Lý thuyết chuẩn hóa của cơ sở dữ liệu mờ và ngôn ngữ sql mờ

  • Số trang: 105 |
  • Loại file: PDF |
  • Lượt xem: 24 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRẦN QUANG DUY LÝ THUYẾT CHUẨN HOÁ CỦA CƠ SỞ DỮ LIỆU MỜ VÀ NGÔN NGỮ SQL MỜ Ngành: Công nghệ thông tin Mã số: 1.01.10 LUẬN VĂN THẠC SỸ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS. TS. HỒ THUẦN Hà Nội - 2007 2 MỤC LỤC MỤC LỤC .............................................................................................................................2 BẢNG KÝ HIỆU VÀ CHỮ VIẾT TẮT ...............................................................................4 DANH MỤC CÁC BẢNG ....................................................................................................5 DANH MỤC CÁC HÌNH VẼ ...............................................................................................7 MỞ ĐẦU ...............................................................................................................................8 CHƯƠNG 1 1.1. TỔNG QUAN VỀ CƠ SỞ DỮ LIỆU MỜ ..............................................11 Kiến thức cơ sở .................................................................................................11 1.1.1. Tập mờ..........................................................................................................11 1.1.2. Các kiểu hàm thuộc ......................................................................................12 1.1.3. Các phép toán trên tập mờ............................................................................15 1.1.4. Phân bố khả năng..........................................................................................20 1.1.5. Các toán tử so sánh trên tập mờ ...................................................................21 1.2. Các mô hình cơ sở dữ liệu mờ ..........................................................................23 1.2.1. Mô hình tập con mờ......................................................................................25 1.2.2. Mô hình dựa trên quan hệ tương tự ..............................................................26 1.2.3. Mô hình dựa trên lý thuyết khả năng............................................................27 1.3. Ngôn ngữ truy vấn dữ liệu mờ ..........................................................................29 1.4. Kết luận chương 1 .............................................................................................30 CHƯƠNG 2 2.1. CƠ SỞ DỮ LIỆU MỜ DỰA TRÊN QUAN HỆ TƯƠNG TỰ ...............31 Cơ sở dữ liệu mờ dựa trên quan hệ tương tự.....................................................32 2.1.1. Cơ sở dữ liệu quan hệ mờ.............................................................................32 2.1.2. Quan hệ tương tự ..........................................................................................32 2.1.3. Cơ sở dữ liệu quan hệ mờ dựa trên quan hệ tương tự ..................................33 2.2. Các dạng chuẩn mờ đối với các quan hệ mờ.....................................................33 2.2.1. Phụ thuộc hàm mờ (ffd)................................................................................34 2.2.2. Khoá mờ .......................................................................................................42 2.2.3. Dạng chuẩn mờ thứ nhất ..............................................................................47 2.2.4. Dạng chuẩn mờ thứ hai ................................................................................48 3 2.2.5. Dạng chuẩn mờ thứ ba..................................................................................51 2.2.6. Dạng chuẩn mờ Boyce Codd........................................................................57 2.2.7. Kiểm tra tính bảo toàn phụ thuộc trong phép phân tách...............................59 2.2.8. Kiểm tra tính kết nối không mất thông tin trong phép phân tách.................61 2.3. Kết luận chương 2 .............................................................................................66 CHƯƠNG 3 NGÔN NGỮ SQL MỜ ............................................................................67 3.1. Sơ lược về ngôn ngữ SQL.................................................................................67 3.2. Ngôn ngữ SQL mờ ............................................................................................68 3.3. FSQL trên mô hình cơ sở dữ liệu rõ .................................................................68 3.3.1. Cơ sở.............................................................................................................68 3.3.2. Ngôn ngữ thao tác dữ liệu (DML) trong SQL mở rộng (SQLEx)................73 3.4. FSQL trên mô hình cơ sở dữ liệu mờ................................................................76 3.4.1. Dữ liệu mờ và các thuộc tính mờ .................................................................76 3.4.2. Ngôn ngữ thao tác dữ liệu (DML) của SQL mờ (FSQL) .............................79 3.4.3. Các toán tử so sánh mờ.................................................................................85 3.4.4. Các ví dụ.......................................................................................................90 3.5. Kết luận chương 3 .............................................................................................93 CHƯƠNG 4 4.1. TRIỂN KHAI NGÔN NGỮ SQL MỜ ....................................................94 Ngôn ngữ SQL mờ trên cơ sở dữ liệu rõ...........................................................94 4.1.1. Kiến trúc tổng quát .......................................................................................94 4.1.2. Cấu trúc dữ liệu ............................................................................................95 4.1.3. Các hàm, thủ tục chính .................................................................................97 4.1.4. Giao diện chương trình.................................................................................98 KẾT LUẬN.......................................................................................................................100 TÀI LIỆU THAM KHẢO .................................................................................................102 4 BẢNG KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu viết tắt Tiếng Anh Tiếng Việt π Possibility distribution Phân bố khả năng R Relation schema Lược đồ quan hệ X+ Transitive Closure of X Bao đóng bắc cầu của thuộc tính X. ffd Fuzzy Functional Dependency Phụ thuộc hàm mờ 1NF First Normal Form Dạng chuẩn thứ nhất 2NF Second Normal Form Dạng chuẩn thứ hai 3NF Third Normal Form Dạng chuẩn thứ ba BCNF Boyce Code Normal Form Dạng chuẩn Boyce Code FSQL Fuzzy SQL Ngôn ngữ SQL mờ 5 DANH MỤC CÁC BẢNG Bảng 1.1: Các hàm t-chuẩn f(x,y) =t(x, y)....................................................... 17 Bảng 1.2: Các hàm s-chuẩn f(x,y) = s(x, y)..................................................... 18 Bảng 1.3: Biểu diễn dữ liệu mờ trong mô hình Prade – Testemale................ 28 Bảng 2.1: Quan hệ tương tự đối với thuộc tính TÊN...................................... 35 Bảng 2.2: Quan hệ tương tự đối với thuộc tính NĂNG LỰC......................... 35 Bảng 2.3: Quan hệ tương tự đối với thuộc tính THU NHẬP ......................... 36 Bảng 2.4: Các bộ dữ liệu đối với quan hệ NGƯỜI......................................... 36 Bảng 2.5: Các bộ dữ liệu mới đối với quan hệ NGƯỜI ................................. 38 Bảng 2.6: Bảng khởi tạo cho quan hệ R=(A, B, C, D, E, F)........................... 63 Bảng 2.7: Bảng sau khi áp dụng bước thứ 3 của thuật toán kiểm tra kết nối không mất thông tin cho R .............................................................................. 63 Bảng 2.8: Bảng khởi tạo cho quan hệ R = (A, B, C, D, E, F, G) .................... 64 Bảng 2.9: Kết quả của bước thứ 3 trong thuật toán kiểm tra kết nối không mất thông tin........................................................................................................... 65 Bảng 2.10: Kết quả của bước thứ 4 trong thuật toán kiểm tra kết nối không mất thông tin của ffd đầu tiên của R. .............................................................. 65 Bảng 2.11: Bảng cho R = (A, B, C, D, E, F, G) khi kết thúc thuật toán kiểm tra kết nối không mất thông tin ....................................................................... 66 Bảng 3.1. Quan hệ tương tự giữa các nhãn đối với thuộc tính: MAU_TOC.. 79 Bảng 3.2: Các toán tử so sánh mờ................................................................... 81 6 Bảng 3.3: Các hằng số mờ trong FSQL .......................................................... 82 Bảng 3.4: Cách tính hàm CDEQ với các toán tử logic trong FSQL............... 82 Bảng 3.5: Các bộ dữ liệu đối với quan hệ NHAN_VIEN............................... 91 7 DANH MỤC CÁC HÌNH VẼ Hình 1.1: Các tập mờ hình tam giác: a)Tổng quát và b) Đối xứng ............. 13 Hình 1.2: Tập mờ Singleton............................................................................ 13 Hình 1.3: Tập mờ L (phải) .............................................................................. 14 Hình 1.4: Tập mờ Gamma tuyến tính ............................................................. 14 Hình 1.5: Tập mờ hình thang .......................................................................... 15 Hình 1.6: Phép giao, hợp cho tập mờ hình thang............................................ 19 Hình 3.1: Các nhãn ngôn ngữ đối với thuộc tính THU_NHAP...................... 70 Hình 3.2: Phân bố khả năng đối với các nhãn của thuộc tính Tuổi ................ 78 Hình 3.3: So sánh hai phân bố khả năng hình thang A và B .......................... 85 8 MỞ ĐẦU Mô hình quan hệ do Codd đề xuất năm 1970 đã đạt được những kết quả hết sức to lớn về phương diện lý thuyết và ứng dụng. Mô hình quan hệ là một trong những mô hình dữ liệu có cơ sở lý thuyết được xây dựng vững chắc nhất và là cơ sở cho hầu hết các hệ quản trị cơ sở dữ liệu hiện nay. Nhưng mô hình này chỉ biểu diễn được những dữ liệu với thông tin chính xác, đầy đủ và có thể định lượng được. Tuy nhiên, trong thực tế đời sống, con người thường xuyên phải xử lý những dữ liệu với thông tin không đầy đủ và không rõ ràng. Trong nhiều lĩnh vực như sinh vật học, di truyền học, các hệ thống thông tin địa lý, kinh tế và các hệ thống dự báo thời tiết v.v…, dữ liệu cũng thường không đầy đủ và rõ ràng. Lớp dữ liệu con người nhận biết chắc chắn và có thể định lượng được là rất ít so với lớp dữ liệu mà con người nhận biết không chắc chắn, không rõ ràng. Do đó, một cách tự nhiên cần mở rộng mô hình quan hệ để có thể biểu diễn được dữ liệu với thông tin không chắc chắn, không đầy đủ, gọi chung là dữ liệu mờ (fuzzy data). Cơ sở dữ liệu mở rộng mô hình quan hệ truyền thống, cho phép biểu diễn và xử lý dữ liệu mờ gọi là cơ sở dữ liệu quan hệ mờ (fuzzy relational database), hay cơ sở dữ liệu mờ. Việc nghiên cứu xây dựng mô hình cơ sở dữ liệu mờ đã và đang được rất nhiều các nhà khoa học quan tâm nghiên cứu nhằm đáp ứng được nhu cầu biểu diễn dữ liệu với thông tin không chắc chắn, không đầy đủ trong thực tế. Có nhiều mô hình cơ sở dữ liệu mờ đã được đề xuất theo nhiều cách tiếp cận khác nhau. Tiêu biểu là các mô hình như: mô hình tập con mờ, mô hình dựa trên quan hệ tương tự, mô hình dựa trên lý thuyết khả năng. Trong các nghiên cứu mở rộng mô hình quan hệ, các tác giả thường quan tâm giải quyết các vấn 9 đề như: biểu diễn dữ liệu mờ, các phép toán trên quan hệ mờ, các phụ thuộc dữ liệu mờ, các dạng chuẩn mờ và ngôn ngữ hỏi mờ…Các phương pháp này thường hướng tới việc bảo toàn các tính chất của mô hình quan hệ. Cùng với việc nghiên cứu xây dựng mô hình cơ sở dữ liệu mờ, vấn đề khai thác dữ liệu mờ trên các mô hình cơ sở dữ liệu cũng được rất nhiều tác giả quan tâm nghiên cứu. Các nghiên cứu thường tập trung mở rộng những ngôn ngữ hỏi trên mô hình quan hệ như: đại số quan hệ, ngôn ngữ truy vấn dữ liệu có cấu trúc (SQL)...sao cho có thể đáp ứng được nhu cầu khai thác dữ liệu phong phú và đa dạng của con người. Trong đó việc mở rộng ngôn ngữ SQL chuẩn trong mô hình quan hệ được đặc biệt quan tâm nghiên cứu. Bởi vì, ngôn ngữ SQL đã trở thành ngôn ngữ truy vấn chuẩn và được xem là một trong những yếu tố chính đem lại thành công cho các hệ thống cơ sở dữ liệu quan hệ thương mại hiện nay. Tuy nhiên, ngôn ngữ SQL này chỉ cho phép thiết lập các câu truy vấn với các tiêu chuẩn chọn dữ liệu cứng nhắc và dữ liệu trả về phải chính xác với các tiêu chuẩn đó. Nó không cho phép thiết lập các câu truy vấn với các tiêu chuẩn chọn dữ liệu là mơ hồ, còn gọi là tiêu chuẩn mơ hồ hay tiêu chuẩn mờ, và dữ liệu trả về là “gần” với tiêu chuẩn đó. Do đó, một cách tự nhiên, chúng ta cần phải mở rộng ngôn ngữ SQL chuẩn sao cho có thể thiết lập được các câu truy vấn mềm dẻo với các tiêu chuẩn mờ. Ngôn ngữ SQL mờ (fuzzy SQL) là một mở rộng của ngôn ngữ SQL và cho phép thiết lập các câu truy vấn mềm dẻo với các tiêu chuẩn mờ. Luận văn này tập trung tìm hiểu trình bày một mô hình cơ sở dữ liệu mờ dựa trên quan hệ tương tự. Trình bày chi tiết về phụ thuộc hàm mờ, các dạng chuẩn mờ và phân tách bảo toàn phụ thuộc và có kết nối không mất thông tin trong mô hình cơ sở dữ liệu mờ này. Đồng thời, luận văn cũng tìm hiểu trình bày về ngôn ngữ SQL mờ trên hai mô hình cơ sở dữ liệu: mô hình cơ sở dữ liệu quan hệ truyền thống và mô hình cơ sở dữ liệu mờ. 10 Luận văn gồm phần mở đầu, 4 chương nội dung, phần kết luận và tài liệu tham khảo. Chương 1 trình bày những kiến thức, khái niệm cơ sở dùng trong luận văn. Giới thiệu tổng quan về các mô hình cơ sở dữ liệu mờ, ngôn ngữ SQL mờ. Chương 2 trình bày về mô hình cơ sở dữ liệu mờ dựa trên quan hệ tương tự. Trình bày chi tiết về các phụ thuộc hàm mờ, khoá mờ, các dạng chuẩn mờ. Vấn đề phân tách quan hệ đảm bảo tính bảo toàn phụ thuộc và có kết nối không mất thông tin cũng được tìm hiểu và xem xét. Chương 3 tập trung tìm hiểu về ngôn ngữ SQL mờ trên hai mô hình cơ sở dữ liệu: mô hình quan hệ truyền thống và mô hình cơ sở dữ liệu mờ. Chương 4 trình bày về việc triển khai ngôn ngữ SQL mờ trên mô hình quan hệ truyền thống. Em xin chân thành gửi lời cảm ơn PGS. TS. Hồ Thuần, các thầy cô giáo của trường Đại học Công nghệ, các anh chị đồng nghiệp và các bạn cùng lớp đã trang bị kiến thức và có nhiều đóng góp quý báu giúp em hoàn thành luận văn. 11 CHƯƠNG 1 TỔNG QUAN VỀ CƠ SỞ DỮ LIỆU MỜ Chương này trình bày những kiến thức cơ sở được sử dụng cho luận văn, giới thiệu tổng quan về mô hình và một số kết quả nghiên cứu tiêu biểu về cơ sở dữ liệu mờ. 1.1. Kin thc c s 1.1.1. Tập mờ Lý thuyết tập mờ dùng công cụ toán học để mô tả các khái niệm mơ hồ thường gặp trong đời sống hàng ngày như “cao”, “thấp”, “nặng”, “nhẹ”, “trẻ”, “già”,... Định nghĩa 1.1: Cho X là một tập vũ trụ các đối tượng. Tập mờ A trên X là một tập các cặp A = { µ A ( x ) / x : x ∈ X, µ A ( x ) ∈ [0, 1]} Trong đó µ A (x) là hàm từ X vào [0, 1] gán cho mỗi phần tử x thuộc X giá trị µ A (x) phản ánh mức độ của x thuộc vào tập mờ A. µ A (x) được gọi là độ thuộc của phần tử x vào tập mờ A. Độ thuộc này là một số thực trong đoạn [0, 1]. • µ A (x) = 0 nghĩa là x không thuộc vào tập mờ A. • µ A (x) = 1 nghĩa là x hoàn toàn thuộc vào tập mờ A µ A (x) còn được gọi là hàm đặc trưng hay hàm thuộc của tập mờ A. Nhãn ngôn ngữ (Linguistic label) là một từ, trong ngôn ngữ tự nhiên, biểu diễn hoặc nhận biết một tập mờ mà có thể được định nghĩa hoặc không. 12 Với định nghĩa này, trong cuộc sống hàng ngày, người ta thường sử dụng các nhãn ngôn ngữ để biểu diễn các khái niệm trừu tượng như: trẻ, già, nóng, lạnh, đắt, rẻ, v.v... Về trực giác, định nghĩa về các nhãn này không những biển đổi từ người này sang người khác và phụ thuộc vào từng thời điểm, mà còn biến đổi theo ngữ cảnh mà nó được áp dụng. Ví dụ nhãn ngôn ngữ “cao” trong ngữ cảnh một người cao và tòa nhà cao là khác nhau. 1.1.2. Các kiểu hàm thuộc Kiểu của tập mờ phụ thuộc vào các kiểu hàm thuộc khác nhau. Đã có nhiều kiểu hàm thuộc khác nhau được đề xuất. Dưới đây luận văn trình bày một số hàm thuộc tiêu biểu. 1. Tam giác (Triangular): Định nghĩa bởi các cận dưới a, cận trên b và giá trị m, a < m < b. Chúng ta gọi giá trị b-m là biên (margin) nếu giá trị này bằng giá trị m-a (Hình 1.1). 0 x−a  m − a µ A (x) =  b− x b − m 1  nÕu x ≤ a hoÆc x ≥ b nÕu a < x < m nÕu m < x < b nÕu x = m 13 Hình 1.1: Các tập mờ hình tam giác: a)Tổng quát và b) Đối xứng 2. Singleton (hình 1.2): Có giá trị 0 tại tất cả các điểm trong tập vũ trụ, ngoại trừ tại điểm m có giá trị 1, dùng để biểu diễn các giá trị rõ. 0 nÕu x ≠ m SG(x) =  1 nÕu x = m Hình 1.2: Tập mờ Singleton 3. Hàm L ( hình 1.3): Hàm này được định nghĩa bởi hai tham số a và b theo cách sau: 1 b − x  L(x) =  b −a 0 nÕu x ≤ a nÕu a < x < b nÕu x ≥ b 14 Hình 1.3: Tập mờ L (phải) 4. Hàm Gamma tuyến tính (hình 1.4): Hàm này được định nghĩa bởi hai tham số a và b theo cách sau: 0 x − a  Γ(x) =  b −a 1 nÕu x ≤ a nÕu a < x < b nÕu x ≥ b Hình 1.4: Tập mờ Gamma tuyến tính 5. Hàm hình thang (hình 1.5): được định nghĩa bởi bộ 4 giá trị a, b, c, d theo công thức sau: 15 0 x − a  b − a T(x) =  d − x d −c 1  nÕu x ≤ a hoÆc x ≥ d nÕu a < x < b nÕu c < x < d nÕu b ≤ x ≤ c Hình 1.5: Tập mờ hình thang 1.1.3. Các phép toán trên tập mờ Phần này trình bày các khái niệm và các phép toán cơ bản trên tập mờ. Định nghĩa 1.2: Cho A và B là 2 tập mờ trên X. A bằng B nếu: A=B ⇔ ∀ x ∈ X, µ A (x) = µ B (x) Định nghĩa 1.3: Cho A và B là 2 tập mờ trên X. A chứa trong B nếu: A ⊆ B ⇔ ∀ x ∈ X, µ A (x) ≤ µ B (x) Định nghĩa 1.4: Giá đỡ của tập mờ A trên tập X là tập các phần tử có độ thuộc lớn hơn 0, được xác định như sau: Supp (A) = {x ∈ X, µ A ( x) > 0} Định nghĩa 1.5: Tập mức α của một tập mờ A, ký hiệu bởi Aα, được xác định như sau: A α = {x : x ∈ X, µ A ( x) ≥ α , α ∈ [0,1] } 16 Định nghĩa 1.6: Lõi (kernel) của tập mờ A, định nghĩa trên X , ký hiệu bởi Kern(A), là tập các phần tử có độ thuộc bằng 1. Kern(A) = {x ∈ X, µ A ( x) = 1} Định nghĩa 1.7: Độ cao của tập mờ A trên X, được định nghĩa như sau: Hgt(A) = sup µ A (x) x∈ X Định nghĩa 1.8: Tập mờ A là chuẩn hoá nếu và chỉ nếu: ∃x ∈ X, µ A ( x) = Hgt ( A ) = 1 Định nghĩa 1.9: Lực lượng (Cardinality) của tập mờ A, trên tập vũ trụ X được định nghĩa như sau: Card(A) = ∑ µ A ( x) x∈X T-Chuẩn và T-Đối chuẩn Định nghĩa 1.10: Dạng chuẩn tam giác, t-chuẩn, là ánh xạ nhị phân t: [0, 1] × [0, 1] → [0, 1] thoả mãn các tính chất sau: 1. Giao hoán: t(x, y) = t(y, x) với x, y ∈ [0, 1] 2. Kết hợp: t(x, t(y, z)) = t(t(x, y), z) với x, y, z ∈ [0, 1] 3. Đơn điệu: Nếu x ≤ y, và w ≤ z thì t(x, w) ≤ t(y, z) 4. Các điều kiện biên: t(x, 0) = 0, và t(x,1) = x với x ∈ [0, 1] Định nghĩa 1.11: Dạng đối chuẩn tam giác, t-đối chuẩn hay s-chuẩn, là ánh xạ nhị phân s: [0, 1] × [0, 1] → [0, 1] thoả mãn các tính chất sau: 1. Giao hoán: s(x, y) = s(y, x) với x, y ∈ [0, 1] 2. Kết hợp: s(x, s(y, z)) = s(s(x, y), z) với x, y, z ∈ [0, 1] 3. Đơn điệu: Nếu x ≤ y, và w ≤ z thì s(x, w) ≤ s(y, z) 17 4. Các điều kiện biên: s(x, 0) = x, và s(x, 1) = 1 với x ∈ [0, 1] Mối quan hệ tồn tại giữa t-chuẩn và t-đối chuẩn là một mở rộng của luật De Morgan: s(x, y)= 1 - t(1- x, 1-y) t(x, y)= 1 - s(1-x, 1-y) Khi một t-chuẩn hoặc t-đối chuẩn tuân theo tính chất này, nó được gọi là liên hợp (conjugate) và đối ngẫu (dual). Dưới đây trình bày một số hàm t-chuẩn (bảng 1.1) và một số hàm t-đối chuẩn (bảng 1.2) thường được sử dụng. t-chuẩn Biểu thức Minimum f(x,y) = min(x,y) Product f(x,y)=xy Drastic Product xy  f(x,y)=  y 0  Bounded Product f(x,y)=max[0,(1+ p)(x+y-1)-pxy], p ≥ -1 Hamacher product f(x,y)= Yager Family f(x,y)=1-min(1,[(1-x)p + (1-y)p]1/p), p > 0 Dubois – Prade Family f(x,y)= nÕu y = 1 nÕu x = 1 tr−êng hîp kh¸c xy , p + (1 − p)(x + y − xy) xy , max(x, y, p) p≥0 0≤ p≤1 Bảng 1.1: Các hàm t-chuẩn f(x,y) =t(x, y) s-chuẩn (t-đối chuẩn) Biểu thức Maximum f(x,y) = max(x, y) Sum-Product f(x, y)=x + y - xy 18 nÕu y = 0 nÕu x = 0 tr−êng hîp kh¸c Drastic Sum x  f(x, y)=  y 1  Bounded Sum f(x, y)=min(1, x + y + pxy), p ≥ 0 Einstein Sum f(x, y)= Yager Family f(x, y)=min(1,[xp + yp]1/p) , p > 0 Dubois – Prade Family f(x, y)= x+y 1 + xy (1 - x)(1 - y) , max(1 - x, 1 - y, p) 0≤ p≤1 Bảng 1.2: Các hàm s-chuẩn f(x,y) = s(x, y) t-chuẩn và t-đối chuẩn không thể sắp xếp theo thứ tự lớn hơn hay nhỏ hơn. Tuy nhiên có thể dễ dàng xác định giá trị nhỏ nhất và lớn nhất của tchuẩn và t-đối chuẩn • t-chuẩn lớn nhất: hàm Min • t-chuẩn nhỏ nhất: hàm Drastic Product • t-đối chuẩn lớn nhất: hàm Drastic Sum • t-đối chuẩn nhỏ nhất: hàm Max Các phép toán giao, hợp Định nghĩa 1.12: Nếu A và B là hai tập mờ trên tập vũ trụ X, hàm thuộc của hợp hai tập mờ A U B được xác định như sau: µ A ∪ B (x)= f(µ A(x), µ B(x)), x ∈ X Trong đó, f là t - đối chuẩn hay s-chuẩn (Schweizer và Skalar, 1983)[24]. Định nghĩa 1.13: A, B là hai tập mờ trên tập vũ trụ X, hàm thuộc của giao hai tập mờ A ∩ B được xác định như sau: µ A ∩ B (x)= g(µ A(x), µ B(x)), x ∈ X 19 trong đó g là t-chuẩn (Schweizer và Skalar, 1983)[24]. Các kiểu hàm được sử dụng rộng rãi nhất đối với t-chuẩn là hàm Min (Minimum) và đối với t-đối chuẩn là hàm Max (Maximum). Hình 1.6 trình bày các phép giao, hợp lần lượt sử dụng các hàm Min và Max cho hai tập mờ dạng hình thang. Hình 1.6: Phép giao, hợp cho tập mờ hình thang Phần bù hay phép phủ định (negation) Khái niệm phần bù được xây dựng bằng việc sử dụng khái niệm phủ định mạnh của Trillass [26]. Định nghĩa 1.14: Một hàm C: [0, 1] → [0, 1] là một phủ định mạnh nếu nó thoả mãn đầy đủ các điều kiện sau: 1. Các điều kiện biên: C(0)=1 và C(1) =0 2. Đối hợp (involution): C(C(x)) = x 3. Đơn điệu (monotonicity) : C là không tăng 4. Tính liên tục (Continuity): C là liên tục Có nhiều kiểu toán tử thoả mãn các điều kiện trên. Dưới đây là định nghĩa về phần bù của Zadeh (1965) [32]. 20 Cho tập mờ A trên tập vũ trụ X, phần bù của A được ký hiệu bởi ¬ A, hoặc A , là một tập mờ của X với hàm thuộc được định nghĩa như sau: µ A (x)= 1 - µ A(x), x ∈ X. Quan hệ mờ và tích đề các Định nghĩa 1.15: (Quan hệ mờ) Cho X và Y là hai tập khác rỗng. Một quan hệ mờ R là một tập con mờ của X × Y, tức là có một hàm thuộc: µ R : X × Y → [0, 1], ở đây µ R(x, y) = R(x, y) là độ thuộc của (x, y) vào quan hệ mờ R. Định nghĩa 1.16: (Tích đề các) Nếu A và B là hai tập mờ được định nghĩa lần lượt trên các tập vũ trụ X và Y, tích đề các A × B là một quan hệ mờ trên không gian tích X × Y với hàm thuộc: µ A × B(x, y) = g(µ A(x), µ B(y)), trong đó g là t-chuẩn. 1.1.4. Phân bố khả năng Giả sử X là một biến lấy giá trị trên tập U. Một phân bố khả năng (possibility distribution) πx gắn với biến X là một hàm từ U vào [0, 1]. Phân bố khả năng πx dùng để mô tả hiểu biết của con người về giá trị của X, tức là tập các giá trị có thể của X. Phân bố khả năng có thể dùng để biểu diễn những tri thức không chắc chắn, không đầy đủ. Nếu πx (u) = 0 nghĩa là u không thể là giá trị của X; Nếu πx (u) = 1 nghĩa là u hoàn toàn có thể là giá trị của X; πx (u) > πx (u' ) nghĩa là u có khả năng là giá trị của X nhiều hơn u ' . Phân bố khả năng π trên U được gọi là phân bố khả năng chuẩn nếu có u ∈ U sao cho π(u) = 1.
- Xem thêm -