Luận văn thạc sỹ Vật lý Nghiên cứu chế tạo vật liệu nano ZnO, TiO2 dùng cho pin mặt trời sử dụng chất nhạy màu

  • Số trang: 89 |
  • Loại file: PDF |
  • Lượt xem: 41 |
  • Lượt tải: 0
tailieuonline

Đã đăng 27372 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN -------------o0o------------- Nguyễn Văn Tuyên NGHIÊN CỨU CHẾ TẠO VẬT LIỆU NANO ZnO, TiO2 DÙNG CHO PIN MẶT TRỜI SỬ DỤNG CHẤT NHẠY MÀU LUẬN VĂN THẠC SỸ KHOA HỌC Hà Nội - Năm 2012 0 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN -------------o0o------------- Nguyễn Văn Tuyên NGHIÊN CỨU CHẾ TẠO VẬT LIỆU NANO ZnO, TiO2 DÙNG CHO PIN MẶT TRỜI SỬ DỤNG CHẤT NHẠY MÀU Chuyên ngành: Vật lý chất rắn Mã số: 60 44 07 LUẬN VĂN THẠC SỸ KHOA HỌC Ngƣời hƣớng dẫn khoa học: PGS.TS. Nguyễn Thị Thục Hiền Hà Nội - Năm 2012 1 MỤC LỤC DANH MỤC BẢNG BIỂU ........................................................................................5 DANH MỤC HÌNH VẼ, ĐỒ THỊ ..............................................................................5 BẢNG KÝ HIỆU CÁC CHỮ VIẾT TẮT ..................................................................9 MỞ ĐẦU ...................................................................................................................11 CHƢƠNG 1 ..............................................................................................................14 TỔNG QUAN LÝ THUYẾT ....................................................................................14 1.1.Tổng quan về pin DSSC ..........................................................................................................14 1.1.1. Giới thiệu tổng quát về pin mặt trời ........................................................14 1.1.2. Cấu tạo của pin DSSC .............................................................................14 1.1.3. Nguyên lý hoạt động của pin DSSC .......................................................15 1.1.4. Các thông số đặc trƣng của pin mặt trời .................................................16 1.1.5. Cơ chế truyền hạt tải trong ôxit kim loại ................................................21 1.2. Một số tính chất của vật liệu nano TiO2................................................................................26 1.2.1. Các pha tinh thể của TiO2 .......................................................................26 1.2.2. Một số tính chất hoá học cơ bản của TiO2 ..............................................27 1.2.3. Một số tính chất vật lý đặc trƣng của vật liệu nano TiO2 .......................28 1.3. Một số tính chất của vật liệu ZnO..........................................................................................33 1.3.1. Cấu trúc tinh thể của vật liệu ZnO ..........................................................33 1.3.2. Tính chất hoá học của ZnO .....................................................................34 1.3.3. Cấu trúc vùng năng lƣợng của ZnO ........................................................34 1.3.4. Tính chất điện và quang của ZnO ...........................................................36 1.4. Một số phƣơng pháp tổng hợp vật liệu nano .......................................................................38 1.4.1. Phƣơng pháp sputtering ..........................................................................39 1.4.2. Phƣơng pháp lắng đọng xung laser (PLD) ..............................................40 2 1.4.3. Phƣơng pháp lắng đọng chùm điện tử (PED) .........................................41 1.4.4. Phƣơng pháp sol-gel................................................................................41 1.4.5. Phƣơng pháp thuỷ nhiệt ..........................................................................42 1.4.6. Phƣơng pháp nhiệt phân ..........................................................................43 CHƢƠNG 2 ..............................................................................................................44 KỸ THUẬT THỰC NGHIỆM .................................................................................44 2.1. Quy trình chế tạo mẫu .............................................................................................................44 2.1.1. Hệ thực nghiệm .......................................................................................44 2.1.2. Các dụng cụ và hoá chất sử dụng ............................................................47 2.1.3. Tiến hành chế tạo lớp đệm TiO2 bằng phƣơng pháp sol-gel ..................48 2.1.4. Tạo màng có cấu trúc cột nano TiO2 trên lớp đệm TiO2 bằng phƣơng pháp thuỷ nhiệt ..................................................................................................50 2.2. Khảo sát tính chất của màng...................................................................................................53 2.2.1. Phân tích cấu trúc bằng giản đồ nhiễu xạ tia X.......................................53 2.2.2. Kính hiển vi điện tử quét (SEM) .............................................................55 2.2.3. Phổ tán sắc năng lƣợng (EDX) ..............................................................55 2.2.4. Phép đo huỳnh quang ..............................................................................56 2.2.5. Phổ tán xạ, hấp thụ và truyền qua ...........................................................57 2.2.6. Phổ tán xạ Raman....................................................................................58 CHƢƠNG 3 ..............................................................................................................59 KẾT QUẢ VÀ THẢO LUẬN ..................................................................................59 3.1. Nghiên cứu tính chất của lớp đệm TiO2 ...............................................................................59 3.1.1. Nghiên cứu hình thái của lớp đệm TiO2 bằng ảnh SEM.........................59 3.1.2. Nghiên cứu cấu trúc lớp đệm TiO2 bằng giản đồ XRD ..........................60 3.1.3. Phổ EDX của lớp đệm TiO2 ....................................................................61 3 3.1.4. Phổ hấp thụ, truyền qua của lớp đệm TiO2 .............................................62 3.1.5. Nghiên cứu phổ huỳnh quang của lớp đệm TiO2 ....................................64 3.2. Nghiên cứu hình thái, tính chất của màng cột nano TiO2 chế tạo bằng phƣơng pháp thuỷ nhiệt ..........................................................................................................................................65 3.2.1. Nghiên cứu hình thái của màng cột nano TiO2 bằng ảnh SEM ..............65 3.2.2. Nghiên cứu giản đồ XRD của màng cột nano TiO2 ................................74 3.2.3. Nghiên cứu phổ tán xạ Raman của màng cột nano TiO2 ........................75 3.2.4. Phổ hấp thụ và truyền qua của màng cột nano TiO2 ...............................77 3.2.5. Nghiên cứu phổ huỳnh quang của cột nano TiO2 ...................................79 KẾT LUẬN ...............................................................................................................81 TÀI LIỆU THAM KHẢO .........................................................................................82 4 DANH MỤC BẢNG BIỂU Bảng 1.1. Một số thông số vật lý cơ bản của TiO2 pha anatase, rutile và brookite ..27 Bảng 1.2. Một số thông số vật lý của ZnO ở cấu trúc Wurtzite ...............................34 Bảng 1.3. Hằng số điện môi trong điện trƣờng tĩnh và tần số cao của ZnO .............38 Bảng 2.1. Các chế độ ủ nhiệt lớp đệm TiO2..............................................................50 Bảng 2.2. Các chế độ ủ thuỷ nhiệt để tạo màng cột nano TiO2 ................................52 Bảng 3.1. Chế độ tiến hành thí nghiệm khảo sát hình thái cột nano TiO2 vào nồng độ tiền chất TBX .......................................................................................................66 Bảng 3.2. Chế độ tiến hành thí nghiệm khảo sát sự hình thành cột nano TiO2 vào nhiệt độ ủ thuỷ nhiệt ..................................................................................................68 Bảng 3.3. Chế độ tiến hành thí nghiệm khảo sát sự hình thành cột nano TiO2 vào lớp đệm ......................................................................................................................70 Bảng 3.4. Chế độ tiến hành thí nghiệm khảo sát sự hình thành cột nano TiO2 vào thời gian ủ thuỷ nhiệt ................................................................................................73 DANH MỤC HÌNH VẼ, ĐỒ THỊ Hình 1.1. Cấu trúc pin mặt trời DSSC dùng điện cực TiO2. .....................................15 Hình 1.2. Minh hoạ nguyên lý hoạt động của pin DSSC. .........................................15 Hình 1.3. Đồ thị phụ thuộc mật độ dòng quang điện J vào hiệu điện thế V. ...........17 Hình 1.4. Hiệu suất tổng thể của pin mặt trời ...........................................................19 Hình 1.5. Minh họa sự dịch chuyển điện tử trong vật liệu TiO2 để tới điện cực khi TiO2 tồn tại ở dạng (a) màng hạt nano và (b) dạng ống (hoặc cột) nano ..................19 Hình 1.6. Trật tự đƣờng đi của electron và lỗ trống trong chuyển tiếp p-n, bán dẫn khối (a), pin mặt trời chuyển tiếp lỏng hạt nano ôxit kim loại (b) và pin mặt trời tiếp giáp lỏng ôxít kim loại 1 chiều, ống nano (c). .........................................................22 Hình 1.7. Hình dạng và màu sắc của tinh thể anatase (a), rutile(b), brookite(c) và bột TiO2 (d) .....................................................................................................................26 Hình 1.8. Các cấu trúc tinh thể của TiO2 pha anatase (a), rutile (b) và brookite (c)27 5 Hình 1.9. Đồ thị sự phụ thuộc của (αh)1/2 vào năng lƣợng photon (h)..................30 Hình 1.10. Vùng cấm của một số chất bán dẫn.........................................................30 Hình 1.11. Giản đồ minh hoạ cấu trúc vùng năng lƣợng electron của TiO2 anatase (a) lá nano và (b) khối ...............................................................................................31 Hình 1.12. Minh hoạ cơ chế quang xúc tác của TiO2. ..............................................33 Hình 1.13. Cấu trúc tinh thể của ZnO ở ba dạng (a) Rocksalt, (b) Zinc blende và (c) Wurtzite. Hình cầu màu xám và màu đen biểu thị cho nguyên tử Zn và O. .............34 Hình 1.14. Cấu trúc vùng năng lƣợng của ZnO. .......................................................35 Hình 1.15. Biểu đồ biểu diễn trƣờng tinh thể và spin quỹ đạo chia vùng hoá trị của ZnO thành 3 vùng con A, B và C, ở nhiệt độ 4,2 K. .................................................36 Hình 1.16. Phổ huỳnh quang của ZnO khối loại n ....................................................37 Hình 1.17. Sự tán sắc chiết suất của ZnO đối với Ec (a )và E||c (b) bên dƣới bờ hấp thụ cơ bản. ..........................................................................................................38 Hình 1.18. Nguyên lý của phƣơng pháp sputtering tạo màng mỏng. .......................40 Hình 1.19. Nguyên lý lắng đọng xung laser. ............................................................41 Hình 1.20. Nguyên lý lắng đọng chùm điện tử. ........................................................41 Hình 1.21. Quá trình sol-gel và quá trình xử lý để tạo ra các dạng vật liệu khác nhau. ..........................................................................................................................42 Hình 1.22 Cấu tạo của nồi hấp ..................................................................................43 Hình 2.1. Ảnh máy rung rửa siêu âm Elma...............................................................45 Hình 2.2. Ảnh tủ sấy Memmert. ................................................................................45 Hình 2.3. Ảnh lò ủ mẫu Lenton.................................................................................46 Hình 2.4. Máy quay phủ đƣợc chế tạo tại phòng thí nghiệm bộ môn Vật lý đại cƣơng - Khoa Vật lý - ĐH KHTN.............................................................................46 Hình 2.5. Ảnh nồi hấp đƣợc sử dụng để ủ thuỷ nhiệt mẫu. ......................................47 Hình 2.6. Sơ đồ khối mô tả quy trình tạo sol. ...........................................................49 Hình 2.7. Minh hoạ quá trình quay phủ ....................................................................50 Hình 2.8. Sơ đồ khối mô tả quy trình tạo dung dịch tiền chất thuỷ nhiệt. ................51 Hình 2.9. Minh hoạ quá trình đƣa đế ITO vào ống teflon ........................................52 Hình 2.10. Nhiễu xạ của tia X trên tinh thể. .............................................................54 6 Hình 2.11. Thu phổ nhiễu xạ tia X. ...........................................................................54 Hình 2.12. Nhiễu xạ kế tia X - SIEMENS D5005. ...................................................54 Hình 2.13. Tƣơng tác của chùm điện tử và vật rắn. ..................................................55 Hình 2.14. Kính hiển vi điện tử quét JSM 5410 LV. ................................................55 Hình 2.15. Sơ đồ khối hệ đo phổ huỳnh FL 3-22 .....................................................57 Hình 2.16. Hệ đo phổ huỳnh quang FL 3-22 ............................................................57 Hình 2.17. Nguyên lý đo phổ hấp thụ. ......................................................................57 Hình 2.18. Hệ đo phổ hấp thụ UV-VIS.....................................................................58 Hình 3.1. Ảnh SEM của lớp đệm TiO2, mẫu SG04. .................................................59 Hình 3.2. Giản đồ XRD của lớp đệm TiO2 đƣợc ủ ở nhiệt độ 350 oC, mẫu SG02. ..60 Hình 3.3. Giản đồ XRD của lớp đệm TiO2 đƣợc ủ nhiệt độ 450 oC, mẫu SG04. ....60 Hình 3.4. Giản đồ XRD của lớp đệm TiO2 đƣợc ủ ở nhiệt độ 500 oC, mẫu SG05. ..60 Hình 3.5. Phổ EDX của lớp đệm TiO2 chế tạo bằng phƣơng pháp sol-gel. .............62 Hình 3.6. Phổ hấp thụ của lớp đệm TiO2, mẫu SG05. .............................................62 Hình 3.7. Đồ thị biểu diễn sự phụ thuộc (αh)1/2 vào năng lƣợng photon (h), mẫu SG05. .........................................................................................................................63 Hình 3.8. Phổ truyền qua UV - Vis - NR của lớp đệm TiO2, mẫu SG05. ................63 Hình 3.9. Phổ truyền qua của lớp đệm TiO2 đƣợc ủ ở những nhiệt độ khác nhau: .64 Hình 3.10. Phổ huỳnh quang của lớp đệm TiO2, đƣợc kích thích ở bƣớc sóng 328 nm, mẫu SG05. ..........................................................................................................64 Hình 3.11. Phổ huỳnh quang của đế ITO với bƣớc sóng ánh sáng kích thích 329 nm. ...................................................................................................................................65 Hình 3.12. Ảnh SEM của cột nano TiO2 đƣợc ủ thuỷ nhiệt với nồng độ tiền chất TBX khác nhau .........................................................................................................67 Hình 3.13. Ảnh SEM mẫu thuỷ nhiệt đƣợc ủ ở các nhiệt độ khác nhau...................69 Hình 3.14. Ảnh SEM của màng cột nano TiO2 đƣợc ủ thuỷ nhiệt đối với trƣờng hợp đế ITO có và không có lớp đệm TiO2 .......................................................................71 Hình 3.15. Ảnh SEM của màng cột nano TiO2 đƣợc ủ thuỷ nhiệt trong 22 giờ, nhiệt độ 150oC, mẫu TN13. ................................................................................................72 7 Hình 3.16. Ảnh SEM của màng cột TiO2 đƣợc chế tạo bằng phƣơng pháp thuỷ nhiệt với thời gian ủ thuỷ nhiệt khác nhau: ........................................................................73 Hình 3.20. Phổ hấp thụ của màng cột nano TiO2, mẫu TN10. .................................78 Hình 3.21. Đồ thị biểu diễn sự phụ thuộc (h)1/2 vào năng lƣợng photon (h), mẫu TN10..........................................................................................................................78 Hình 3.22. Phổ truyền qua UV-Vis- NR của màng cột nano TiO2, mẫu TN10. .......79 8 BẢNG KÝ HIỆU CÁC CHỮ VIẾT TẮT AM 1.5 Cƣờng độ sáng tại mặt đất khi mặt trời chiếu một góc 48,2o so với phƣơng thẳng đứng. CB (conduction band) Vùng dẫn C.E (counter electrode) Điện cực đối DAP (donor–acceptor pair) Cặp donor-aceptor DSSC (dye – sensitized solar cells) Pin mặt trời sử dụng chất nhạy màu ĐH KHTN Đại học khoa học tự nhiên ĐH QGHN Đại học Quốc gia Hà Nội EDX (energy-dispersive X-ray Phổ tán sắc năng lƣợng tia X spectroscopy) FTO (fluorinated tin oxide) Kính phủ lớp dẫn điện trong suốt FTO HOMO (highwest Occupied Molecular Quỹ đạo phân tử lấp đầy cao nhất Orbital) ITO (indium tin oxide) Kính phủ lớp dẫn điện trong suốt ITO LHE (light harvesting efficiency) Hiệu suất thu ánh sáng LUMO (lowest unoccupied molecular Quỹ đạo phân tử bỏ trống thấp nhất orbital) PED (pulsed electron deposition) Lắng đọng xung chùm điện tử PLD (pulsed laser deposition) Lắng đọng xung lade SEM (scanning electron microscope) Kính hiển vi điện tử quét TBX (titanium butoxide) Chất titan butoxít TCO (transparents conducting oxide) Điện cực ôxít dẫn điện trong suốt TIP (titanium isopropoxide) Chất titan isopropoxit UV-Vis (ultraviolet - visible - Phổ tử ngoại - khả kiến spectroscopy) VB (valence band) Vùng hoá trị XRD (X-ray diffraction) Nhiễu xạ tia X 9 IPCE (incident photon to carrier Hiệu suất photon tới efficiency) EQE (external quantum efficiency) Hiệu suất lƣợng tử ngoài FF (fill factors) Hệ số lấp đầy 10 MỞ ĐẦU Hiện nay, nhu cầu sử dụng năng lƣợng của con ngƣời ngày càng tăng, trong khi nguồn năng lƣợng hoá thạch (nhƣ dầu mỏ, than đá, khí đốt,...) ngày càng cạn kiệt. Đồng thời, việc sử dụng quá mức năng lƣợng hoá thạch là một trong những nguyên nhân chủ yếu gây nên ô nhiễm môi trƣờng và làm biến đổi khí hậu. Do vậy, vấn đề thay thế nguồn năng lƣợng hoá thạch bằng các nguồn năng lƣợng sạch có khả năng tái tạo (nhƣ: năng lƣợng gió, thuỷ điện, mặt trời,...) là hƣớng đi quan trọng đặt ra đối với các quốc gia trên thế giới. Trong đó, năng lƣợng mặt trời tỏ ra có nhiều ƣu điểm so với các nguồn năng lƣợng tái tạo khác. Đó là nguồn năng lƣợng vô tận, siêu sạch và miễn phí. Hàng năm, Trái đất nhận đƣợc nguồn năng lƣợng mặt trời vào khoảng 3,8.1024 J, nhiều hơn khoảng 10000 lần nhu cầu năng lƣợng của con ngƣời hiện tại. Một báo cáo về năng lƣợng mới do Trung tâm Nghiên cứu của Hội đồng châu Âu phát hành đã tiến hành tổng hợp và đánh giá số liệu về điện mặt trời trong vòng 10 năm (từ 1990 đến 2010) và cho thấy một thực tế đáng quan tâm. Trong năm 1990, tổng sản lƣợng điện mặt trời trên toàn thế giới chỉ có 46 MW, 10 năm sau, sản lƣợng này đã tăng gấp 500 lần và lên đến 23,5 GW. Vói sự phát triển nhanh chóng này, làm cho công nghiệp điện mặt trời trở thành một trong những ngành công nghiệp phát triển nhanh nhất trên thế giới. Mặc dù sản lƣợng điện mặt trời tăng nhanh chóng nhƣ vậy, nhƣng nó mới chỉ chiếm một phần rất nhỏ (chƣa đến 1%) tổng lƣợng điện tiêu thụ trên toàn thế giới. Đối với những khu vực có cƣờng độ và thời gian chiếu sáng trong năm cao nhƣ nƣớc ta thì việc khai thác năng lƣợng mặt trời có rất nhiều thuận lợi. Mỗi năm, Việt Nam có khoảng 2.000-2.500 giờ nắng với mức chiếu nắng trung bình khoảng 627,6 kJ/cm2, tƣơng đƣơng với tiềm năng khoảng 43,9 triệu tấn dầu qui đổi/1 năm. Đây là một nguồn năng lƣợng dồi dào mà không phải nơi nào cũng có đƣợc. Tuy nhiên, ở nƣớc ta, việc khai thác năng lƣợng mặt trời để sản xuất điện còn hạn chế. Vì vậy, việc nghiên cứu khai thác nguồn năng lƣợng mặt trời ở nƣớc ta có tiềm năng rất lớn, đặc biệt trong điều kiện giá nhiên liệu liên tục tăng nhƣ hiện nay. 11 So với các phƣơng pháp sản xuất điện từ năng lƣợng mặt trời, thì pin mặt trời có nhiều ƣu điểm, đó là: kích thƣớc gọn nhẹ, dễ lắp đặt. Pin mặt trời đầu tiên dựa trên cơ sở lớp chuyển tiếp p-n đã đƣợc thực hiện từ 1946 bởi Russell Ohl. Do công nghệ chế tạo khá phức tạp, giá thành cao (vì phải sử dụng đơn tinh thể silic có độ sạch cao) nên pin mặt trời dựa trên lớp chuyển tiếp p-n vẫn chƣa đƣợc sử dụng một cách rộng rãi. Năm 1972, pin mặt trời sử dụng chất nhạy màu (DSSC) đầu tiên sử dụng chất diệp lục với điện cực ZnO [57]. Tuy nhiên, loại pin này sử dụng điện cực ZnO phẳng nên hiệu suất rất thấp (dƣới 1%), do vậy không đƣợc chú ý nhiều. Đến năm 1991, Brian O'Regan và Michael Grätzel [45] sử dụng điện cực TiO2 xốp có cấu trúc hạt nano cho pin DSSC và đã đạt đƣợc hiệu suất vƣợt trội (~7,1%-7,9%). Từ kết quả của O'Regan và Grätzel đã có nhiều công trình nghiên cứu về pin DSSC. Hiện nay, hiệu suất cao nhất của pin DSSC có giá trị vào khoảng 11,1% [60]. Việc chế tạo pin DSSC có nhiều ƣu điểm so với pin mặt trời sử dụng silic, nhƣ: yêu cầu các thiết bị và công nghệ đơn giản, giá thành rẻ hơn,... Những đặc điểm này rất phù hợp với điều kiện nghiên cứu ở nƣớc ta. Pin DSSC thƣờng sử dụng bán dẫn ôxít kim loại vùng cấm rộng có cấu trúc nano, nhƣ: TiO2, ZnO, SnO2, ... làm điện cực. Trong đó, TiO2 có nhiều ƣu điểm, nhƣ: độ bền hoá học cao, không độc, rẻ tiền và có tính chất quang tốt nên thu hút đƣợc sự chú ý của nhiều nghiên cứu. Nhiều nghiên cứu [31, 56] cho thấy, hiệu suất của pin DSSC sử dụng điện cực TiO2 xốp cao hơn hiệu suất của pin DSSC có điện cực đƣợc làm từ ZnO, SnO2,... Hơn nữa, nhiều nghiên cứu [20, 54] cho thấy, pin DSSC sử dụng điện cực TiO2 có cấu trúc ống, dây, thanh (cột) nano đã chứng minh đƣợc ƣu thế vƣợt trội về hiệu suất so với điện cực TiO2 có cấu trúc hạt nano. Vì những lý do trên, trong luận văn này, chúng tôi tập trung nghiên cứu chế tạo vật liệu TiO2 có cấu trúc dạng cột nano để sử dụng làm điện cực cho pin mặt trời.  Mục tiêu của luận văn: 12 Chế tạo thành công vật liệu TiO2 có cấu trúc cột nano trên đế ITO bằng phƣơng pháp sol-gel và phƣơng pháp thuỷ nhiệt. Nghiên cứu ảnh hƣởng của các yếu tố trong quá trình ủ thuỷ nhiệt đến sự hình thành và các thông số chiều dài, đƣờng kính cột, mật độ cột trên đế ITO.  Đối tƣợng nghiên cứu của luận văn: Vật liệu TiO2 có cấu trúc cột nano.  Phƣơng pháp nghiên cứu: Luận văn đƣợc thực hiện bằng phƣơng pháp thực nghiệm.  Bố cục của luận văn Ngoài phần mở đầu, kết luận, danh mục tài liệu tham khảo, luận văn đƣợc chia làm 3 chƣơng, nhƣ sau: Chƣơng 1: Tổng quan lý thuyết Giới thiệu tổng quan về pin mặt trời sử dụng chất nhạy màu, vật liệu nano ZnO, TiO2 và một số phƣơng pháp tổng hợp vật liệu nano, trong đó có giới thiệu chi tiết phƣơng pháp sol-gel và thuỷ nhiệt. Chƣơng 2: Kỹ thuật thực nghiệm Chƣơng này tập trung trình bày về phƣơng pháp thực hiện chế tạo mẫu. Đồng thời cũng trình bày tóm tắt các phƣơng pháp phân tích, khảo sát tính chất của mẫu đã chế tạo. Chƣơng 3: Kết quả và thảo luận Tập trung trình bày các kết quả thu đƣợc từ thực nghiệm, thảo luận và đánh giá các kết quả thu đƣợc. 13 CHƢƠNG 1 TỔNG QUAN LÝ THUYẾT 1.1.Tổng quan về pin DSSC 1.1.1. Giới thiệu tổng quát về pin mặt trời Pin mặt trời là thiết bị biến đổi quang điện đƣợc sử dụng để sản xuất điện trực tiếp từ năng lƣợng mặt trời. Pin mặt trời thế hệ thứ nhất là pin mặt trời vô cơ, chủ yếu sử dụng đơn tinh thể Si đƣợc phát triển mạnh mẽ trong thập kỷ 90 của thế kỷ trƣớc. Tuy nhiên, pin mặt trời vô cơ yêu cầu công nghệ phức tạp, giá thành cao (do sử dụng đơn tinh thể silic có độ sạch cao). Do vậy, pin mặt trời vô cơ chƣa đƣợc sử dụng một cách rộng rãi trong cuộc sống. Nhằm giảm giá thành sản xuất pin, ngƣời ta nghiên cứu pin thế hệ thứ hai sử dụng màng mỏng Si, CdTe hoặc CuInGaSe2 vô định hình. Hiện nay, nhiều nghiên cứu quan tâm đến pin thế hệ thứ ba, trong đó có pin DSSC, nguyên lý hoạt động mô phỏng theo sự quang hợp của thực vật; pin polime hữu cơ... So với pin mặt trời thế hệ thứ nhất và thứ hai, pin mặt trời thế hệ thứ 3 có những ƣu điểm: - Công nghệ đơn giản, có khả năng tạo tấm lớn. - Tính mềm dẻo, trong suốt. - Dễ biến tính, có độ linh động cao. - Nhẹ và giá thành thấp. Trong luận văn này, chúng tôi tập trung nghiên cứu chế tạo màng TiO2 có cấu trúc cột nano trên đế ITO để sử dụng làm điện cực cho pin DSSC. 1.1.2. Cấu tạo của pin DSSC Cấu tạo của một pin DSSC điển hình đƣợc minh hoạ trên hình 1.1 14 Hình 1.1. Cấu trúc pin mặt trời DSSC dùng điện cực TiO2. Các thành phần cấu tạo của DSSC bao gồm: - Điện cực làm việc đƣợc chế tạo từ tấm thuỷ tinh có phủ lớp ôxit dẫn điện trong suốt (TCO), nhƣ FTO, ITO,... trên lớp TCO có phủ các hạt nano TiO2. Trên các hạt nano TiO2 có phủ một đơn lớp chất màu nhạy sáng (chất màu nhạy sáng này liên kết chặt chẽ với các hạt nano TiO2). Chất nhạy màu thƣờng đƣợc sử dụng là phức ruthenium nhƣ: N3, N719, N749 và Z907 [51]. Một số trƣờng hợp chấm lƣợng tử (ví dụ: CdS, CdSe, ...) còn đƣợc dùng thay cho chất nhạy màu. - Một chất điện li (ví dụ: dung dịch Iốt) đƣợc cho vào giữa hai điện cực. Chất điện li có vai trò nhận electron từ điện cực đối và trả cho chất màu. - Điện cực đối (counter electrode) đƣợc cấu tạo từ đế TCO có phủ một lớp màng Pt để xúc tác phản ứng khử với chất điện li, một số trƣờng hợp graphit còn đƣợc sử dụng để thay thế Pt [17, 33]. 1.1.3. Nguyên lý hoạt động của pin DSSC Nguyên lý hoạt động của pin DSSC đƣợc mô tả trên hình 1.2 Hình 1.2. Minh hoạ nguyên lý hoạt động của pin DSSC. 15 Nguyên lý hoạt động của pin DSSC nhƣ sau: Khi chiếu ánh sáng có năng lƣợng photon phù hợp với hiệu mức LUMO và HOMO của chất nhạy màu (tƣơng tự nhƣ độ rộng vùng cấm của chất bán dẫn vô cơ), electron sẽ đƣợc kích thích từ mức HOMO lên mức LUMO (phƣơng trình 1). Chất nhạy màu đƣợc chọn sao cho mức LUMO cao hơn đáy vùng dẫn của TiO2, vì vậy, khi tiếp xúc với TiO2, electron sẽ chuyển từ chất nhạy màu sang vùng dẫn của TiO2 (phƣơng trình 2). Quá trình này dẫn đến hình thành một lỗ trống trên chất nhạy màu và một electron tự do trong vùng dẫn của TiO2. Electron di chuyển từ TiO2 sang đế ITO (phƣơng trình 3) rồi chạy qua tải sang điện cực đối. Sau đó, điện cực đối nhƣờng electron cho I3-, I3- chuyển thành 3I- (phƣơng trình 5), 3I- tác dụng với Dye+ để tạo ra Dye (phƣơng trình 4), đến đây kết thúc một chu trình. Các phƣơng trình (1), (2), (3), (4) và (5) diễn tả nguyên lý hoạt động của pin DSSC: h  Dye  Dye* (1) Dye* + TiO2  e-(TiO2 )  Dye (2) e-(TiO2 )  ITO  TiO2  e  (ITO) (3) 3I  2Dye  I3  2Dye (4) I3  2e  (C.E)  3I  (C.E) (5) 1.1.4. Các thông số đặc trƣng của pin mặt trời 1.1.4.1. Thế hở mạch Voc của pin Thế hở mạch Voc là hiệu điện thế đo đƣợc khi mạch ngoài của pin mặt trời hở (R = ∞), lúc đó dòng điện mạch ngoài J = 0. Đối với pin DSSC, thế hở mạch Voc bằng hiệu mức Fermi của chất bán dẫn với thế ôxi hoá khử của chất điện phân (ví dụ, pin DSSC sử dụng điện cực TiO2 sử dụng cặp I- /I-3 có Voc0,9 V). Thực nghiệm cho thấy, thế hở mạch Voc thƣờng có giá trị thấp hơn so với tính toán lý thuyết do sự sự tái hợp của các điện tích tự do. Ở các điều kiện hở mạch, sự tái hợp điện tích xảy ra trong lớp hoạt tính quang (lớp chất nhạy màu đƣợc phủ lên bề mặt điện cực TiO2). Vì vậy, nếu sự tái kết hợp có thể đƣợc giảm đến mức tối thiểu thì thế hở mạch Voc sẽ tiến tới giá trị lý thuyết. Tuy 16 nhiên, trong thực tế, không thể ngăn chặn hoàn toàn sự tái hợp. Vì vậy, thế hở mạch Voc luôn nhỏ hơn giá trị tính toán theo lý thuyết. 1.1.4.2. Mật độ dòng ngắn mạch Jsc của pin Mật độ dòng ngắn mạch Jsc là mật độ dòng điện trong mạch của pin mặt trời khi làm ngắn mạch ngoài (R=0). Lúc đó hiệu điện thế mạch ngoài của pin V=0. Mật độ dòng ngắn mạch Jsc phụ thuộc rấ t lớn vào số photon đƣợc hấp thụ. Số photon đƣợc hấp thụ phụ thuộc vào hai yếu tố sau: - Cƣờng độ chùm sáng chiếu tới lớp hoạt tính quang của pin. Cƣờng độ chùm sáng càng lớn thì số photon chiếu tới lớp hoạt tính quang càng lớn. - Phổ hấp thụ của lớp hoạt tính quang. Phổ hấp thụ của lớp hoạt tính quang càng rộng thì số photon đƣợc hấp thụ càng nhiều. Ngoài ra, mật độ dòng ngắn mạch Jsc còn phụ thuộc vào tính linh động của hạt tải trong lớp hoạt tính quang cũng nhƣ ôxit kim loại, sự tái hợp của hạt tải, ... Nhƣ vậy, ở điều kiện bình thƣờng, đối với một pin mặt trời nhất định, mật độ dòng ngắ n mạch Jsc tỷ lệ thuận với cƣờng độ chùm sáng chiếu tới bề mặt pin. 1.1.4.3. Hệ số lấp đầy của pin (FF) Mối liên hệ giữa mật độ dòng điện J và hiệu điện thế V của pin đƣợc minh hoạ trên hình 1.3. J Jsc Pm O Voc V Hình 1.3. Đồ thị phụ thuộc mật độ dòng quang điện J vào hiệu điện thế V. 17 Trong đó, Voc là hiệu điện thế hở mạch, Jsc là mật độ dòng ngắn mạch. Mỗi điểm trên đƣờng cong ở hình 1.3 cho biết công suất có thể thu đƣợc của pin. Gọi Pm là công suất cực đại của pin. Khi đó, ngƣời ta định nghĩa hệ số lấp đầy của pin theo biểu thức sau: FF  Pm J sc .Voc (6) Hệ số lấp đầy FF của pin cho biết xu hƣớng biến đổi của dòng điện. Hệ số lấp đầy có giá trị nằm trong khoảng từ 0 đến 1, thông thƣờng nhỏ hơn 1. Giá trị của hệ số lấp đầy nhỏ hơn 1 có nguyên nhân do điện trở nội của pin, sự tái hợp cặp electron-lỗ trống và một số nguyên nhân khác. Giá trị của FF càng lớn thì công suất của pin cung cấp càng lớn. 1.1.4.4. Hiệu suất chuyển đổi năng lƣợng Hiệu suất chuyển đổi năng lƣợng của pin (gọi tắt là hiệu năng) đƣợc sử dụng để so sánh trực tiếp giữa công suất điện do pin tạo ra với công suất ánh sáng chiếu tới pin. Hiệu suất của pin đƣợc định nghĩa theo biểu thức dƣới đây:  FF.JSC .VOC Pm .100%  .100% Pin Pin (7) trong đó,  là hiệu suất chuyển đổi năng lƣợng, có giá trị nằm trong khoảng từ 0 đến 100%; Pin là công suất chùm sáng/cm2, ở độ rọi AM 1.5 (điều kiện I=100mW/cm2). Giá trị  càng lớn thì khả năng chuyển đổi năng lƣợng của pin càng tốt, giá trị của  là một trong những tiêu chí quan trọng đánh giá chất lƣợng của pin. Hiện nay, hiệu suất cao nhất của pin DSSC là 11,1% [60]. Khi xét cấu trúc của pin DSSC thì hiệu suất tổng thể của nó bao gồm 3 loại hiệu suất chính: hiệu suất thu ánh sáng (LHE), hiệu suất tiêm điện tử (фinj), hiệu suất thu điện tích (ηc) [3]. Hiệu suất tổng thể của pin DSSC đƣợc thể hiện trên hình 1.4. 18 Hình 1.4. Hiệu suất tổng thể của pin mặt trời [3]. Hiện nay, nhiều nghiên cứu [20, 54] cho thấy, pin DSSC sử dụng điện cực TiO2 có cấu trúc thanh (hay cột), dây, ống nano thì có hiệu suất cao hơn so với điện cực có cấu trúc hạt nano. Nguyên nhân của sự cải thiện hiệu suất này là do rút ngắn đƣợc quãng đƣờng chuyển động của electron so với khi chuyển động trong màng hạt nano. Đồng thời, khi chuyển động hoàn toàn trong các cột hoặc ống nano, electron không phải vƣợt qua biên tiếp giáp giữa các hạt TiO2 nhƣ khi chuyển động trong màng hạt nano (hình 1.5). Do vậy, electron chuyển động đến điện cực TCO dễ dàng hơn khiến cho hiệu suất thu điện tích c tăng lên làm cho hiệu suất tổng thể  của pin tăng theo. (a) (b) Hình 1.5. Minh họa sự dịch chuyển điện tử trong vật liệu TiO2 để tới điện cực khi TiO2 tồn tại ở dạng (a) màng hạt nano và (b) dạng ống (hoặc cột) nano [38]. 19
- Xem thêm -