Đăng ký Đăng nhập
Trang chủ Khung trong không gian banach...

Tài liệu Khung trong không gian banach

.PDF
73
238
135

Mô tả:

Lời cảm ơn Luận văn được hoàn thành tại Trường Đại học Sư phạm Hà Nội 2 dưới sự hướng dẫn của TS. Nguyễn Quỳnh Nga. Tác giả xin bày tỏ lòng kính trọng, lòng biết ơn sâu sắc đối với cô. Cô đã dành nhiều thời gian hướng dẫn, chỉ bảo cho tác giả những kiến thức và kinh nghiệm quý báu, luôn động viên tác giả vươn lên trong học tập và vượt qua khó khăn trong chuyên môn. Tác giả xin chân thành cảm ơn Ban Giám Hiệu Trường Đại học Sư phạm Hà Nội 2, Phòng Sau đại học, Khoa Toán, Tổ Giải tích, quý thầy cô đã tạo mọi điều kiện thuận lợi cho tác giả kết thúc tốt đẹp chương trình cao học và hoàn thành luận văn tốt nghiệp. Tác giả xin chân thành cảm ơn sự giúp đỡ động viên của gia đình, bạn bè, các thành viên lớp cao học Toán Giải tích khóa 2011-2013 để tác giả hoàn thành luận văn. Hà Nội, tháng 12 năm 2013 Tác giả Vi Thị Kim Tuyến Lời cam đoan Luận văn được hoàn thành tại Trường Đại học Sư phạm Hà Nội 2 dưới sự hướng dẫn của TS. Nguyễn Quỳnh Nga. Trong quá trình làm luận văn, tôi đã kế thừa những thành tựu của các nhà khoa học với sự trân trọng và biết ơn. Tôi xin cam đoan luận văn được hoàn thành không trùng với bất kỳ luận văn nào khác. Hà Nội, tháng 12 năm 2013 Tác giả Vi Thị Kim Tuyến Mục lục Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chương 1. KIẾN THỨC CHUẨN BỊ. . . . . . . . . . . . . . . . . . . . 3 1.1. Một số khái niệm và kiến thức cơ bản trong giải tích hàm . . 3 1.1.1. Toán tử tuyến tính bị chặn trên không gian Banach . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2. Phép chiếu và tổng trực tiếp của các không gian . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.3. Cơ sở của không gian Banach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2. Khung trong không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.1. Khung trong không gian Hilbert hữu hạn chiều . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.2. Khung trong không gian Hilbert tổng quát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.3. Khung đối ngẫu thay phiên của khung trong không gian Hilbert. . . . . . . . . . . 24 1.2.4. Tính giãn nở của các khung đối ngẫu thay phiên trong không gian Hilbert 34 Chương 2. KHUNG TRONG KHÔNG GIAN BANACH 46 2.1. Khai triển nguyên tử . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2. Khung trong không gian Banach . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3. Khung đối ngẫu thay phiên của khung trong không gian Banach 59 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 i Mở đầu 1. Lí do chọn đề tài Năm 1946, D. Gabor [4] đã đưa ra một cách tiếp cận cơ bản để phân tích tín hiệu thông qua các tín hiệu cơ sở. Năm 1952, trong khi nghiên cứu một bài báo trong lý thuyết chuỗi Fourier không điều hoà, R. J. Duffin và A. C. Schaeffer [3] đã trừu tượng hoá phương pháp của Gabor để định nghĩa các khung trong không gian Hilbert. Tuy nhiên ý tưởng này đã không nhận được sự quan tâm của các nhà khoa học ngoài lĩnh vực đó cho đến khi bài báo của I. Daubechies, A. Grossmann và Y. Meyer [2] ra đời vào năm 1986. Ngày nay, lý thuyết khung là công cụ đắc lực trong nhiều lĩnh vực ứng dụng, đặc biệt là phân tích tín hiệu. Năm 1989, Grochenig [5] đã tổng quát hoá khái niệm khung cho các không gian Banach và gọi chúng là các khai triển nguyên tử. Đặc trưng chính của khung mà Grochenig cố gắng giữ lại trong một không gian Banach là mối tương quan một-một giữa một véc tơ trong không gian Hilbert với tập các hệ số khung. Grochenig cũng định nghĩa một khái niệm tổng quát hơn được gọi là khung Banach. Với mong muốn hiểu biết sâu sắc hơn về lý thuyết khung trong không gian Banach, nhờ sự giúp đỡ, hướng dẫn tận tình của cô giáo, tiến sĩ Nguyễn Quỳnh Nga, tôi quyết định chọn nghiên cứu đề tài “Khung trong không gian Banach” để thực hiện luận văn tốt nghiệp. 1 2. Mục đích nghiên cứu Đề tài này nhằm nghiên cứu, trình bày về khung trong không gian Banach. 3. Nhiệm vụ nghiên cứu Tìm hiểu về khung trong không gian Hilbert và trong không gian Banach. 4. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu: Các kiến thức cơ sở cần thiết, một số khái niệm và kết quả cơ bản của khung trong không gian Hilbert và không gian Banach. Phạm vi nghiên cứu: Các tài liệu, các bài báo trong và ngoài nước liên quan đến khung trong không gian Hilbert và không gian Banach. 5. Phương pháp nghiên cứu - Sử dụng các kiến thức và phương pháp của giải tích hàm để tiếp cận vấn đề. - Thu thập tài liệu và các bài báo về khung trong không gian Banach. - Tổng hợp, phân tích, hệ thống các khái niệm, tính chất. 6. Dự kiến đóng góp của đề tài Trình bày một cách tổng quan về lý thuyết khung trong không gian Banach. 2 Chương 1 KIẾN THỨC CHUẨN BỊ 1.1. Một số khái niệm và kiến thức cơ bản trong giải tích hàm Trong mục này chúng tôi sẽ nhắc lại một số khái niệm và kiến thức cơ bản mà chúng tôi sẽ sử dụng trong những phần sau. Các kết quả này được tham khảo từ tài liệu [7], [8]. 1.1.1. Toán tử tuyến tính bị chặn trên không gian Banach Toán tử tuyến tính T từ không gian Banach X vào không gian Banach Y là liên tục khi và chỉ khi nó bị chặn, nghĩa là, tồn tại hằng số c > 0 sao cho kT xk ≤ c kxk , với mọi x ∈ X. (1.1) Ký hiệu B(X, Y ) là tập hợp tất cả các toán tử tuyến tính bị chặn từ X vào Y . Khi X = Y thì B(X, Y ) được ký hiệu đơn giản là B(X). Chuẩn của T ∈ B(X, Y ) được định nghĩa là hằng số c nhỏ nhất thỏa mãn (1.1). Nói một cách tương đương, kT k = sup {kT xk : x ∈ X, kxk ≤ 1} = sup {kT xk : x ∈ X, kxk = 1} . 3 Gọi X 0 là không gian tất cả các phiếm hàm tuyến tính liên tục trên X, X 0 được gọi là không gian đối ngẫu của không gian X. Ký hiệu x ∈ X, x∗ ∈ X 0 , hx, x∗ i := x∗ (x). Mệnh đề 1.1.1. Giả sử X, Y, Z là các không gian Banach. Nếu T ∈ B (X, Y ) thì tồn tại duy nhất một phần tử T ∗ ∈ B (Y 0 , X 0 ) sao cho hT x, y ∗ i = hx, T ∗ y ∗ i , (x ∈ X, y ∗ ∈ Y 0 ) . Hơn nữa i) (aS + bT )∗ = aS ∗ + bT ∗ . ii) (RS)∗ = S ∗ R∗ . iii) Nếu T khả nghịch thì T ∗ cũng khả nghịch và T −1 ∗ = (T ∗ )−1 , trong đó S, T ∈ B(X, Y ) và R ∈ B(Y, Z), a, b ∈ C. Toán tử T ∗ ở Mệnh đề 1.1.1 được gọi là toán tử liên hợp của toán tử T. Mệnh đề 1.1.2. Giả sử T ∈ B(X, Y ) và S ∈ B(Y, Z). Khi đó i) kT xk ≤ kT k kxk , ∀x ∈ X. ii) kST k ≤ kSk kT k . iii) kT k = kT ∗ k . Giả sử X là không gian Banach, M là không gian con của X và N là không gian con của X 0 . Ta định nghĩa M ⊥ = {x∗ ∈ X 0 : hx, x∗ i = 0, ∀x ∈ M } , ⊥ N = {x ∈ X : hx, x∗ i = 0, ∀x∗ ∈ N } . 4 Giả sử T ∈ B(X, Y ). Ta ký hiệu N (T ) = {x ∈ X : T x = 0} , R(T ) = {y ∈ Y : y = T x, x ∈ X} . Mệnh đề 1.1.3. Giả sử X, Y là các không gian Banach, T ∈ B(X, Y ). Khi đó N (T ∗ ) = R(T )⊥ và N (T )=⊥ R(T ∗ ). Trong trường hợp các không gian là Hilbert thì ta có Mệnh đề 1.1.4. Giả sử H, K, L là các không gian Hilbert. Nếu T ∈ B(H, K) thì tồn tại duy nhất một phần tử T ∗ ∈ B(K, H) sao cho hT ∗ x, yi = hx, T yi , ∀x ∈ K, ∀y ∈ H. Hơn nữa i) (aS + bT )∗ = aS ∗ + bT ∗ , ii) (RS)∗ = S ∗ R∗ , iii) (T ∗ )∗ = T , iv) I ∗ = I, v) Nếu T khả nghịch thì T ∗ cũng khả nghịch và T −1 ∗ = (T ∗ )−1 , trong đó S, T ∈ B(H, K), R ∈ B(K, L) và a, b ∈ C. Toán tử T ∗ ở Mệnh đề 1.1.4 được gọi là toán tử liên hợp của toán tử T. Mệnh đề 1.1.5. Giả sử T ∈ B(H, K) và S ∈ B(K, L). Khi đó i) kT xk ≤ kT k. kxk , ∀x ∈ X. ii) kST k ≤ kSk. kT k . 5 iii) kT k = kT ∗ k . iv) kT ∗ T k = kT k2 . Định lý 1.1.1. Nếu T ∈ B(H) thì N (T ∗ ) = R(T )⊥ và N (T ) = R(T ∗ )⊥ . Định nghĩa 1.1.1. Cho H là không gian Hilbert và T ∈ B(H). T được gọi là toán tử tự liên hợp nếu T ∗ = T , là đẳng cự nếu T ∗ T = IH , là unita nếu T ∗ T = T T ∗ = IH , T được gọi là đối đẳng cự nếu T ∗ là đẳng cự, tức là T T ∗ = IH . Toán tử tự liên hợp T được gọi là dương (ký hiệu T ≥ 0) nếu hT x, xi ≥ 0 với mọi x ∈ H. T, K ∈ B(H), T ≥ K nếu T − K ≥ 0. Chú ý rằng với mỗi T ∈ B(H) thì hT ∗ T x, xi = hT x, T xi ≥ 0 với mọi x ∈ H. Do đó T ∗ T là dương. Mệnh đề 1.1.6. Cho H là không gian Hilbert. Giả sử T ∈ B(H). Khi đó các điều kiện sau đây là tương đương. i) T là dương. ii) T = S 2 trong đó S là toán tử dương. iii) T = V ∗ V trong đó V ∈ B(H). Toán tử S trong ii) là duy nhất và được gọi là căn bậc hai của T , ký 1 hiệu là T 2 . 1.1.2. Phép chiếu và tổng trực tiếp của các không gian Cho V là một không gian véc tơ trên trường số phức C. Toán tử tuyến tính E : V → V thỏa mãn E 2 = E được gọi là một phép chiếu trên V . 6 Khi đó các tập Y = {x ∈ V : Ex = x } , Z = {x ∈ V : Ex = 0 } (1.2) là các không gian con tuyến tính của V . Cho x ∈ V và y = Ex, z = x − Ex. Khi đó x = y + z với y ∈ Y (do Ey = E 2 x = Ex = y) và z ∈ Z (vì Ez = Ex − E 2 x = 0). Nếu x có một biểu diễn khác là x = y1 + z1 với y1 ∈ Y và z1 ∈ Z thì Ey1 = y1 , Ez1 = 0 và y1 = E (y1 + z1 ) = Ex = y và z1 = x − y1 = x − Ex = z. Do đó mỗi phần tử x thuộc V có thể biểu diễn duy nhất ở dạng x = y + z với y ∈ Y và z ∈ Z. Y và Z được gọi là các không gian con bù nhau của V . Ta cũng nói V là tổng trực tiếp của Y và Z, ký hiệu • V = Y + Z. Hai không gian con Y và Z là các không gian con bù nhau của V nếu và chỉ nếu Y + Z = V và Y ∩ Z = {0} . Định nghĩa ánh xạ E : V → V như sau: với x ∈ V , x = y + z, trong đó y ∈ Y, z ∈ Z, ta định nghĩa Ex = y. Khi đó Y và Z liên hệ với E như trong (1.2). Do Ex ∈ Y nên E(Ex) = Ex với mỗi x ∈ V . Vậy E 2 = E. Ta có thể kiểm tra E là ánh xạ tuyến tính. Định lý 1.1.2. Hai không gian con tuyến tính Y và Z của một không gian tuyến tính V là bù nhau khi và chỉ khi Y + Z = V và Y ∩ Z = {0}. Khi những điều kiện này được thỏa mãn, phương trình E(y + z) = y 7 (y ∈ Y, z ∈ Z) xác định một toán tử tuyến tính E : V → V và E 2 = EY = {x ∈ V : Ex = x} , Z = {x ∈ V : Ex = 0} . Ngược lại, mọi toán tử tuyến tính E : V → V thỏa mãn E 2 = E đều sinh ra từ một cặp không gian con bù nhau của V như ở trên. Trong trường hợp đặc biệt V là một không gian Hilbert thì phép chiếu trực giao đóng một vai trò quan trọng. Giả sử H là một không gian Hilbert, u, v ∈ H và X, Y là các tập hợp con của H. Ta nói u trực giao với v nếu hu, vi = 0 và u trực giao với Y nếu hu, yi = 0 với mọi y ∈ Y và X trực giao với Y nếu hx, yi = 0 với mọi x ∈ X, y ∈ Y . Ký hiệu Y ⊥ là tập tất cả các vectơ trong H và trực giao với Y . Mệnh đề 1.1.7. Nếu Y là một không gian con đóng của không gian Hilbert H thì mỗi phần tử x ∈ H có thể biểu diễn được dưới dạng x = y + z, trong đó y ∈ Y và ∈ Y ⊥ . Hơn nữa, y là phần tử duy nhất trong Y , gần nhất với x. Ta viết H = Y ⊕ Y ⊥ và Y ⊥ được gọi là phần bù trực giao của Y trong H.  Phương trình P (y + z) = y, y ∈ Y, z ∈ Y ⊥ xác định một toán tử tuyến tính P : H → H. P được gọi là phép chiếu trực giao từ H lên Y . Chú ý rằng I − P là phép chiếu trực giao từ H lên Y ⊥ và  (I − P ) (y + z) = z, y ∈ Y, z ∈ Y ⊥ . 8 Do hy, zi = 0 khi y ∈ Y và z ∈ Y ⊥ , ta có kP (y + z)k2 = kyk2 ≤ kyk2 + kzk2 = ky + zk2 , hP (y + z) , y + zi = hy, y + zi = kyk2 ≥ 0. Do đó P là bị chặn với kP k ≤ 1 và P là dương (do đó P là tự liên hợp). Do P y = y với mọi y ∈ Y , kP k = 1 trừ trường hợp Y = {0} và P = 0. Chú ý rằng P 2 = P và Y = {P x : x ∈ H} = {y ∈ H : P y = y} và Y ⊥ = {z ∈ H : P z = 0}. Ngược lại, giả sử P ∈ B (H) và P 2 = P = P ∗ . Khi đó P là phép chiếu trực giao từ H lên Y = {P x : x ∈ H} . Như vậy có một mối quan hệ 1 - 1 giữa các không gian con đóng Y của một không gian Hilbert H và các phép chiếu trực giao trên H. Khi H1 , . . . , Hk là các không gian Hilbert và K là tập của tất cả các bộ k {x1 , ..., xk } với xj ∈ Hj (j = 1, . . . , k), ta có một cấu trúc không gian Hilbert trên K, trong đó các phép toán đại số, tích vô hướng và chuẩn được định nghĩa bởi a {x1 , ..., xk } + b {y1 , ..., yk } = {ax1 + by1 , ..., axk + byk } , h{x1 , ..., xk } , {y1 , ..., yk }i = hx1 , y1 i + ... + hxk , yk i , h i1 2 2 2 k{x1 , ..., xk }k = kx1 k + ... + kxk k . Không gian Hilbert K được gọi là tổng trực tiếp của H1 , . . . , Hk và được k P ký hiệu bởi H1 ⊕ ... ⊕ Hk hoặc ⊕Hj . Các phần tử trong H1 ⊕ ... ⊕ Hk j=1 cũng được kí hiệu là x1 ⊕ ... ⊕ xk . Với mỗi j = 1, . . . , k, tập Hj0 bao gồm những bộ k có các thành phần bằng không, ngoại trừ vị trí thứ j, là một không gian con đóng của H1 ⊕ 9 ... ⊕ Hk . Ánh xạ Uj : Hj → Hj0 , định nghĩa bởi Uj x = {0, ..., 0, x, 0, ..., 0} (với x ở vị trí thứ j) là một đẳng cấu từ Hj vào Hj0 . Khi đó các không k S 0 0 Hj0 = K. gian con Hj , ..., Hk là trực giao từng cặp, và j=1 Giả sử rằng H1 , . . . , Hk là các không gian con trực giao với nhau từng k S đôi một của không gian Hilbert H và Hj = H. Khi đó, các phép chiếu j=1 trực giao tương ứng E1 , . . . , Ek từ H lên H1 , . . . , Hk có tổng bằng I. Toán tử tuyến tính U : H → K , được định nghĩa bởi U x = {E1 x, ..., Ek x}, ánh xạ Hj lên Hj0 và H lên K (= H1 ⊕ ... ⊕ Hk ), và là một unita do kU xk2 = k X j=1 2 k X 2 Ej x = kxk2 (x ∈ H) . kEj xk = j=1 Nghịch đảo của nó U −1 mang {x1 , ..., xk } của K vào x1 + ... + xk . Qua đẳng cấu này, ta xem H như một tổng trực tiếp trong của H1 , . . . , Hk và K như tổng trực tiếp ngoài; đôi khi ta đồng nhất H với K và Hj với Hj0 . Nếu Hj , Kj là các không gian Hilbert và Tj ∈ B(Hj , Kj )(j = 1, . . . , k), đẳng thức T {x1 , ..., xk } = {T1 x1 , ..., Tk xk } (x1 ∈ H1 , ..., xk ∈ Hk ) xác định một toán tử tuyến tính T từ H1 ⊕ ... ⊕ Hk vào K1 ⊕ ... ⊕ Kk , k P ⊕Tj của T1 , . . . , Tk . được gọi là tổng trực tiếp j=1 Ta có thể chứng minh được rằng T bị chặn với kT k = max {kTj k : j = 1, 2, ..., k} . Do đó T ∈ B (H1 ⊕ ... ⊕ Hk , K1 ⊕ ... ⊕ Kk ) . 10 Ta có thể chứng minh được T có toán tử liên hợp T ∗ xác định bởi T ∗ {y1 , ..., yk } = {T1∗ y1 , ..., Tk∗ yk } , trong đó yj ∈ Kj (j = 1, 2, ..., k). Nói một cách khác, !∗ n n X X ⊕Tj = ⊕Tj∗ . j=1 j=1 Rõ ràng rằng k X ⊕ (aSj + bTj ) = a j=1 k X ! ⊕Sj +b j=1 k X ! ⊕Rj j=1 k X ! ⊕Tj , j=1 ! ⊕Sj k X = j=1 k X ! ⊕Rj Sj j=1 khi Sj , Tj ∈ B(Hj , Kj ), Rj ∈ B(Kj , Lj ) và a, b ∈ C. 1.1.3. Cơ sở của không gian Banach Giả sử (B, k.k) là một không gian Banach trên F (F = R hoặc C). Một tập đếm được B = {xj : j ∈ N } ⊂ B được gọi là một cơ sở của B khi và chỉ khi với mỗi x ∈ B, tồn tại một dãy duy nhất {αj }j∈N ⊂ F sao cho x= X αj xj , j∈N với sự hội tụ của tổng riêng là theo chuẩn của B, tức là n X lim x − αj xj = 0. j=1 11 Ví dụ 1.1.1. Một hệ trực chuẩn đầy đủ trong một không gian Hilbert  khả li H là một cơ sở của H. Đặc biệt eikx : k ∈ Z } là một cơ sở của L2 (0, 2π). Trong ví dụ này chúng ta có thể chọn k = 0, 1, −1, 2, −2, ... là thứ tự cơ sở. Hơn nữa bất cứ thứ tự khác đều cho chúng ta một cơ sở. Tuy nhiên sự không phụ thuộc vào thứ tự của các phần tử trong cơ sở là không đúng cho các không gian Banach tổng quát. Có một loại cơ sở đặc biệt của không gian Banach tốt hơn cho các ứng dụng là cơ sở không điều kiện. Cơ sở này đảm bảo rằng với mọi hoán vị của các phần tử trong cơ sở ta đều được một cơ sở của B. Ta xét lớp M của tất cả các tập hợp con hữu hạn N của N. Ta viết lim N ∈M X yi = y (1.3) i∈N P khi và chỉ khi với mọi ε > 0, tồn tại N = N (ε) ∈ M sao cho y − y i < 0 i∈N 0 0 ε với mọi N ∈ M mà N ⊇ N . Chúng ta nói rằng chuỗi hội tụ không điều kiện tới y khi và chỉ khi (1.3) được thỏa mãn. Một cơ sở B = {xj : j ∈ N} của không gian Banach (B, k.k) được gọi là cơ sở không điều kiện nếu và chỉ nếu trong biểu diễn duy nhất P x= αj xj chuỗi hội tụ không điều kiện . j∈N P Mệnh đề 1.1.8. Trong không gian Banach B, chuỗi yi hội tụ không i∈N P điều kiện tới y ∈ B khi và chỉ khi yσ(i) = y (hội tụ theo chuẩn của i∈N B) đối với mọi hoán vị σ của N. Ta có một đặc trưng của cơ sở không điều kiện như sau. 12 Mệnh đề 1.1.9. Đối với cơ sở B = {xj : j ∈ N } của một không gian Banach B thì những điều kiên sau đây là tương đương: i, B là một cơ sở không điều kiện của B.  ii, Với mọi hoán vị σ của N, tập hợp B = xσ(i) : i ∈ N } là một cơ sở của B. P iii, Với mọi x ∈ B với biểu diễn duy nhất x = αj xj và mọi dãy j∈N P {βj }j∈N sao cho |βj | ≤ 1 thì chuỗi βj αj xj hội tụ. j∈N Ví dụ 1.1.2. ([7]) Ký hiệu lp (N), 1 ≤ p < ∞ là không gian của các dãy số phức x = {xk }k∈N sao cho kxklp (N) := ( X p 1 |xk | ) p < ∞. k∈N Ký hiệu σn,k = 0 nếu n 6= k và σn,n = 1 với ∀k, n ∈ N. Ký hiệu en = {σn,k }k∈N . Khi đó {en } n∈N là một cơ sở không điều kiện của lp (N) với 1 ≤ p < ∞ nhưng {en } n∈N không là cơ sở của l∞ (N), không gian tất cả các dãy bị chặn x = {xk }k∈N với chuẩn kxkl∞ (N) := sup |xk | . k∈N  Hệ eikx }k∈Z là một cơ sở cho L2 (0, 2π), 1 < p < ∞ nhưng không là cơ sở không điều kiện trong Lp (0, 2π) nếu p 6= 2. 1.2. Khung trong không gian Hilbert Trong nghiên cứu không gian véc tơ một trong những khái niệm quan trọng nhất là cơ sở, cho phép mỗi phần tử ở trong không gian được viết như là một tổ hợp tuyến tính của các thành phần trong cơ sở. Tuy nhiên, điều kiện là cơ sở rất hạn chế, không cho phép sự phụ thuộc tuyến tính giữa các thành phần và đôi khi chúng ta thậm chí yêu cầu các thành 13 phần trực giao ứng với một tích vô hướng. Điều này làm cho khó tìm hoặc thậm chí không thể tìm thấy cơ sở đáp ứng điều kiện bổ sung và đây là lí do mà người ta mong muốn một công cụ linh hoạt hơn. Khung là một công cụ như vậy. Một khung cho một không gian véc tơ được trang bị một tích vô hướng cũng cho phép mỗi phần tử trong không gian được viết như là một tổ hợp tuyến tính của các phần tử trong khung nhưng tính độc lập tuyến tính là không cần thiết. Trong mục này chúng tôi trình bày một số khái niệm và kiến thức cơ bản trong lý thuyết khung cần đến cho những phần sau. Các kết quả của mục này có thể tham khảo trong [1], [2], [6]. Trước tiên chúng ta xem xét trường hợp không gian hữu hạn chiều. 1.2.1. Khung trong không gian Hilbert hữu hạn chiều Cho V là một không gian véc tơ hữu hạn chiều, được trang bị một  m tích vô hướng < ., . >. Nhớ lại rằng một dãy ej j=1 trong V là một cơ sở của V nếu hai điều kiện sau đây thỏa mãn  m i) V = span ej j=1 . m  m P ii) ej j=1 là độc lập tuyến tính, nghĩa là nếu cj ej = 0 với các hệ j=1  m số vô hướng cj j=1 thì cj = 0, (j = 1, 2, . . . , m). Như một hệ quả của định nghĩa này, mọi f ∈ V có một biểu diễn duy nhất theo các thành phần trong cơ sở, tức là, tồn tại dãy các hệ số vô  m hướng duy nhất cj j=1 sao cho f= m X j=1 14 cj ej . (1.4)  m ej j=1 là một cở sở trực chuẩn, nghĩa là một cơ sở với  0 nếu i 6= j hei , ej i = δij = 1 nếu i = j.  m Hệ số cj j=1 rất dễ tìm, đó chính là tích vô hướng của f trong (1.4) với một ej tùy ý f, ej = * m X + ci ei , ej = i=1 m X ci ei , ej = cj . i=1 Vì vậy f= m X f, ej ej . (1.5) j=1 Bây giờ ta sẽ định nghĩa về khung. Ta sẽ chứng minh rằng một khung {fj }m j=1 cũng cho ta một biểu diễn như (1.4). Định nghĩa 1.2.1. Một họ đếm được của các véc tơ {fi }i∈I trong V được gọi là một khung của V nếu tồn tại các hằng số A, B > 0 sao cho X A kf k2 ≤ |hf, fi i|2 ≤ B kf k2 , ∀f ∈ V. (1.6) i∈I Các số A, B được gọi là các cận khung. Chúng không là duy nhất. Cận khung dưới tối ưu là supremum trên tất cả cận khung dưới và cận khung trên tối ưu là infimum trên tất cả các cận khung trên. Chú ý rằng các cận khung tối ưu là các cận khung thật sự. Trong không gian véc tơ hữu hạn chiều sẽ là không tự nhiên (mặc dù  có thể) khi xét các họ fj j∈I có vô hạn các phần tử. Trong phần này  m chúng ta chỉ xem xét các họ hữu hạn fj j=1 , m ∈ N. Với hạn chế này, bất đẳng thức Cauchy-Schwarz chỉ ra rằng m m X 2 2 X f, fj ≤ fj kf k2 với mọi f ∈ V, j=1 j=1 15 nghĩa là, điều kiện khung trên tự động được thỏa mãn. Tuy nhiên, ta m P f 2 . Để cho điều kiện dưới có thể tìm một cận khung trên tốt hơn j j=1  m trong (1.6) thỏa mãn, cần thiết rằng span fj j=1 = V . Điều kiện này cũng là đủ; mọi dãy hữu hạn là một khung cho bao tuyến tính của nó.  m  m Mệnh đề 1.2.1. Cho fj j=1 là một dãy trong V . Khi đó fj j=1 là  m một khung cho span fj j=1 . Chứng minh. Chúng ta có thể giả sử rằng không phải tất cả các fj đều bằng không. Như vậy ta thấy, điều kiện khung trên là thỏa mãn với m  P f 2 . Bây giờ lấy W := span f m và xem xét ánh xạ liên B = j j=1 j j=1 tục m X f, fj 2 . ∅ : W → R, ∅ (f ) := j=1 Hình cầu đơn vị trong W là compact, vì vậy ta có thể tìm g ∈ W với kgk = 1 sao cho m X g, fj 2 = inf A := j=1 ( m ) X f, fj : f ∈ W, kf k = 1 . j=1 Rõ ràng là A > 0. Bây giờ ta lấy f ∈ W, f 6= 0, ta có  2 m m  X f 2 X f, fj = kf k2 ≥ A kf k2 . , f j kf k j=1 j=1  Mệnh đề được chứng minh.  m Hệ quả 1.2.1. Một họ các phần tử fj j=1 trong V là một khung của  m V khi và chỉ khi span fj j=1 = V . Hệ quả 1.2.1 chỉ ra một khung có thể có số phần tử nhiều hơn số  k phần tử cần thiết để làm cơ sở. Đặc biệt, nếu fj j=1 là một khung 16  m của V và gj j=1 là một tập hữu hạn tùy ý các véc tơ trong V thì  k S  m fj j=1 gj j=1 cũng là một khung của V . 1.2.2. Khung trong không gian Hilbert tổng quát Cho H là một không gian Hilbert khả li với tích vô hướng < ., . > tuyến tính theo thành phần thứ nhất. Gọi I là tập chỉ số đếm được. Họ các phần tử {fi }i∈I ⊆ H được gọi là dãy Bessel nếu ∃B > 0 : X |hf, fi i|2 ≤ B kf k2 , ∀f ∈ H. i∈I Một dãy Bessel {fi }i∈I là một khung nếu 2 ∃A > 0 : A kf k ≤ X |hf, fi i|2 , ∀f ∈ H. i∈I Điều đó có nghĩa là dãy {fi }i∈I trong H là một khung nếu tồn tại hai hằng số 0 < A ≤ B < ∞ sao cho A kf k2 ≤ X |hf, fi i|2 ≤ B kf k2 , ∀f ∈ H. i∈I Khung {fi }i∈I được gọi là chặt nếu A = B và được gọi là khung Parseval nếu A = B = 1. Một dãy {fi }i∈I được gọi là một cơ sở Riesz nếu nó vừa là một khung vừa là một cơ sở cho H theo nghĩa: với mỗi x ∈ H, tồn tại duy nhất P một dãy {αi }i∈I trong C sao cho x = αi fi với sự hội tụ trong chuẩn. i∈I Ví dụ 1.2.1. Lấy √ 3 1 , 2 2 H = C2 , e1 = (0, 1)T , e2 = 17 √ !T , e3 = 3 1 , 2 2 !T .
- Xem thêm -

Tài liệu liên quan