Đăng ký Đăng nhập
Trang chủ Khoá luận tốt nghiệp nghiên cứu về các toán tử trong vật lý...

Tài liệu Khoá luận tốt nghiệp nghiên cứu về các toán tử trong vật lý

.PDF
53
1226
68

Mô tả:

TRƯỜNG ĐẠI HỌC s ư PHẠM HÀ NỘI 2 KHOA VẢT LY TRẦN THỊ THU NGHIÊN CỨU VỀ CÁC TOÁN TỬ TRONG VẬT LÝ KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC • • • • Chuyên ngành: Vật lý lý thuyết Người hướng dẫn khoa học PGS.TS.LUtJ HÀ NỘI - 2015 t h ị k im t h a n h LỜI CẢM ƠN Trước tiên, bằng tấm lòng biết ơn sâu sắc, em xin chân thành cảm ơn cô giáo, PGS.TS.Lưu Thị Kim Thanh, người đã hướng dẫn và tận tình chỉ bảo cho em trong suốt thời gian học tập, nghiên cứu và hoàn thành khóa luận. Em cũng xin chân thành cảm ơn các thầy cô giáo trong khoa Vật lý, trường Đại học Sư phạm Hà Nội 2 đã truyền đạt cho em những kiến thức quý báu trong suốt bốn năm học vừa qua. Cuối cùng em xin gửi lời cảm ơn đến tất cả các bạn bè, những người đã giúp đỡ động viên em trong suốt quá trình nghiên cứu đế hoàn thiện khóa luận này. Hà Nội, tháng 05 năm 2015 Sinh viên Trần Thị Thu LỜI CAM ĐOAN Khóa luận này là kết quả của bản thân em qua quá trình học tập và nghiên cứu. Bên cạnh đó, em nhận được sự quan tâm tạo điều kiện của các thầy cô giáo trong khoa Vật lý. Đặc biệt sự hướng dẫn tận tình của cô giáo PGS.TS Lưu Thị Kim Thanh. Trong khi nghiên cứu hoàn thành bản khóa luận này em có tham khảo một số tài liệu ghi trong mục tài liệu tham khảo. Vì vậy, em xin khẳng định kết quả nghiên cứu trong đề tài “Nghiên cứu về các toán tử trong vật lý” không có sự sao chép, trùng lặp với bất cứ đề tài nào khác. Sinh viên Trần Thị Thu MỤC LỤC PHÀN 1: MỞ ĐẦU................................................................................................1 1. Lý do chọn đề tài.................................................................................................1 2. Mục đích nghiên cứu......................................................................................... 2 4. Phương pháp nghiên cứu...................................................................................2 5. Nội dung nghiên cứ u ......................................................................................... 2 PHÀN 2: NỘI DUNG...........................................................................................3 CHƯƠNG 1: MỘT SÓ VẤN ĐÈ c ơ BẢN CỦA TOÁN TỬ.................... 3 1.1. Toán tử..........................................................................................................3 1.1.1. Định nghĩa.............................................................................................3 1.1.2. Ma trận của toán tử liên h ợ p ............................................................... 3 1.1.3. Toán tử Hermite.................................................................................... 5 1.1.4. Toán tử Unita U(t) ..............................................................................8 1.1.5. Phép tính của toán tử...........................................................................10 1.2. Vectơ riêng và trị riêng của toán t ử ......................................................... 12 1.2.1. Định nghĩa........................................................................................... 12 1.2.2. Tĩnh chất của trị riêng và vectơ riêng của toán tử Hermite.............14 1.2.3. Phương trình đặc trưng của toán tử ...................................................15 Kết luận chương 1 CHƯƠNG 2: CÁC TOÁN TỬ TRONG VẬT LÝ ........................................ 18 2.1. Toán tử Hamilton.......................................................................................18 2.2. Toán tử tịnh tiến T .....................................................................................21 2.3. Toán tử xung lượng................................................................................... 22 2.4. Toán tử moment xung lượng....................................................................24 2.5. Toán tử sinh hạt và hủy hạt boson........................................................... 25 2.6. Toán tử sinh hạt và hủy hạt Fermion.......................................................27 2.7. Toán tử spin của electron.......................................................................... 30 2.8. Một số toán tử khác....................................................................................33 2.9. Điều kiện đế hai đại lượng vật lý đồng thời xác định trong cùng một trạng thái................................................................................................................34 2.10. Định lí Ehrenfest..................................................................................... 35 Kết luận chương 2 CHƯƠNG 3: MỘT SỐ HỆ THỨC ĐẠI SỐ TOÁN TỬ QUAN TRỌNG ............................................................................................................................... 38 3.1. Hệ thức 1..................................................................................................... 38 3.2. Hệ thức 2..................................................................................................... 39 3.3. Hệ thức 3..................................................................................................... 39 3.4. Hệ thức 4.....................................................................................................40 3.5. Hệ thức 5..................................................................................................... 41 3.6. Hệ thức 6..................................................................................................... 43 3.7. Hệ thức 7.....................................................................................................44 3.8. Hệ thức 8..................................................................................................... 45 3.9. Hệ thức 9..................................................................................................... 45 3.10. Hệ thức 10................................................................................................ 46 Kết luận chương 3 PHÀN 3*: KẾT LUẬN......................................................................................... 48 TÀI LIỆU THAM KHẢO................................................................................. 49 PHÀN 1:MỞ ĐẦU l.Lý do chọn đề tài Cơ học lượng tử xuất hiện vào nửa đầu thế kỉ XX, là một trong những lý thuyết cơ bản của vật lỷ học. Cơ học lượng tử là phần bổ sung và mở rộng của cơ học Newton (còn gọi là cơ học cổ điển). Nó còn là cơ sở của rất nhiều các chuyên ngành khác của vật lý như vật lý chất rắn, vật lý lý thuyết,... Trong các công thức toán học của cơ học lượng do Paul Dirac và John von Neuman phát triển, các trạng thái khả di của một hệ cơ học lượng tử được biểu diễn bằng các vectơ đơn vị (còn gọi là các vectơ trạng thái) được thể hiện bằng các hàm số phức trong không gian Hilbert (không gian trạng th á i). Bản chất của không gian Hilbert này lại phụ thuộc vào hệ lượng tử. Mỗi quan sát trong hệ lượng tử được biểu diễn bằng một toán tử tuyến tính Hermite xác định (hay một toán tử tự hợp ) tác động lên không gian trạng thái. Mỗi trạng thái riêng của một quan sát tương ứng với một vectơ riêng (còn gọi là hàm riêng) của toán tử, và một giá trị riêng ( còn gọi là trị riêng) tương ứng với giá trị của quan sát trong trạng thái riêng đó. Neu phổ của toán tử là rời rạc thì quan sát chỉ có thể có được những giá trị riêng rời rạc. Trong cơ học cổ điển, trạng thái của hệ có thể xác định bằng tập các tọa độ và xung lượng. Các đại lượng vật lỷ này đủ để đặc trưng cho trạng thái của hệ cơ học và được gọi là các đại lượng động lực của cơ học. Trong cơ học lượng tử, mỗi thuộc tính vật lý đều được đặc trưng bởi một toán tử. Ví dụ như năng lượng, động lượng, tọa độ,... đều có một toán tử tương ứng. Mặt khác cơ học lượng tử được xây dựng bằng một hệ các tiên đề, bằng một loạt các công cụ toán, trong đó toán tử giữ một vị trí quan trọng. Việc hiểu rõ toán tử và tính chất của chúng là rất cần thiết đối với người học cơ học lượng tử nói riêng và vật lý nói chung. 1 Vì lý do trên nên em quyết định chọn đề tài " Nghiên cứu về các toán tử trong vật lý." 2.Mục đích nghiên cứu Tìm hiểu về các toán tử trong vật lý để tạo ra công cụ hữu hiệu dùng trong nghiên cứu các hệ hạt vi mô thuộc cơ lượng tử 3.ĐỐÌ tượng nghiên cứu Các toán tử cơ bản thường được sử dụng 4.Phương pháp nghiên cứu Sử dụng phương pháp nghiên cứu của lý thuyết trường lượng tử 5.Nội dung nghiên cửu Chương 1: Một số vấn đề cơ bản của toán tử Chương 2: Các toán tử trong vật lý Chương 3: Một số hệ thức đại số toán tử quan trọng 2 PHẦN 2: NỘI DUNG CHƯƠNG 1: MỘT SÓ VẤN ĐÈ c ơ BẢN CỦA TOÁN TỬ 1.1. Toán tử 1.1.1. Định nghĩa Cho không gian X, dim x= p và không gian Y, dim Y= q. Từ đó định nghĩa: [4] a. Một phép toán nào đó, biến phần tử X a X thành phần tử y a Y được gọi là một ánh xạ. Kí hiệu phép toán này là F , phép toán biến X —» y được viết như sau: Fx = y ( x e X , ỵ e F) b. Ánh xạ F được gọi là tuyến tính nếu: 1.1.2. Ma trận của toán tử liên hợp Ta biết rằng tác dụng của toán tử A lên vectơ trạng thái Ịụ/') dẫn đến trạng thái mới mô tả bởi vectơ trạng thái Iọ ) . Định nghĩa này được viết dưới dạng phương trình [3]: ( 1. 1) 3 Bây giờ ta khai triển Iv') và Iợ?) theo cơ sở IIịị^Ỷị; ( n ) là các vectơ riêng của toán tử A : AI un^ = an Iun)) k ) = Zc„|w„);c „ =(w„k) ìì \f>) = 'L b „ \ u , ) ’b„ = {u,ị(p} lì Nhân hai vế của phương trình (1.1) với bra vectơ (ọ\ ta thu được: (H â \i// ) = X {|(p) = Â|i//) A là toán tử tác dụng trong không gian đối ngẫu z (1.4) , chuyển bra (ự I thành / I Toán tử A —+gọi là toán tử liên hợp với A ^ . bra \(Ọ\. Dựa vào biểu thức của tích vô hướng: (y/,ọ) = (y/,ọ) tức là {y/\ọ) = {ọ\y/) đồng thời thay |ự^)và ( 0 vì p —» ±00 ? do đó số hạng thứ nhất trong công thức (1.16) tiến đến 0 (1.17) So sánh (1.15) và (1.17) ta tìm được: l p \ p ) = ỉh -ị-a{ p ) ' dp 7 ( 1. 18) Thay (1.18) vào (1.17) ta có: ịx ) r ( ả \ = ịd p a * ( p ) i h —— a ( p ) Do đó X = iti— là dạng của toán tử X trong biểu diễn xung lượng. Ta có thế thiết lập biểu thức của toán tử xung lượng trong biếu diễn xung lượng tương tự như thiết lập biểu thức của toán tử tọa độ trong biểu diễn tọa độ, nghĩa là: p * \ p ) = p * \ p ) ’ ĩ ,x = p* (>-19) Khi chuyển sang biểu diễn tọa độ, toán tử xung lượng có dạng: d C: Px ( 1.20) dx 1.1.4. Toán tử Unita U(t) Toán tử Unita được định nghĩa như sau: O(f)|i//(0)} = |i//(f)) (1.52) Với \ĩự (o)),\iị/ (í)) là trạng thái ban đầu ( t=0) và trạng thái của hệ ở thời điểm t. Tác dụng của u (í) chuyển trạng thái ban đầu \y/ (0)) thành trạng thái k ( 0 ) ở thời điểm t. Toán tử u (t) không làm thay đổi điều kiện chuẩn hóa : ị ỵ (í)|ị^(í)) = (y/ (0) ữ (t)ũ (t) y/ (oỳj = ( ỵ (0)|(^ (o)) = 1 đòi hỏi ữ (t) là toán tử Ưnita: ũ \ t ) ũ ( t ) =\ (1.53) trong đó u là toán tử liên hợp Hecmite của U(t), I là toán tử đơn vị. - Xét toán tử Unita: ữ ịd t) = \ - - ồ d t v ’ n 8 ( 1.54) trong đó H là một toán tử . Dễ thấy toán tử u thỏa mãn phương trình vi phân bậc nhất sau: dữ ịt) — dt Thật vậy, vì : u [t + dt) = u (dt)ư (í) = ị ì - ^ U d t ^ U (í) Nên ta có: ữ ( t +d t ) - ữ ( t ) = ị - - Ũ d t Sữ (t) ( 1.56) Định nghĩa đạo hàm của toán tử u (0 dưới dạng biêu thức toán học: dữ ữ ( t +d t ) - u ( t ) - — = lim —------- ------ — dt AÍ->° At Nên từ ( 1.56) có thể suy ra phương trình vi phân bậc nhất ( 1.55). +Áp dụng phương trình toán tử ( 1.55) cho trạng thái ban đầu 1^(0)) thu được phương trình sau: d Mo) ( 1-57) Neu toán tử H không phụ thuộc thời gian, ta có thể thu được biểu thức khép kín đôi với toán tử u (t): i r; 1 w u (í) = lim 1 - - H í 77 n [n ) N = exp /H í' (1.58) V n s Khi đó từ ( 1.52) và ( 1.58), trạng thái của hệ ở thời điểm t được xác định dưới dạng: f ~ \ ỈHí |i//(í)) = exp 1^(0)) ( 1.59) \ / \ ĩ v~/VT— »oc l nJ Lưu ý rằng trị trung bình của toán tử H ở trạng thái \\ự (/)) bằng: ( v/ ( 0 | h | ^ ( 0 ) = ^ ( o)|í 7+(í)H Í7 (í)|^ (o )\ ( 1.60) = (ik (o)|h |^ (o)) Do toán tử H giao hoán với toán tử U(t) : 9 ữ +( t ) ũ ữ (t) = u +( t ) u ( t ) ũ = ũ Từ ( 1.60) suy ra H là toán tử Hamiltonian của hệ với năng lượng trung bình : ¥ H Kí hiệu vectơ riêng của toán tử Hamiltonian H là I —A ( với quy ước 0!=1 và A =1) thì ta có: v ’ k=0 k • X) = e Tổng quát, nếu I*) là vectơ riêng của A ứng với trị riêng Ẳ thì nó cũng là vecto riêng của hàm toán tử / ( í ) ứng với trị riêng / ( ắ ) : / ( Â ) |x ) = / ( l ) | x ) (1.24) 1.2.2. Tính chất của trị riêng và vectơ riêng của toán tử Hermite • Các trị riêng của toán tử Hermite là thực Thực vậy, lấy liên hợp hai vế phương trình trị riêng A A IJt) = Ả Ix) (1.25) ta được: (1.26) Nhân trái hai vế của (1.25) với (x X A X ) = {X\A\X và nhân phải hai vế của (1.26) với Ix) A X^Ị = Ẳ* (*|*) lưu ý rằng A là Hermite nên Ấ = Ằ , do đó hai vế sau của hai phương trình trên bằng nhau: Ằ { x X^Ị- Ẳ* ị x xỳ Theo định nghĩa vectơ riêng Ix) * 0 nên (*|*) =*0 , suy ra Ẳ là một số thực Ấ = Ẳ* 14 (1.27) • Vectơ riêng ứng với các trị riêng khác nhau của một toán tử Hermite thì trực giao với nhau Cho |jtj) và |jt2) là hai vectơ riêng ứng với hai trị riêng khác nhau \ và Ả 2 của toán tử Hermite A A \ x i) = Ằ i \xi) (1.28) A \ x 1) = Ằ 1 \ x 1) (1.29) Nhân trái (1.28) với bra (x21 ^ 2 Ă Xị ^ = Ă t ị x 2 | x , ^ Lấy liên hợp phương trình ( 1.29) : ( x 2 ịĂ = Ẳ 2 (x 2 | và nhân kết quả thu được với IJt,) về bên phải ^x2 A Xị ^ = Ẳ2 ị x 2 |xj ^ vì Â = Â nên suy ra: ^ \ { xi \ x \ ) = ^ i { xi \ x\) Theo giả thiết A, ^ ^2 , ta phải có hai vectơ riêng |x2) và |jt,) trực giao nhau ( x 2 |XI ) = 0 ( 1-30) 1.2.3.Phương trình đặc trưng của toán tử Trong cơ sở trực chuẩn {!«„)}, vectơ |x) có thể khai triển một cách duy nhất x ) = ax\u^Ị + a2 1w2) + ... + - Xem thêm -

Tài liệu liên quan

Tài liệu xem nhiều nhất