Luận văn thạc sỹ Khảo sát phản ứng CH2CO + NCO bằng phương pháp tính lượng tử

  • Số trang: 73 |
  • Loại file: PDF |
  • Lượt xem: 63 |
  • Lượt tải: 0
tailieuonline

Đã đăng 27609 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ------------------------ NGUYỄN HOÀNG ANH KHẢO SÁT PHẢN ỨNG CH2CO + NCO BẰNG PHƢƠNG PHÁP TÍNH LƢỢNG TỬ LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2013 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN -------------------------- Nguyễn Hoàng Anh KHẢO SÁT PHẢN ỨNG CH2CO + NCO BẰNG PHƢƠNG PHÁP TÍNH LƢỢNG TỬ Chuyên ngành: Hóa lý thuyết Mã số: 60 44 31 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. Nguyễn Hữu Thọ Hà Nội – 2013 MỤC LỤC MỞ ĐẦU ................................................................................................................ 1 1. LÝ DO CHỌN ĐỀ TÀI .................................................................................. 1 2. LỊCH SỬ NGHIÊN CỨU .............................................................................. 2 3. MỤC ĐÍCH NGHIÊN CỨU .......................................................................... 2 4. NHIỆM VỤ NGHIÊN CỨU .......................................................................... 2 5. PHƢƠNG PHÁP NGHIÊN CỨU .................................................................. 2 6. CẤU TRÚC CỦA LUẬN VĂN ...................................................................... 3 NỘI DUNG ............................................................................................................ 4 CHƢƠNG 1- CƠ SỞ LÝ THUYẾT HÓA HỌC LƢỢNG TỬ ............................ 4 1.1. PHƢƠNG TRÌNH SCHRÖDINGER ......................................................... 4 1.1.1. Phƣơng trình Schrödinger ................................................................... 4 1.1.2. Hệ nhiều electron .................................................................................. 5 1.2. CẤU HÌNH ELECTRON VÀ TRẠNG THÁI ........................................... 8 1.3. CÁC PHƢƠNG PHÁP GẦN ĐÚNG HHLT .............................................. 9 1.3.1. Sự gần đúng MO-LCAO .................................................................... 10 1.3.2. Một số khái niệm và phân loại bộ cơ sở ............................................ 11 1.3.3. Phƣơng pháp trƣờng tự hợp Hartree-Fock ....................................... 13 1.3.4. Phƣơng pháp Roothaan ..................................................................... 15 1.3.5. Phƣơng pháp tƣơng tác cấu hình ...................................................... 17 1.3.5. Phƣơng pháp nhiễu loạn Møller-Plesset ........................................... 17 1.3.6. Phƣơng pháp phiếm hàm mật độ ...................................................... 19 1.4. CÁC THAM SỐ HÓA HỌC LƢỢNG TỬ .............................................. 20 1.4.1. Năng lƣợng obitan ............................................................................... 20 1.4.2. Mật độ electron.................................................................................... 21 1.4.3. Momen lƣỡng cực ................................................................................ 22 CHƢƠNG 2 - TỔNG QUAN VỀ HỆ NGHIÊN CỨU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1. TỔNG QUAN VỀ HỆ NGHIÊN CỨU ..................................................... 22 2.2. TỔNG QUAN VỀ PHƢƠNG PHÁP TÍNH HHLT ................................ 22 2.2.1. Các mức gần đúng trong tính hóa học lƣợng tử ................................ 22 2.2.2. Tính toán không thực nghiệm............................................................. 23 2.2.3. Tính toán bán kinh nghiệm................................................................. 23 2.2.4. Phƣơng pháp phiếm hàm mật độ ...................................................... 27 2.2.5. Một số phƣơng pháp tính khác .......................................................... 28 2.2.6. Trạng thái trung gian và trạng thái chuyển tiếp ............................... 31 2.2.7. Định vị trạng thái chuyển tiếp trong hóa học tính toán .................... 32 2.2.8. Enthalpy, năng lƣợng tự do, hằng số tốc độ và hằng số cân bằng của phản ứng .............................................................................................................. 34 2.3. TIẾN TRÌNH NGHIÊN CỨU................................................................... 37 CHƢƠNG 3. KẾT QUẢ VÀ THẢO LUẬN ....................................................... 39 3.1 Tối ƣu hóa các chất tham gia phản ứng .................................................... 39 3.1.1. Gốc CH2CO ......................................................................................... 39 3.1.2. Gốc NCO ............................................................................................. 40 3.2. Khảo sát các hƣớng phản ứng ................................................................. 41 3.2.1. Hƣớng thứ nhất : Chất đầu → I1 → TS1 → P1................................. 38 3.2.2. Hƣớng thứ hai: Chất đầu → TS2 → P2............................................ 47 3.2.3. Hƣớng thứ ba: Chất đầu →TS3 → I3 → P3............................................51 3.2.4. Hƣớng thứ 4: R  I4  P4 .................................................................... 57 3.3. Xây dựng đƣờng phản ứng và tính toán các thông số nhiệt động ........... 60 KẾT LUẬN ......................................................................................................... 63 TÀI LIỆU THAM KHẢO ................................................................................... 64 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 2.1. Cấu hình hàm sóng theo phương pháp tương tác cấu hình ...................... 31 Hình 3.1. Mô hình của phân tử CH2CO ................................................................. 40 Hình 3.2. Mô hình của phân tử NCO ..................................................................... 41 Hình 3.3. Mô hình của trạng thái trung gian I1 sau khi tối ưu ................................. 43 Hình 3.4. Mô hình của trạng thái chuyển tiếp TS1 sau khi tối ưu............................ 45 Hình 3.5a. Mô hình phân tử của sản phẩm CH2NCO ............................................. 46 Hình 3.5b. Mô hình phân tử của các sản phẩm CO ................................................ 46 Hình 3.6. Mô hình của trạng thái chuyển tiếp TS2 sau khi tối ưu............................ 49 Hình 3.7a. Mô hình phân tử của sản phẩm HCCO ................................................. 50 Hình 3.7b. Mô hình phân tử của sản phẩm HNCO ................................................. 50 Hình 3.8. Mô hình của trạng thái chuyển tiếp TS3 sau khi tối ưu............................ 53 Hình 3.9. Mô hình của trạng thái trung gian I3 sau khi tối ưu ................................. 54 Hình 3.10. Mô hình phân tử của sản phẩm HOCN ................................................. 55 Hình 3.11. Mô hình của trạng thái trung gian I4 sau khi tối ưu ............................... 58 Hình 3.12a. Mô hình phân tử của sản phẩm OCNCO ............................................ 59 Hình 3.12b. Mô hình phân tử của sản phẩm CH2 ................................................... 59 Hình 3. 13. Đường phản ứng của NCO và CH2CO................................................. 61 DANH MỤC CÁC BẢNG BIỂU Bảng 3.1. Tọa độ của các nguyên tử trong phân tử H2CCO sau khi tối ưu ............. 39 Bảng 3.2. Năng lượng của phân tử H2CCO sau khi tối ưu...................................... 39 Bảng 3.3. Tọa độ của các nguyên tử trong phân tử NCO sau khi tối ưu ................ 40 Bảng 3.4. Năng lượng của phân tử NCO sau khi tối ưu ........................................ 40 Bảng 3.5. Tọa độ của các nguyên tử trong phân tử I1 sau khi tối ưu ...................... 42 Bảng 3.6. Năng lượng của phân tử I1 sau khi tối ưu. .............................................. 42 Bảng 3.7. Tọa độ của các nguyên tử trong phân tử TS1 sau khi tối ưu .................... 43 Bảng 3.8. Năng lượng của phân tử TS1 sau khi tối ưu ............................................ 44 Bảng 3.9. Năng lượng của sản phẩm 1 sau khi tối ưu............................................. 45 Bảng 3.10. Các thông số của sản phẩm 1 sau khi tối ưu ........................................ 45 Bảng 3.11. Các giá trị năng lượng phân tử trong phản ứng thứ nhất ....................... 46 Bảng 3.12. Tọa độ của các nguyên tử trong phân tử TS2 sau khi tối ưu .................. 48 Bảng 3.13. Năng lượng của phân tử TS2 sau khi tối ưu .......................................... 48 Bảng 3.14. Năng lượng của sản phẩm 2 sau khi tối ưu .......................................... 49 Bảng 3.15. Các thông số của sản phẩm 2 sau khi tối ưu ....................................... 50 Bảng 3.16. Các giá trị năng lượng phân tử trong phản ứng thứ hai......................... 50 Bảng 3.17. Tọa độ của các nguyên tử trong phân tử TS3 sau khi tối ưu .................. 51 Bảng 3.18. Năng lượng của phân tử TS3 sau khi tối ưu .......................................... 52 Bảng 3.19. Tọa độ của các nguyên tử trong phân tử I3 sau khi tối ưu ..................... 53 Bảng 3.20. Năng lượng của phân tử I3 sau khi tối ưu ............................................. 54 Bảng 3.21. Năng lượng của sản phẩm 3 sau khi tối ưu .......................................... 55 Bảng 3.22. Các thông số của sản phẩm 3 sau khi tối ưu ....................................... 55 Bảng 3.23. Các giá trị năng lượng phân tử trong phản ứng thứ ba .......................... 56 Bảng 3.24. Tọa độ của các nguyên tử trong phân tử I4 sau khi tối ưu ..................... 57 Bảng 3.25. Năng lượng của phân tử I4 sau khi tối ưu ............................................. 57 Bảng 3.26. Năng lượng của sản phẩm 4 sau khi tối ưu .......................................... 58 Bảng 3.27. Các thông số của sản phẩm 4 sau khi tối ưu ....................................... 59 Bảng 3.28. Các giá trị năng lượng phân tử trong phản ứng thứ tư .......................... 59 LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC MỞ ĐẦU 1. LÝ DO CHỌN ĐỀ TÀI Hóa học lượng tử bắt đầu phát triển từ khoảng những năm 30 của thế kỷ XX và ngày càng chứng tỏ là một lý thuyết không thể thiếu trong mọi lĩnh vực hóa học. Hóa học lượng tử là ngành khoa học nghiên cứu các hệ lượng tử dựa vào phương trình chính tắc của cơ học lượng tử do Schrödinger đưa ra năm 1926, và nhanh chóng trở thành công cụ hữu ích của hóa lý thuyết để đi sâu tìm hiểu, nghiên cứu vấn đề cốt lõi nhất của hóa học là cấu trúc và các tính chất hóa lý của các hệ. Trên thực tế, phương trình Schrödinger đối với hệ nhiều hạt rất phức tạp không thể giải được một cách chính xác mà phải giải bằng các phương pháp gần đúng. Có rất nhiều phương pháp gần đúng với mức độ chính xác khác nhau như INDO, ZINDO, CNDO, MPn... Ngày nay, sự phát triển nhanh chóng của khoa học công nghệ, các phần mềm ứng dụng của HHLT và hóa lý thuyết đã trở thành những công cụ đắc lực trong việc hoàn chỉnh các phương pháp tính và đặc biệt cho phép giải các bài toán lớn, phức tạp với tốc độ xử lý nhanh, ít tốn kém. Các phần mềm tính toán cho hóa học đã được xây dựng như MOPAC, HYPERCHEM, GAUSSIAN… có thể vận hành trên nhiều hệ điều hành khác nhau, với các phiên bản thường xuyên được nâng cấp. Trong số đó, GAUSSIAN là phần mềm phát triển vượt trội với các phương pháp tính bán kinh nghiệm khá hiệu quả, được nhiều nhà nghiên cứu chuyên nghiệp sử dụng. Với độ chính xác cao, đây là một công cụ hữu hiệu hỗ trợ các nhà hóa học lý thyết và thực nghiệm trong nghiên cứu của mình. Cùng với sự phát triển của các phần mềm tính toán hóa học, các nhà khoa học đã nghiên cứu nhiều phản ứng xảy ra trong thời gian ngắn, xảy ra ở các điều kiện khắc nghiệt, quá trình phản ứng phức tạp với nhiều trạng thái trung gian và trạng thái chuyển tiếp, từ đó củng cố và đưa ra cơ sở lý thuyết đúng đắn để nghiên cứu thực nghiệm. Phản ứng của gốc CH2CO (cetene) với gốc NCO (isocyanate) là một phản ứng như vậy. Thực nghiệm đã cho biết phản ứng xảy ra theo cơ chế phức tạp và có nhiều sản phẩm, trong đó sản phẩm chính là CH2NCO + CO. Tuy nhiên, 1 cơ sở lý thuyết của phản ứng trên chưa được nghiên cứu một cách kĩ lưỡng. Vì vậy, chúng tôi chọn đề tài: “Khảo sát phản ứng CH2CO + NCO bằng phƣơng pháp tính lƣợng tử” để làm hướng nghiên cứu cho luận văn thạc sĩ này. 2. LỊCH SỬ NGHIÊN CỨU Trong những năm gần đây, nhiều công trình, đề tài nghiên cứu khoa học trong lĩnh vực hóa học đã sử dụng công nghệ thông tin, các phần mềm ứng dụng trong HHLT để nghiên cứu và đã mang lại những thành công lớn. Tuy nhiên đề tài của chúng tôi có thể lần đầu tiên được nghiên cứu ở Việt Nam. 3. MỤC ĐÍCH NGHIÊN CỨU Trong quá trình nghiên cứu, chúng tôi sử dụng phương pháp tính và bộ hàm cơ sở thích hợp nhằm thu được các số liệu cần thiết về các chất ban đầu, sản phẩm. Tiếp theo, chúng tôi xây dựng đường phản ứng, kết hợp với sử dụng thuật toán để tìm trạng thái trung gian, trạng thái chuyển tiếp của từng đường phản ứng. Sau đó tính toán các giá trị nhiệt động, kết luận hướng ưu tiên của phản ứng. Kết quả thu được bằng phương pháp tính ở trên, chúng tôi sẽ sử dụng ở nhiều mức độ khác nhau trong việc nghiên cứu thực nghiệm về phản ứng, cũng như tiếp cận với một hướng nghiên cứu mới về phản ứng bằng các phương pháp tính HHLT với sự hỗ trợ của máy tính. 4. NHIỆM VỤ NGHIÊN CỨU 4.1. Tối ưu hoá các chất tham gia phản ứng, sản phẩm để tìm trạng thái bền. 4.2. Sử dụng phương pháp QST2 (quadratic synchronous transit) để tìm trạng thái chuyển tiếp (TS) của các quá trình. 4.3. Tối ưu cấu trúc trạng thái chuyển tiếp vừa tìm được. 4.4. Dò đường phản ứng từ TS đến chất tham gia và sản phẩm phản ứng bằng toạ độ thực phản ứng (IRC) để kiểm tra lại TS vừa tìm được. 4.5. Tối ưu cấu trúc hình học các điểm đầu hoặc điểm cuối của đường IRC. Từ đó xây dựng đường phản ứng và tính các đại lượng nhiệt động học của phản ứng. 5. PHƢƠNG PHÁP NGHIÊN CỨU 5.1. Học tập cơ sở lý thuyết của đề tài bao gồm: LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC * Cơ sở hóa học lượng tử. * Phương pháp tính lượng tử. 5.2. Sử dụng phần mềm Gaussian 09 để tối ưu hóa các chất tham gia phản ứng, các sản phẩm, tiếp đến là tìm các trạng thái trung gian và chuyển tiếp bằng thuật toán QST2. Tiến hành tối ưu các trạng thái trung gian và chuyển tiếp. Đưa ra các thông số cấu trúc của các chất như độ dài liên kết, góc liên kết, góc vặn. Thiết lập đường phản ứng, tính hiệu ứng nhiệt của phản ứng, hệ số tỉ lệ, hằng số cân bằng. Sau đó kết luận về hướng ưu tiên của phản ứng. Từ kết quả thu được, chúng tôi sẽ nghiên cứu các hướng phản ứng khác. Sau đó nghiên cứu tới khả năng vận dụng lý thuyết của phản ứng trong thực nghiệm như điều chế oxit nitơ, đốt cháy các hợp chất chứa nitơ... 6. CẤU TRÚC CỦA LUẬN VĂN Luận văn gồm các phần: mở đầu, nội dung, kết luận, tài liệu tham khảo và mục lục. Phần nội dung chính gồm 3 chương: Chƣơng 1. Cơ sở hóa học lƣợng tử Chƣơng 2. Tổng quan về hệ nghiên cứu và phƣơng pháp nghiên cứu Chƣơng 3. Kết quả tính và thảo luận Phần 1: Kết quả tính và phân tích Phần 2: Áp dụng trong thực tế Chúng tôi hy vọng kết quả của luận văn có thể góp phần nhỏ vào việc cung cấp các tham số lượng tử, giải thích phản ứng theo cơ sở lý thuyết đúng đắn, góp phần làm cơ sở cho việc nghiên cứu phản ứng của NCO cũng như CH2CO sau này. 3 NỘI DUNG CHƢƠNG 1- CƠ SỞ LÝ THUYẾT HÓA HỌC LƢỢNG TỬ 1.1. PHƢƠNG TRÌNH SCHRÖDINGER 1.1.1. Phƣơng trình Schrödinger [2], [6] Trạng thái dừng là trạng thái lượng tử của hệ có năng lượng không phụ thuộc thời gian. Phương trình Schrödinger ở trạng thái dừng là phương trình quan trọng nhất của HHLT, có dạng:    H  = T + U  (r) là toán tử Halmilton của hệ. Trong đó: H 2     2 là toán tử động năng của hệ T 2m (1.1) (1.2) (1.3)  2 là toán tử Laplace  (r) là toán tử thế năng của hệ, dạng của nó phụ thuộc vào U trường lực.  là hàm sóng mô tả trạng thái của hệ lượng tử trong trường  (r) . Hàm sóng là một hàm xác định, đơn trị, liên lực đặc trưng bởi toán tử thế năng U tục, khả vi và nói chung là hàm phức.  *.d biểu thị xác suất tìm thấy hệ trong nguyên tố thể tích d của không gian cấu hình của hệ. Hàm sóng  phải thỏa mãn điều kiện chuẩn hóa: 2      * d    d  1 (1.4) E là năng lượng toàn phần của hệ ở trạng thái được mô tả bởi hàm  bao gồm động năng và thế năng. LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC Giải phương trình hàm riêng, trị riêng (1.1) thu được nghiệm là năng lượng E và hàm sóng  , từ đó có thể rút ra những thông tin về hệ lượng tử. Như vậy, khi xét hệ lượng tử ở một trạng thái dừng thì điều quan trọng là phải giải phương trình hàm sóng ở trạng thái đó. 1.1.2. Hệ nhiều electron [2], [4], [6] 1.1.2.1. Sự gần đúng Born-Oppenheimer Khi nghiên cứu hệ nhiều electron, ta phải thiết lập phương trình Schrödinger và áp dụng các phương pháp gần đúng để giải. Sự gần đúng Born-Oppenheimer là phương pháp đầu tiên nhằm làm đơn giản hóa việc giải phương trình sóng, bằng cách tách riêng chuyển động của mỗi electron và hạt nhân. Sự gần đúng này coi hạt nhân đứng yên, xét chuyển động của mỗi electron trong trường lực tạo bởi các hạt nhân và các electron còn lại. Đây là một sự gần đúng tốt bởi vì các electron chuyển động nhanh hơn nhiều so với hạt nhân (do khối lượng electron nhỏ hơn nhiều so với hạt nhân) và luôn tự thay đổi vị trí để phù hợp với vị trí hạt nhân. 1.1.2.2. Toán tử Hamilton Xét hệ gồm M hạt nhân và N electron. Toán tử Hamilton là toán tử năng lượng toàn phần của hệ, trong hệ đơn vị nguyên tử có dạng:  n T e U  ee  U  en  U  nn HT (1.5) Trong hệ đơn vị nguyên tử: M  n   1  2 là toán tử động năng của hạt nhân. T  A 2 A 1 (1.6) n 0 Trong sự gần đúng Born-Oppenheimer thì T . N  e   1  2 là toán tử động năng của các e . T  p 2 p 1 (1.7) N 1  ee  là tương tác đẩy giữa các e . U  p  q rpq (1.8) N M ZA  en   U là tương tác hút giữa e và hạt nhân.  p 1 A 1 rAp 5 (1.9) ZA ZB  nn  là tương tác đẩy giữa các hạt nhân. U  A  B rAB (1.10) Trong sự gần đúng Born-Oppenheimer, phân tử có cấu hình hạt nhân  nn = const = C. cố định nên khoảng cách giữa các hạt nhân không đổi, do đó U Trong đó: p, q : kí hiệu cho các e từ 1 đến N. A, B : kí hiệu cho hạt nhân A và B. ZA, ZB: số đơn vị điện tích các hạt nhân A và B tương ứng. rpq: khoảng cách giữa hai e thứ p và thứ q. RAB: khoảng cách giữa hai hạt nhân A và B. rpA: khoảng cách giữa e thứ p và hạt nhân A. Như vậy toán tử Hamilton của cả hệ chỉ còn là toán tử Hamilton của các e : N N M ZA 1    1 2  H  C    p 2 p 1 r r p q pq p 1 A 1 Ap  1 2 M ZA  1     p       C  2 p 1  A 1 rAp  p q rpq N N 1     h(p) C  p 1 p q rpq (1.11) M Z 1  Với h(p)   2p   A là toán tử Hamilton 1 e trong trường chỉ 2 A 1 rAp của các hạt nhân. Trong biểu thức (1.11) , rpq không thể xác định một cách tường minh do nguyên lý không phân biệt các hạt đồng nhất. Như vậy phương trình Schrödinger chỉ có thể giải gần đúng trong khuôn khổ mô hình các hạt độc lập bằng cách thay các thế 2 e bởi các thế hiệu dụng 1 e . N   H(p) H  C p 1 (1.12) LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC    V(p) Với H(p)  h(p) (1.13)  là toán tử Hamilton hiệu dụng 1 e . H(p) V(p) là thế năng hiệu dụng 1 e sao cho tổng của chúng xấp xỉ bằng tổng các tương tác đẩy giữa hai e : N 1 V   r p 1 p (1.14) p  q pq 1.1.2.3. Hàm sóng hệ nhiều electron Trong sự gần đúng các hạt độc lập thì các e chuyển động độc lập với nhau, do đó hàm sóng  el được lấy gần đúng dưới dạng tích gần đúng của các hàm obitan-spin 1 e .  el (x1, x2, …, xN)= 1(x1).2(x2)… N(xN) (1.15) (1.16) được gọi là tích Hartree. Trong đó : p : hàm obitan-spin. xp: tọa độ khái quát của e thứ p. Hàm obitan-spin ứng với e nào thì chỉ chứa những tọa độ không gian và tọa độ spin của e đó. Hàm obitan-spin là tích của hàm không gian (p) và hàm spin 1e:  i (x p )  (r p ).(p ) (1.16) Theo thực nghiệm, hàm sóng toàn phần mô tả trạng thái hệ các e là hàm phản đối xứng, nghĩa là hàm sóng phải đổi dấu khi hoán vị tọa độ của bất kỳ cặp e trong hệ. Mà (1.16) không phản ánh được tính chất này, vì vậy thay tích Hartree (1.16) bằng hàm sóng dạng định thức Slater. Hàm sóng toàn phần đã chuẩn hóa và phản xứng của hệ có số chẵn e (N=2n e ) có dạng định thức Slater như sau: 7 1 (x1 )  2 (x1 ) ...  N (x1 ) 1 (x 2 )  2 (x 2 ) ...  N (x 2 )  el  .......................................... (1.17) 1 (x N )  2 (x N ) ...  N (x N ) Thường viết tắt : D= |1(x1) 2(x2) … N(xN)| (1.18) Đối với hệ có số lẻ e , hàm sóng toàn phần phải là tổ hợp tuyến tính của nhiều định thức Slater. 1.1.2.4. Phương trình Schrödinger Phương trình Schrödinger cho hệ gồm N e   E  H el el el (1.19) N     H(p)  C   el  E el el  p 1   N  H  p 1 el  (E el  C) el (1.20) Như vậy trong sự gần đúng các hạt độc lập  el là hàm riêng của toán tử N  và trị riêng tương ứng là Eel-C. Để giải phương trình (1.20) cần áp dụng  H(p) p 1 các phương pháp gần đúng hóa học lượng tử. 1.2. CẤU HÌNH ELECTRON VÀ TRẠNG THÁI [2] Cấu hình e là sự phân bố e theo các số lượng tử n và l. Đối với n đã cho, tập hợp các AO có cùng l nhưng khác nhau về ml thì có cùng năng lượng AO, tuy nhiên dạng AO khác nhau. Cấu hình e được phân loại như sau:  Cấu hình vỏ đóng (closed-shell): là cấu hình ở trạng thái cơ bản, có n obitan bị chiếm bởi 2n e . Cấu hình này ứng với trường hợp suy biến năng lượng nghĩa là 1 obitan bị chiếm bởi 2n e có spin đối song và có cùng năng lượng.  Cấu hình vỏ mở (open-shell): là cấu hình ở trạng thái cơ bản mà có số e ở trạng thái spin α lớn hơn số e ở trạng thái spin  hoặc ngược lại. Cấu LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC hình này cũng ứng với sự suy biến năng lượng nghĩa là nếu hệ có (2n+1) e thì có n obitan bị chiếm chỗ bởi 2n e và obitan thứ (n+1) bị chiếm chỗ bởi 1 e .  Cấu hình hạn chế (restricted): là cấu hình mà các e đều đã ghép đôi. Trường hợp này cũng ứng với sự suy biến năng lượng nghĩa là có 1 hàm sóng không gian ứng với 2 hàm sóng spin α và .  Cấu hình không hạn chế (unrestricted): là cấu hình ứng với trường hợp không suy biến năng lượng, nghĩa là năng lượng các e α khác năng lượng các e  (hay có thể nói các hàm không gian khác nhau ứng với hai hàm spin α và ). Tuy nhiên cấu hình e chưa mô tả đầy đủ trạng thái các e nên từ cùng một cấu hình có thể có nhiều trạng thái e khác nhau. Độ bội của trạng thái (2S+1) cho biết số e độc thân trong trạng thái đó. Trạng thái của hệ (nguyên tử hay phân tử) ứng với các trị của độ bội như sau: Trạng thái S 2S+1 0 1 Đơn hay đơn tuyến (singlet) 1 2 2 Đôi hay nhị tuyến (doublet) 1 3 Ba hay tam tuyến (triplet) 3 2 4 Bốn hay tứ tuyến (quartet) 2 5 Năm hay ngũ tuyến (quintet) 1.3. CÁC PHƢƠNG PHÁP GẦN ĐÚNG HHLT Phương trình Schrödinger áp dụng cho hệ 1 e , 1 hạt nhân có thể giải chính xác. Với các trường hợp phổ biến là nguyên tử nhiều e , phân tử nhiều e , ta phải áp dụng các phương pháp gần đúng để giải. 9 1.3.1. Sự gần đúng MO-LCAO [3], [4], [6] Để giải phương trình Schrödinger cho phân tử, người ta thực hiện phép gần đúng MO-LCAO đưa obitan phân tử  i về dạng tổ hợp tuyến tính của các obitan nguyên tử (AO). Sự gần đúng này được diễn đạt bằng hệ thức: k  i   C ri r (1.21) r 1 Trong đó : cri là hệ số tổ hợp r là các AO cơ sở khu trú trên nguyên tử Có 3 tiêu chuẩn để xác định AO cơ sở (số AO tham gia tổ hợp): - AO cơ sở phải mô tả gần đúng tốt e ở gần nhân cũng như xa nhân. - AO cơ sở phải cho phép tính được các tích phân cần thiết bằng giải tích. - Số AO cơ sở không quá lớn vì số tích phân 2 e xuất hiện trong phép tính tăng rất nhanh theo số AO cơ sở. Các AO-SCF là chính xác nhất nhưng không thuận tiện do chỉ cho dưới dạng bảng số và không có biểu thức giải tích. Bởi vậy, người ta thường dùng những AO đơn giản hơn. Có thể kể đến là AO kiểu Slater (STO) và AO kiểu Gaussian (GTO) với biểu thức tương ứng trong hệ tọa độ cầu. - AO kiểu Slater : STO  cS .e  r  RA - AO kiểu Gaussian: GTO  cG .e  r  RA (1.22) 2 (1.23) Trong đó : r: khoảng cách từ e đến hạt nhân. RA : tọa độ hạt nhân của nguyên tử A. cS , cG : hệ số bao gồm phần góc. η, α: hệ số mũ của các hàm STO và GTO. Khi tổ hợp tuyến tính một số hàm Gauss trên ta được bộ hàm Gauss rút gọn (CGF) là CGF (r  R A )   d v .g v v ,(r  R A )  v (1.24) LUẬN VĂN THẠC SĨ KHOA HỌC HÓA HỌC Trong đó: d: hệ số rút gọn. gv: hàm Gauss ban đầu. α: hệ số mũ rút gọn hàm Gauss. 1.3.2. Một số khái niệm và phân loại bộ cơ sở [6], [8] 1.3.2.1. Một số khái niệm cơ bản Bộ cơ sở tối thiểu: bộ cơ sở chứa số hàm cơ sở cần thiết tối thiểu cho mỗi nguyên tử, tức là gồm những obitan hóa trị và các obitan vỏ trong. Bộ cơ sở hóa trị: bộ cơ sở chỉ gồm các obitan vỏ hóa trị. Bộ cơ sở hóa trị tách: bộ cơ sở gồm các obitan vỏ hóa trị và các obitan này được nhân lên nhiều lần (có thể nhân đôi, hai, ba, bốn,.. ). Hàm phân cực: bộ cơ sở hóa trị tách chỉ làm thay đổi kích thước, không làm thay đổi hình dạng của obitan. Để mô tả tốt hơn sự phân bố mật độ electron trong không gian đòi hỏi phải kể thêm những hàm phân cực nhằm thay đổi hình dạng obitan, đó là việc thêm các hàm có momen góc lớn hơn cho nguyên tử nặng và /hoặc nguyên tử hiđro H vào bộ cơ sở hóa trị tách. Hàm khuếch tán: là những hàm s và p có kích thước lớn, mô tả các obitan trong không gian lớn hơn. Bộ cơ sở có hàm khuếch tán quan trọng với những hệ có electron liên kết lỏng với hạt nhân. Ví dụ: phân tử có đôi electron riêng, anion, những hệ có điện tích âm đáng kể, trạng thái kích thích, hệ có thế ion hóa thấp và hệ tương tác yếu. 1.3.2.2. Phân loại bộ cơ sở Hiện nay có nhiều kiểu bộ cơ sở, tuy nhiên chúng tôi xin nêu một vài bộ cơ sở thường được sử dụng nhất trong tính toán cấu trúc electron với kết quả tương đối tốt.   Bộ cơ sở kiểu Pople: Bộ cơ sở STO-nG: tổ hợp STO với n PGTO, với n = 2÷6. Thực tế với n > 3 thì kết quả rất ít thay đổi so với n = 3, do đó bộ hàm STO-3G được sử dụng rộng rãi nhất và cũng là bộ cơ sở cực tiểu. 11  Bộ cơ sở k-nlmG: với k là số hàm PGTO dùng làm obitan lõi, bộ số nlm vừa chỉ số hàm obitan vỏ hóa trị được phân chia thành và vừa chỉ số hàm PGTO được sử dụng tổ hợp. Mỗi bộ hàm lại có thể thêm hàm khuếch tán, hàm phân cực hoặc cả hai. Hàm khuếch tán thường là hàm s- và hàm pđặt trước chữ G, kí hiệu bằng dấu “+” hoặc “++”; dấu “+” thứ nhất thể hiện việc thêm 1 bộ hàm khuếch tán s và p trên các nguyên tử nặng, dấu “+” thứ hai chỉ ra việc thêm hàm khuếch tán s cho nguyên tử H. Hàm phân cực được chỉ ra sau chữ G, kí hiệu bằng chữ thường (hoặc dấu * và **).  Bộ cơ sở phù hợp tương quan (correlation consistent basis set): Dunning và cộng sự đã đề nghị một bộ cơ sở PGTO nhỏ hơn mà kết quả đạt được rất đáng tin cậy. Bộ cơ sở này gọi là phù hợp tương quan (cc: correlation consistent), gồm các loại bộ cơ sở sau: cc-pVDZ, cc-pVTZ, ccPVQZ, cc-pV5Z và cc-pV6Z (correlation consistent polarized Valence Double/Triple/Quadruple/Quintuple/Sextuple Zeta). Nhìn chung, các bộ cơ sở trên được hình thành nhờ vào việc thêm các hàm phân cực nhằm tăng không gian để mô tả tốt hơn vị trí phân bố của electron. Những bộ cơ sở cc sau đó được bổ sung những hàm khuếch tán và chúng được ký hiệu aug-ccpVDZ, aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-pV5Z. Những bộ cơ sở này cho kết quả tính toán rất tốt và tất nhiên mô tả tốt đối với những hệ tương tác yếu, không cộng hóa trị. Ngoài ra, chúng thường được dùng để ngoại suy đến bộ hàm cơ sở vô hạn.  Bộ cơ sở phù hợp phân cực (polarization consistent basis set): Sự khác nhau về thuộc tính hội tụ của các phương pháp tương quan so với HF và DFT đề nghị những bộ cơ sở tối ưu cho hai trường hợp khác nhau, đặc biệt những hàm momen góc thấp quan trọng đối với hai phuơng pháp HF/DFT hơn những phương pháp tương quan khi bộ cơ sở lớn dần. Phương pháp DFT rất thông dụng trong tính toán nên phát triển bộ cơ sở cho DFT là cần thiết. Bộ cơ sở phù hợp phân cực (pc: polarization consistent) được phát triển tương tự như bộ cơ sở phù hợp tương quan (cc), ngoại trừ chúng được
- Xem thêm -