5 (Về hàm hợp). Nếu f : Ω → Ω∗ và g : Ω∗ → C là các hàm chỉnh hình, ở đây Ω và Ω∗ là các miền trong mặt phẳng (z) và (w), thì hàm g ◦ f : Ω → C là hàm chỉnh hình. Tiếp theo chúng tôi trình bày về điều kiện Cauchy - Riermann. Giả sử f (z) = u(x, y) + iv(x, y), z = x + iy xác định trong miền Ω ⊂ C. Hàm f được gọi là R2 − khả vi tại z = x+iy nếu các hàm u(x, y) và v(x, y) khả vi tại (x, y). Định lý 1.3.5 (Điều kiện Cauchy-Riemann). Để hàm f là C- khả vi (khả vi phức) tại z = x + iy ∈ Ω điều kiện cần và đủ là hàm f là R2 - khả vi tại z và điều kiện Cauchy - Riemann sau được thỏa mãn tại z .  ∂u ∂v (x, y)  ∂x (x, y) = ∂y  ∂u (x, y) = − ∂v (x, y) ∂y ∂x Định lý 1.3.6 (Tích phân Cauchy). Giả sử f là hàm chỉnh hình trên miền Ω và z0 ∈ Ω. Khi đó với mọi chu tuyến γ ⊂ Ωγ ⊂ Ω ta có công thức tích phân Cauchy 1 f (z0 ) = 2πi Z γ f (η) dη η − z0 (1.1) Nếu thêm f liên tục trên Ω và ∂Ω là một chu tuyến, thì với mọi z ∈ Ω ta có 1 f (z) = 2πi f (η) dη. ∂Ω η − z Z (1.2) 15 Định lý 1.3.7 (Bất đẳng thức Cauchy). Nếu f là hàm chỉnh hình trên miền Ω, điểm a ∈ Ω, 0 < r < d(a, ∂Ω) và M (a, r) = sup |f (z)|. |z−a|=r Khi đó ta có bất đẳng thức sau đây (n) n!M (a, r) . f (a) ≤ rn (1.3) Định lý 1.3.8 (Liouville). Nếu hàm f (z) chỉnh hình và bị chặn trên C, thì f = const. Tiếp theo tôi trình bày định lý về giá trị trung bình và nguyên lý môđun cực đại. Định lý 1.3.9. Nếu f là hàm chỉnh hình trên miền Ω và hình tròn D(z0 , r) ⊂ Ω thì 1 f (z0 ) = 2π Z 2π f (z0 + reiϕ )dϕ. (1.4) 0 Định lý 1.3.10. Giả sử f là hàm chỉnh hình trên miền bị chặn trên miền Ω và liên tục trên Ω. Khi đó hoặc f = const hoặc |f (z)| chỉ đạt cực đại trên biên ∂Ω của Ω. 1.3.2. Hàm nhiều biến Cho z = (z1 , z2 , . . . , zn ) ∈ Cn . Với mỗi z ∈ Cn hai chuẩn trên Cn thường được sử dụng là chuẩn Euclide 1 kzk = (z1 z̄1 + . . . + zn z̄n ) 2 và chuẩn max |z| = max{|z1 |, . . . , |zn |}. 16 Dễ thấy rằng hai chuẩn này là tương đương vì ta có |z| ≤ kzk ≤ √ n|z|, ∀z ∈ Cn . Cho a ∈ Cn và r > 0. Một đa đĩa mở tâm tại a bán kính r là tập hợp D(a, r) = {z ∈ Cn : |z − a| < r}. Đa đĩa đóng tâm a bán kính r là tập hợp D(a, r) = {z ∈ Cn : |z − a| ≤ r}. Trước tiên ta nhắc lại định nghĩa hàm R2n - khả vi. Định nghĩa 1.3.6. Giả sử Ω là tập mở trong Cn và cho điểm a ∈ Ω. Hàm f : Ω → C gọi là R2n - khả vi (hay khả vi) tại điểm a ∈ Ω nếu tồn tại vi phân ∂f ∂f dx1 + . . . + dx2n . (1.5) ∂x1 ∂xn Nếu hàm f là R2n - khả vi tại mọi điểm a ∈ Ω thì hàm f được gọi là R2n df = khả vi trong Ω. Với các số phức zν và z̄ν ta đặt xν = zν + z̄ν zν + z̄ν , xn+ν = . 2 2i Khi đó, ta có thể viết lại (1.5) dưới dạng df = ∂f ∂f ∂f ∂f dz1 + . . . + dzn + dz̄1 + . . . + dz̄n , ∂z1 ∂zn ∂ z̄1 z̄n trong đó, với ν = 1, . . . , n ta đặt ∂f 1 = ∂zν 2 ∂f 1 = ∂ z̄ν 2 ∂f ∂xν − i ∂x∂fn+ν  ! ∂f ∂f +i ∂xν ∂xn+ν ,  Sau đây, ta nhắc lại định nghĩa hàm Cn - khả vi. .
- Xem thêm -

Tài liệu liên quan