Đăng ký Đăng nhập
Trang chủ Khóa luận tốt nghiệp đánh giá ô nhiễm trầm tích biển...

Tài liệu Khóa luận tốt nghiệp đánh giá ô nhiễm trầm tích biển

.PDF
70
47
124

Mô tả:

1 Khóa luận tốt nghiệp MỤC LỤC Trang DANH MỤC CÁC KÍ HIỆU ................................................................................. 3 DANH MỤC BẢNG BIỂU .................................................................................... 4 DANH MỤC CÁC HÌNH VẼ ............................................................................... 5 MỞ ĐẦU ................................................................................................................ 6 Chương 1 – TỔNG QUAN VỀ LÝ THUYẾT ...................................................... 8 1.1. Lý thuyết về phân tích kích hoạt neutron ..................................................... 8 1.1.1. Giới thiệu ........................................................................................... 8 1.1.2. Nguyên tắc cơ bản trong phân tích kích hoạt ...................................... 9 1.1.3. Phổ thông lượng neutron trong lò phản ứng ..................................... 10 1.1.4. Phương trình phân tích kích hoạt ...................................................... 12 1.1.5. Các phương pháp chuẩn hóa trong phân tích kích hoạt neutron ....... 13 1.1.5.1. Phương pháp chuẩn hóa tuyệt đối ........................................... 13 1.1.5.2. Phương pháp chuẩn hóa tương đối.......................................... 14 1.1.5.3. Phương pháp chuẩn hóa đơn nguyên tố .................................. 15 1.1.5.4. Phương pháp chuẩn hóa kzero .................................................. 15 1.2. Giới thiệu về trầm tích biển ....................................................................... 17 1.2.1. Khái niệm và nguồn gốc hình thành trầm tích biển ........................... 17 1.2.2. Thành phần cấu tạo hóa học và khoáng chất trong trầm tích ............. 19 1.2.3. Một số tiêu chuẩn đánh giá mức độ ô nhiễm của các nguyên tố trong mẫu trầm tích biển .................................................................. 21 Chương 2 –THỰC NGHIỆM .............................................................................. 24 2.1. Quá trình chuẩn bị mẫu phân tích, mẫu chuẩn và lá dò .............................. 24 2.2. Thực nghiệm chiếu và đo mẫu ................................................................... 26 2.3. Xử lý phổ gamma và tính toán kết quả bằng chương trình k0-DALAT ...... 29 Chương 3 – BÁO CÁO KẾT QUẢ VÀ BÌNH LUẬN ........................................ 30 3.1. Kết quả phân tích hàm lượng .................................................................... 30 2 Khóa luận tốt nghiệp 3.2. Đánh giá phương pháp phân tích ............................................................... 35 3.3. Đánh giá mức độ ô nhiễm của các nguyên tố trong mẫu trầm tích biển ..... 37 3.3.1. Trầm tích biển ven bờ huyện Đông Hải, tỉnh Bạc Liêu .................... 37 3.3.2. Trầm tích biển ven bờ thuộc huyện U Minh, tỉnh Cà Mau ............... 47 KẾT LUẬN .......................................................................................................... 49 TÀI LIỆU THAM KHẢO ................................................................................... 51 PHỤ LỤC ............................................................................................................. 53 3 Khóa luận tốt nghiệp DANH MỤC CÁC KÍ HIỆU Kí hiệu Tiếng Anh Tiếng Việt Intrusmental Neutron Activation Phân tích Kích hoạt Neutron Analysis Dụng cụ NAA Neutron Activation Analysis Phân tích Kích hoạt Neutron k0-NAA kzero Standardization Method of Phương pháp Chuẩn hóa kzero Neutron Activation Analysis trong Phân tích Kích hoạt Neutron Igeo Geo-accumulation Index Chỉ số Lắng đọng Địa chất EFx Enrichment Factor for Element x Hệ số Làm giàu của Nguyên tố x LOD Limit of Detection Giới hạn Phát hiện IAEA International Atomic Energy Cơ quan Năng lượng Nguyên tử Agency Quốc tế European Economic Community Cộng đồng Kinh tế châu Âu INAA EEC 4 Khóa luận tốt nghiệp DANH MỤC CÁC BẢNG BIỂU Trang Bảng 2.1. Tọa độ khu vực lấy mẫu trầm tích ..................................................... 25 Bảng 2.2. Hệ phổ kế gamma sử dụng detector HPGe GMX-30190 tại PTN INAA, viện Nghiên cứu Hạt nhân Đà Lạt ............................................. 28 Bảng 2.3. Tóm tắt các chế độ chiếu- rã- đo cho mẫu trầm tích .......................... 28 Bảng 3.2. Hàm lượng trung bình, dải hàm lượng của 26 nguyên tố trong 10 mẫu trầm tích thuộc core GH01 .................................................................... 30 Bảng 3.4. Hàm lượng trung bình, dải hàm lượng của 26 nguyên tố trong 14 mẫu trầm tích thuộc core 160408-1 .............................................................. 31 Bảng 3.3. Hàm lượng trung bình, dải hàm lượng của 26 nguyên tố trong 11 mẫu trầm tích thuộc core 160408-2 .............................................................. 32 Bảng 3.1. Hàm lượng trung bình, dải hàm lượng của 26 nguyên tố trong 11 mẫu trầm tích thuộc core 170408-3 .............................................................. 33 Bảng 3.5. Hàm lượng trung bình, dải hàm lượng của 26 nguyên tố trong 13 mẫu trầm tích thuộc core 070408-1 .............................................................. 34 Bảng 3.6. Kết quả phân tích mẫu chuẩn trầm tích NMIJ CRM 7302a bằng quy trình k0-NAA ..................................................................................... 36 5 Khóa luận tốt nghiệp DANH MỤC CÁC HÌNH VẼ Trang Hình 1.1. Mô hình kích hoạt nhân bia tạo nhân phóng xạ.................................... 9 Hình 1.2. Thông lượng neutron biểu diễn theo năng lượng ............................... 12 Hình 2.1. Bản đồ khu vực lấy mẫu trầm tích biển ............................................. 24 Hình 2.2. Giao diện chương trình k0- DALAT .................................................. 29 Hình 3.1. Kết quả phân tích mẫu chuẩn NMIJ CRM 7302a bằng phương pháp k0 (trục tung biễu diễn tỉ số giữa giá trị thực nghiệm và giá trị certified,Y-error bar biễu diễn giá trị Z-score tương ứng) ................... 36 Hình 3.2. Biểu đồ thể hiện hệ số làm giàu EF theo độ sâu của 26 nguyên tố trong core GH01................................................................................................ 38 Hình 3.3. Biểu đồ thể hiện chỉ số lắng đọng địa chất Igeo theo độ sâu của 26 nguyên tố trong core GH01 .................................................................... 39 Hình 3.4. Biểu đồ thể hiện hệ số làm giàu EF theo độ sâu của 26 nguyên tố trong core 160408-1 .......................................................................................... 40 Hình 3.5. Biểu đồ thể hiện chỉ số lắng đọng địa chất Igeo theo độ sâu của 26 nguyên tố trong core 160408-1 ............................................................... 41 Hình 3.6. Biểu đồ thể hiện hệ số làm giàu EF theo độ sâu của 26 nguyên tố trong core 160408-2. ..................................................................................... 42 Hình 3.7. Biểu đồ thể hiện chỉ số lắng đọng địa chất Igeo theo độ sâu của 26 nguyên tố trong core 160408-2 ............................................................... 43 Hình 3.8. Biểu đồ thể hiện hệ số làm giàu EF theo độ sâu của 26 nguyên tố trong core 170408-3. ......................................................................................... 44 Hình 3.9. Biểu đồ thể hiện chỉ số lắng đọng địa chất Igeo theo độ sâu của 26 nguyên tố trong core 170408-3 ............................................................... 45 Hình 3.10. Biểu đồ thể hiện hệ số làm giàu EF theo độ sâu của 26 nguyên tố trong core 070408-1. ......................................................................... 47 Hình 3.11. Biểu đồ thể hiện chỉ số lắng đọng địa chất Igeo theo độ sâu của 26 nguyên tố trong core 070408-1 ............................................................... 48 6 Khóa luận tốt nghiệp MỞ ĐẦU Phân tích kích hoạt neutron (Neutron Activation Analysis - NAA) là một kỹ thuật phân tích hạt nhân đặc trưng có độ nhạy và chính xác cao, có khả năng phân tích định tính và định lượng đa nguyên tố trong các dạng mẫu khác nhau, được ứng dụng trong nhiều lĩnh vực như khai thác dầu khí, khảo sát ô nhiễm môi trường, nghiên cứu các quá trình nông nghiệp, nghiên cứu khảo cổ, khảo sát địa chất, v.v… Phương pháp chuẩn hóa k-zero trong NAA (hay còn gọi là k0-NAA) được giới thiệu lần đầu tiên vào năm 1974 bởi hai tác giả là F. De Corte và A. Simonits. Từ đó cho đến nay, k0-NAA luôn được quan tâm phát triển và sử dụng tại nhiều phòng thí nghiệm NAA trên thế giới và đã được hiệp hội phân tích hạt nhân (Nuclear Analytical Community) công nhận như một phương pháp phân tích chuẩn hóa [1]. Trong nghiên cứu trầm tích biển, phương pháp NAA mà cụ thể là k0-NAA là một phương pháp phân tích được các nhà nghiên cứu sử dụng rộng rãi để phân tích thành phần hóa học nhờ vào những đặc điểm nổi bật đã nêu ở trên. Ngoài những ưu điềm chung vốn có của NAA, k0-NAA còn có một số ưu điểm riêng như: (i) không cần sử dụng mẫu chuẩn hay mẫu tham khảo trong qui trình phân tích; (ii) sai số phân tích khi dùng k0-NAA mang tích hệ thống khá ổn định, điều này đặc biệt hữu ích khi nghiên cứu đối tượng; (iii) linh hoạt trong thực nghiệm (các điều kiện chiếu, đo) và dễ dàng tự động hóa trong qui trình phân tích [2]. Tại Viện Nghiên cứu hạt nhân Đà Lạt, kĩ thuật phân tích k0-NAA trên lò phản ứng đã được bắt đầu nghiên cứu từ những năm đầu thập niên 80 của thế kỷ trước. Đến năm 2002, chương trình k0-Dalat được dùng để tính toán hàm lượng nguyên tố do TS. Hồ Mạnh Dũng thiết kế và xây dựng chính thức ra đời và được sử dụng cho đến ngày nay. Việt Nam có đường bờ biển dài 3260 km và đặc khu kinh tế rộng gần 1,5 triệu km2, là một quốc gia có lãnh hải lớn trong khu vực Đông Nam Á. Theo thống kê cho thấy có gần 20% dân số Việt Nam sống dọc theo bờ biển và nhờ cậy vào biển. Biển là hệ sinh thái chịu ảnh hưởng không những từ hoạt động kinh tế, xã hội địa 7 Khóa luận tốt nghiệp phương mà còn chịu sự chi phối to lớn của những yếu tố xuyên quốc gia. Để phát triển kinh tế biển bền vững, nhiều quốc gia cũng như các tổ chức quốc tế đang đặt ra những yêu cầu cấp bách và cụ thể về quản lý và ngăn ngừa ô nhiễm môi trường biển. Một trong những nhiệm vụ hàng đầu là thực hiện khảo sát theo dõi đánh giá các loại ô nhiễm biển thông qua khảo sát đánh giá chất lượng trầm tích với mục đích xác định hiện trạng và xu thế diễn biến chất lượng môi trường biển, nguyên nhân và mức độ ô nhiễm, kịp thời phát hiện các sự cố môi trường nhằm giúp các nhà quản lý tìm ra các biện pháp hạn chế và ngăn ngừa ô nhiễm, bảo vệ và phát triển bền vững môi trường biển [3]. Trầm tích biển được xem là một trong những đối tượng có thể chỉ thị cho sự thay đổi của quá trình ô nhiễm môi trường, chủ thể của các tác nhân gây ô nhiễm và nó cũng cung cấp thông tin về quá trình chẳng hạn như quá trình trầm tích, động học nước, quá trình tương tác gây ô nhiễm, quá trình tương tác giữa sinh vật và trầm tích, và các chỉ thị mang tính lịch sử. Vì vậy, việc phân tích trầm tích bằng việc xác định các nguyên tố vết có thể giúp tái tạo lại lịch sử của sự biến đổi, tìm hiểu tác động do con người lên hệ sinh thái và đưa ra những biện pháp khắc phục [2]. Trong khóa luận này bên cạnh việc sử dụng phương pháp k0-NAA trên lò phản ứng để phân tích hàm lượng 26 nguyên tố trong 59 mẫu trầm tích biển thu thập tại 01 địa điểm của vùng bờ biển tỉnh Cà mau và 04 địa điểm của vùng bờ biển tỉnh Bạc liêu, tác giả còn dùng một số các tiêu chuẩn đánh giá mức độ ô nhiễm của các nguyên tố trong trầm tích để đánh giá mức độ nhiễm bẩn như: (1) phương pháp đánh giá hàm lượng các nguyên tố đa lượng và nguyên tố vết thông qua chỉ số lắng đọng địa chất Igeo; (2) đánh giá độ phì nhiêu của kim loại trong mẫu trầm tích qua phương pháp tính hệ số làm giàu EFx. Nội dung khóa luận được chia làm ba chương:  Chương 1- Tổng quan về lý thuyết  Chương 2 - Thực nghiệm  Chương 3 - Báo cáo kết quả và bình luận 8 Khóa luận tốt nghiệp Chương 1 TỔNG QUAN VỀ LÝ THUYẾT 1.1. Lý thuyết về phân tích kích hoạt neutron 1.1.1. Giới thiệu Phân tích kích hoạt neutron là phương pháp xác định hàm lượng nguyên tố trong mẫu vật đã được Georg von Hevesy và Hilde Levi áp dụng lần đầu tiên vào năm 1936. Đây được coi là một trong những phương pháp hiện đại và chính xác nhất trong việc xác định hàm lượng các nguyên tố dựa vào việc kích hoạt các hạt nhân hiện diện trong mẫu bằng hạt neutron. Ngày nay đây là một trong những phương pháp được sử dụng rộng rãi trên các lò phản ứng nghiên cứu và các phòng thí nghiệm hạt nhân trên toàn thế giới [4]. Mỗi hạt nhân trong mẫu đều có một xác suất bắt neutron xác định. Xác suất này có thứ nguyên được mô tả bằng đơn vị diện tích và được gọi là tiết diện bắt neutron (σ). Thông lượng neutron được biểu diễn là số neutron đi qua một đơn vị diện tích trong một đơn vị thời gian (n/cm2/sec). Các hạt nhân có cùng số proton nhưng khác số neutron là các đồng vị của nhau nhưng vẫn thuộc về cùng một nguyên tố. Tỉ số hạt nhân tương đối giữa các đồng vị của một nguyên tố nào đó gọi là độ phổ biến đồng vị (θ). Khi neutron tương tác với hạt nhân bia qua quá trình tán xạ không đàn hồi, một hạt nhân hợp phần ở trạng thái kích thích được tạo ra. Năng lượng kích thích của hạt nhân hợp phần chính là năng lượng liên kết của neutron với hạt nhân. Hầu hết các hạt nhân hợp phần đều có xu hướng trở về trạng thái cân bằng hơn bằng cách phát tia gamma tức thời đặc trưng. Trạng thái cân bằng mới này tạo ra một hạt nhân phóng xạ hay còn gọi là đồng vị phóng xạ. Các đồng vị này phân rã bằng cách phát ra một hay nhiều gamma trễ có năng lượng đặc trưng nhưng ở một tốc độ chậm hơn nhiều so với quá trình phát ra tia gamma tức thời ở trên. Tia gamma phát ra với một xác suất riêng được gọi là cường độ phát gamma tuyệt đối (γ). Các tia gamma có thể được phát hiện bằng detector bán dẫn có độ phân giải năng lượng cao. Trong 9 Khóa luận tốt nghiệp phổ gamma, năng lượng của đỉnh xác định sự có mặt của nguyên tố trong mẫu hay còn gọi là phép định tính, và diện tích đỉnh cho phép ta định lượng nguyên tố đó [1]. 1.1.2. Nguyên tắc cơ bản trong phân tich kích hoạt Cơ sở cho việc phân tích kích hoạt neutron là dựa vào phản ứng hạt nhân của các đồng vị bia với neutron lò phản ứng hạt nhân. Phản ứng được quan tâm nhiều nhất trong phân tích kích hoạt neutron là phản ứng (n, γ) với một hạt nhân X (nhân bia) hấp thụ một neutron sẽ tạo ra một nhân phóng xạ có cùng số Z nhưng khối lượng nguyên tử tăng lên một đơn vị và phát ra bức xạ gamma tức thời. Quá trình này diễn ra như sau: A Z X+ 01 n  ( A+1Z X) *  A+1 z X+γ Trong đó: A: số khối của nguyên tố bia, Z: số điện tích hạt nhân bia, Ký hiệu (*) biểu diễn nhân hợp phần. Hình 1.1. Mô hình kích hoạt nhân bia tạo nhân phóng xạ. 10 Khóa luận tốt nghiệp 1.1.3 Phổ thông lượng neutron trong lò phản ứng hạt nhân Neutron trong lò phản ứng hạt nhân ban đầu là các neutron nhanh được sinh ra từ phản ứng phân hạch nhiên liệu, sau đó các neutron này bị mất dần năng lượng và bị nhiệt hóa do tương tác với chất làm chậm (thường là nước) bên trong lò phản ứng. Do vậy ở các vị trí khác nhau trong lò phản ứng phân bố thông lượng neutron cũng bị thay đổi đáng kể. Ban đầu neutron sinh ra có năng lượng ban đầu khoảng từ 0 đến 20 Mev. Trong khoảng năng lượng này tính chất tương tác của neutron với vật chất là khác nhau trong miền năng lượng khác nhau. Vì vậy, một cách tương đối, neutron trong lò phản ứng được chia làm ba vùng năng lượng ứng với phân bố thông lượng khác nhau của mỗi vùng như sau: - Neutron nhiệt: có năng lượng nằm trong khoảng 0 < En < 0,5 eV. Neutron nhiệt có phổ neutron phân bố theo phân bố Maxwell-Boltzmann: E 2π dn = .e kTn .E 1/ 2dE 3/ 2 n (πkTn ) (1.1a) Trong đó: dn là số neutron với năng lượng khoảng từ E đến E+dE, n là số neutron tổng cộng trong hệ, k = 8,61x10-5 eV/K là hằng số Boltzmann, Tn là nhiệt độ neutron hay môi trường (đơn vị K). Ở nhiệt độ phòng thí nghiệm T = 293,6 K và E = kT = 0,0253 eV thì v = 2200 m.s-1. Phổ thông lượng của neutron nhiệt tại nhiêt độ Tn phân bố như sau: ' m (E) =  m E (kTn ) 2 e -E/(kTn ) (1.1b) Với  m - thông lượng neutron toàn phân theo phân bố Maxwell. Khi đó phân bố thông lượng tương ứng là: ' m (v) = n' m (v).v (1.1c) - Neutron trên nhiệt: Có năng lượng trong khoảng từ 0,5 eV < E < 0,5 MeV. Vùng này còn được gọi là vùng trung gian hay vùng cộng hưởng. Sự phân bố neutron trên 11 Khóa luận tốt nghiệp nhiệt tuân theo quy luật 1/E và phân bố thông lượng neutron trên nhiệt tỉ lệ nghịch với năng lượng neutron:  e (E) = e (1.2a) E Trong đó  e (E) - thông lượng neutron trên nhiệt ở năng lượng E và  e - thông lượng neutron trên nhiệt. Nhưng do cấu trúc vật chất trong lò phản ứng nên phổ neutron nhiệt sẽ bị lệch khỏi quy luật 1/E và được thay bởi dạng 1/E1+α:  e (E) = e E 1+α (1eV) α (1.2b) Trong đó α là hằng số đặc trưng cho sự lệch phổ lý tưởng và nó độc lập với năng lượng. - Neutron nhanh (neutron phân hạch): là vùng neutron sinh ra trong phân hạch và có năng lượng E > 0,5 MeV. Phân bố neutron nhanh cực đại ở 0,7 MeV và được mô tả bởi phân bố Watt. Qua quá trình tương tác với chất làm chậm, neutron nhanh bị nhiệt hóa và chuyển thành neutron trên nhiệt và nhiệt. Do sự tiếp diễn của quá trình phân hạch nên cả neutron nhanh, nhiệt và trên nhiệt cùng tồn tại với nhau. Một số công thức bán thực nghiệm mô tả phổ neutron nhanh thường được dùng: Phổ phân hạch của Watt:  f (E) = 0,484. f .e -Esinh 2E (1.3a) Phổ phân hạch của Cranberg:  f (E) = 0,453. f .e -E/0,965sinh 2,29E (1.3b) Phổ phân hạch của Grundl và Usner:  f (E) = 0,77. f . E.e - 0,776E (1.3c) Trong đó  f và  f (E) là thông lượng neutron nhanh và thông lượng neutron nhanh ở năng lượng E [4]. 12 Khóa luận tốt nghiệp Hình 1.2 Thông lượng neutron biểu diễn theo năng lượng 1.1.4. Phương trình phân tích kích hoạt Sau khi kích hoạt nhân bia từ lò phản ứng, và hoạt độ của các nhân hình thành được đo bằng hệ phổ kế gamma sử dụng detector bán dẫn Germanium siêu tinh khiết (HPGe), ta có được mối quan hệ giữa số đếm (Np) và tốc độ phản ứng (R) được cho bởi phương trình sau: N p /t m R = G th . th .σ 0 +G e . e .I(α) = S.D.C.W N A .θ.ε p .γ/A (1.4) Theo quy ước Hogdahl, phương trình cơ bản cho việc xác định một nguyên tố dùng phản ứng (n, γ) và phổ kế γ là: Np / tm  W..N A . p .. G th  th  0  G e e I( ) S.D.C M (1.5) Với Np/tm Tốc độ xung đo được của đỉnh gamma quan tâm, đã được hiệu chỉnh cho thời gian chết và các hiệu ứng ngẫu nhiên cũng như trùng phùng thực [4]. NA : Hằng số Avogadro, Np : Diện tích đỉnh, 13 Khóa luận tốt nghiệp tm : Thời gian đo, ti : Thời gian chiếu, td : Thời gian rã, W : Khối lượng nguyên tố được chiếu xạ (g), θ : Độ phổ cập đồng vị bia, M : Khối lượng nguyên tử của nguyên tố bia, Gth : Hệ số hiệu chỉnh tự che chắn neutron nhiệt, Ge : Hệ số hiệu chỉnh tự che chắn neutron trên nhiệt, S = 1-exp(-λt i ) : Hệ số hiệu chỉnh thời gian chiếu, D = exp(-λt d ) : Hệsố hiệu chỉnh thời gian phân rã, C = [1-exp(-λt m )]/(λt m ) : Hệ số hiệu chỉnh thời gian đo, γ : Cường độ tuyệt đối của tia gamma được đo, ε p : Hiệu suất ghi tuyệt đối tại đỉnh năng lượng, I : Tích phân cộng hưởng hay tiết diện phản ứng trên nhiệt, α : Độ lệch khỏi quy luật 1/E tại vùng neutron trên nhiệt, σ0 : Tiết diện phản ứng (n, γ) có vận tốc 2200ms-1. Theo quy ước Hogdahl, phương trình cho phép ta tính hàm lượng (g) của nguyên tố như sau: W Np / tm M 1 . S.D.C N A ... p G th . th . 0  G e . e .I() . (1.6) 1.1.5. Các phương pháp chuẩn hóa trong phân tích kích hoạt neutron 1.1.5.1. Phương pháp chuẩn hóa tuyệt đối Hàm lượng nguyên tố ρ(μg/g) có thể thu được bằng việc chiếu kèm mẫu với một monitor chuẩn (*) được tính theo phương trình: N p /t m Mθ *σ *0 γ * G *th f+G *eQ *0 (α) ε p w.D.S.C ρ(μg/g) = . * . . * .10 6 * A sp M θσ 0 γ G th f+G eQ 0 (α) ε p (1.7) 14 Khóa luận tốt nghiệp f =  th : Tỉ số thông lượng neutron nhiệt/trên nhiệt, e * A *sp =  N p /t m    : Hoạt độ riêng của monitor (*) (phân rã/giây/gam), W.S.D.C   0,429 I (α) Q 0 -0,429 = + Q 0 (α) = 0 σ0 E r (2α+1).0,55  Với: w: Khối lượng mẫu (g), W: Khối lượng nguyên tố làm chuẩn (g). Phương pháp chuẩn hóa tuyệt đối về mặt thực nghiệm thì rất đơn giản, chỉ cần xác định được chính xác các thông số A, θ, γ, σ0, v.v.. của nguyên tố phân tích và mornitor. Phương pháp này đòi hỏi phải sử dụng một loạt số liệu hạt nhân và số liệu thực nghiệm nên kết quả phân tích sẽ bị ảnh hưởng bởi nhiều nguồn sai số, vì vậy phương pháp này ít được sử dụng trong thực tế [5]. 1.1.5.2. Phương pháp chuẩn hóa tương đối Trong phương pháp chuẩn hóa tương đối mẫu cần đo được chiếu kèm với một mẫu chuẩn với hàm lượng Ws đã được biết trước, mẫu cần đo và và mẫu chiếu được đo trong cùng một điều kiện hình học do đó các thông số liên quan sẽ bị triêt tiêu và phương trình (1.4) sẽ được viết lại như sau: N m /t m w.S.D.C .10 6 ρ(μg/g) = *  N p /t m  (1.8)    W.S.D.C  Cần chú ý là mẫu phân tích và mẫu chuẩn sử dụng trong phương pháp này phải đồng nhất về thành phần hóa học (đồng matrice), dạng hình học mẫu, cấu hình đo, phải được hiệu chỉnh hiệu ứng tự che chắn neutron khi chiếu và hiệu chỉnh hiệu ứng suy giảm tia gamma trong khi đo mẫu. Tuy nhiên, nhược điểm của phương pháp này là trong một số trường hợp không tìm được mẫu chuẩn có thành phần và hàm lượng tương đồng với mẫu phân tích 15 Khóa luận tốt nghiệp dẫn đến khó khăn trong việc xác định hàm lượng của nguyên tố trong mẫu phân tích. 1.1.5.3. Phương pháp chuẩn hóa đơn nguyên tố Chuẩn hóa đơn nguyên tố là phương pháp dựa trên việc gộp các thông số hạt nhân, điều kiện chiếu xạ và điều kiện đo vào trong hệ số k, lúc đó ta tính hàm lượng nguyên tố như sau: N p /t m ρ(μg/g) = w.S.D.C . 1 .10 6 *  N p /t m  k (1.9  W.S.D.C    Đối với các nguyên tố được lựa chọn làm chuẩn thì hệ số k được xác định thông qua thực nghiệm: M * .θ.σ.γ G th f+G e Q 0 (α) ε p k= . . M.θ * .σ * .γ * G *th f+G *e Q(α) ε *P (1.10) Ưu điểm của phương pháp này là dễ dàng cho việc phân tích tất cả các nguyên tố mà không cần mẫu chuẩn đa nguyên tố. Tuy nhiên, phương pháp này đòi hỏi ta phải xác định chính xác thư viện hệ số k cho tất cả các nguyên tố cần phân tích đối với nguyên tố đơn chuẩn, mà hệ số này lại phụ thuộc vào phổ neutron (cấu hình hệ chiếu) và hiệu suất ghi của detector (cấu hình hệ đo), do đó, khi có bất kỳ một sự thay đổi của hệ chiếu hay hệ đo thì phải xác định lại toàn bộ thư viện hệ số k, điều này làm cho phương pháp chuẩn hóa đơn nguyên tố thiếu đi tính linh hoạt [5]. 1.1.5.4. Phương pháp chuẩn hóa k0 Việc sử dụng các phương pháp chuẩn hóa thông thường trong thực tế dùng để phân tích mẫu gặp phải những khó khăn nhất định về tính linh hoạt trong điều kiện đo cũng như ảnh hưởng của sai số trong phép đo. Người ta đã đưa ra một phương pháp mới là phương pháp chuẩn hóa k0-NAA để khắc phục được các nhược điểm cũng như thỏa mãn được yều cầu về độ chính xác cao, linh họat và thuận tiện trong 16 Khóa luận tốt nghiệp việc tính toán. Dựa trên hệ số k từ phương pháp chuẩn hóa đơn nguyên tố, hệ số k0 trong phương pháp chuẩn hóa k0 được xác định theo phương trình sau: k0 = M * .θ.γ.σ 0 M.θ * .γ * .σ *0 (1.11) Hằng số k0 là đại lượng độc lập với điều kiện chiếu và đo, đóng vai trò quan trọng trong việc tính toán hàm lượng mẫu phân tích. Mẫu và mẫu chuẩn Au có thể có hình dạng và các đặc điểm hấp thụ neutron và tia gamma khác nhau. Quá trình hiệu chỉnh những khác biệt cũng được xem là một phần không thể thiếu của phương pháp k0. Mẫu phân tích chỉ cần chiếu cùng với một mẫu so sánh (hay còn gọi là lá dò thông lượng), thường là Au. Các sai số trong việc tính toán thông thường cho phép sai số của hằng số k0 là dưới 3,5% [4]. Theo quy ước Hogdahl, hằng số k0 của các đồng vị được xác định bằng thực nghiệm dựa vào phương trình:  N p /t m   W.S.D.C    a 1 f+Q 0,Au (α) ε p,Au k 0,Au (a) = . . . .10 6  N p /t m  ρ(a) f+Q 0,a (α) ε p,a  w.S.D.C    Au (1.12) Với k0 được xác định bằng thực nghiệm với độ chính xác cao (~ 1%), chất so sánh tối ưu là vàng (Au) dùng phản ứng Au 197(n, γ) Au 198 với các số liệu hạt nhân: σ 0 = 98,65 ± 0,9 barn, Q 0 = 15,71 ± 0,28 , I 0 = 1550 ± 28 barn, (a) là hàm lượng nguyên tố a có đơn vị là g/g. Khi đó công thức tính hàm lượng của nguyên tố quan tâm a trở thành: N p /t m * G *th f+G *e Q *0 (α) ε p 1 w.S.D.C ρ(μg/g) = . . . .10 6 * k 0,Au (a) G th f+G e Q 0 (α) ε p A sp (1.13) 17 Khóa luận tốt nghiệp Phương trình (1.13) được gọi là phương trình cơ bản trong phương pháp chuẩn hóa k0-INAA [1]. Với những ưu điểm của phương pháp k0, các phòng thí nghiệm NAA của Cơ quan Năng lượng Nguyên tử Quốc tế (IAEA) và Cộng đồng kinh tế châu Âu (EEC) đã khuyến cáo dùng k0 như một phương pháp chuẩn trong nhiều đối tượng nghiên cứu. Với vai trò quan trọng như vậy, phương pháp k0-INAA đã và đang ngày càng được nghiên cứu phát triển và hoàn thiện [1]. 1.2. Giới thiệu về trầm tích biển Trong tự nhiên trầm tích biển là môi trường sống của các loài thủy sinh học, nguồn hấp thụ dinh dưỡng của các loài thực vật biển, mỗi sự tác động lên môi trường biển đều có thể được biểu hiện thông qua sự thay đổi về thành phần tính chất của trầm tích, rõ nhất là sự thay đổi của hàm lượng của các nguyên tố chứa trong trầm tích. Tùy thuộc vào mục đích nghiên cứu, điều kiện tự nhiên và đường bờ biển của mỗi quốc gia, thông thường nghiên cứu về trầm tích biển thường được sử dụng như một công cụ hữu ích để các nhà khoa học tìm hiểu một số thông tin quan trọng về vùng biển khảo sát như xác định tốc độ bồi lắng của trầm tích thông qua việc xác định vị trí của đồng vị phóng xạ (137Cs) xuất hiện từ các vụ thử bom hạt nhân hay từ vụ nổ lò phản ứng Chernobyl, định tuổi trầm tích sử dụng 210 Pb, nghiên cứu trầm tích để phục vụ công tác dò tìm khoáng sản hoặc dầu mỏ dưới lòng biển, đánh giá chất lượng hệ sinh thái trong vùng biển, xác định cấu trúc địa tầng, v.v… Trong khuôn khổ khóa luận này tác giả chủ yếu đề cập tới nghiên cứu về đối tượng trầm tích ở một số địa điểm ven bờ biển thuộc hai tỉnh Bạc Liêu và Cà Mau nhằm mục đích chính để đánh giá mức độ ô nhiễm của các nguyên tố, tìm hiểu và đưa ra một vài nguyên nhân chính gây nên sự ô nhiễm lên trầm tích biển. 1.2.1. Khái niệm và nguồn gốc hình thành trầm tích biển Trầm tích biển là một dạng vật chất không hòa tan trong nước biển chủ yếu là các hạt cát sỏi, các mảnh vụn vô cơ, hữu cơ được vận chuyển từ đất liền ra biển bởi các dòng nước và gió hoặc do sự tác động của thủy triều, mặt khác trầm tích biển có thể 18 Khóa luận tốt nghiệp là phần còn lại của các sinh vật biển sau khi phân hủy hoặc các sản phẩm từ sự phun trào của hoạt động núi lửa ngầm dưới lòng đại dương, do sự kết tủa của các khoáng chất trong lòng biển, và các vật chất từ bên ngoài vũ trụ rơi xuống lòng đại dương. Lâu dần các vật chất này tích tụ và lắng đọng lại trên bề mặt đáy biển [6]. Phần lớn các dạng trầm tích tồn tại dưới đáy biển có nguồn gốc tự nhiên như tro bụi, nham thạch sinh ra từ hoạt động phun trào của núi lửa, đất đá do quá trình bào mòn dưới sự tác động của mưa gió hoặc các dòng sông ở lục địa chảy ra biển, một số các trầm tích có nguồn gốc từ sinh vật sống trong lòng biển hay các hạt bụi và mảnh vỡ từ bên ngoài vũ trụ. Tuy nguồn gốc hình thành khác nhau nhưng nhìn chung trong tự nhiên quá trình hình thành trầm tích dưới đáy biển có quan hệ mật thiết với các yếu tố tự nhiên như thủy triều, sóng biển và các dòng hải lưu. Kích cỡ các hạt trầm tích phản ánh độ sâu của mực nước biển, kích cỡ cho thấy sự khác nhau về năng lượng trong quá trình dịch chuyển của các hạt trầm tích. Do sự khác biệt về kích cỡ hạt trầm tích ở mỗi độ sâu khác nhau là không giống nhau nên người ta thường chia trầm tích trong tự nhiên làm hai loại đó là trầm tích biển lục địa và trầm tích biển khơi. Đặc điểm của trầm tích biển lục địa hay còn được gọi là trầm tích thềm lục địa, được giới hạn trong khoảng độ sâu từ 100 đến 200 m gần bờ biển. Trầm tích biển lục địa hình thành trong quá trình tích tụ và bồi lắng của các hạt đất đá được mang ra từ các dòng sông do sự tác động bào mòn của mưa, gió lên bề mặt lớp vỏ trái đất. Tuy chỉ bao phủ khoảng 25% diện tích bề mặt đáy biển nhưng trầm tích lục địa chiếm hơn 90% thể tích của tất cả các loại trầm tích biển khác gộp lại. Dựa trên vùng hoạt động của thủy triều và sóng biển trầm tích biển lục địa được chia làm hai loại là trầm tích vùng duyên hải và trầm tích thềm lục địa. Trầm tích vùng duyên hải được giới hạn trong khoảng độ sâu 20 - 30 m và rộng một vài ki-lô-mét, bao gồm các vịnh, vùng rìa các đảo và các bãi biển. Sự khác biệt về đặc tính kích thước và thành phần cấu tạo của trầm tích vùng duyên hải phụ thuộc vào ba yếu tố: (i) tốc độ dòng chảy của các con sông ở lục địa, (ii) các yếu tố tự nhiên như thủy triều, sóng và gió, (iii) phụ thuộc vào sự thay đổi của mực nước biển. Mối quan hệ giữa ba yếu 19 Khóa luận tốt nghiệp tố trên ảnh hưởng tới các mẫu trầm tích biển thu được. Mặt khác trầm tích thềm lục địa là vùng trầm tích nằm trong khoảng giữa trầm tích biển khơi và trầm tích vùng duyên hải, sự hiện diện của trầm tích thềm lục địa phản ảnh sự tăng của mực nước biển. Đại đa số các hạt trầm tích biển lục địa có kích cỡ hạt lớn và thành phần cấu tạo chủ yếu là từ hợp chất của Al - Silicats hoặc đất đá. Nhìn chung trầm tích biển lục địa có tốc độ lắng đọng tương đối cao. Trầm tích biển khơi chiếm khoảng 75% bề mặt đáy biển, được hình thành do quá trình lắng đọng của các hạt đất đá hay các mảnh vụn vô cơ hoặc hữu cơ ở độ sâu khoảng 3000 đến 4000 m dưới đáy biển. Đặc điểm của trầm tích biển khơi là kích cỡ các hạt mịn và có tỉ lệ lắng đọng tương đối thấp. Dựa vào thành phần cấu tạo hóa học chúng ta có thể chia trầm tích biển khơi thành hai loại chính: trầm tích có nguồn gốc hữu cơ và nguồn gốc vô cơ. (i) trầm tích có nguồn gốc hữu cơ được tạo thành từ quá trình phân hủy xác các loài động vật và thực vật sống trong lòng biển, thành phần chủ yếu trong trầm tích hữu cơ chủ yếu là CaCO3 và SiO2. Nguồn đóng góp canxi cacbonat vào trầm tích đa số từ tảo đơn bào, sinh vật nguyên sinh, thực vật phù du và các loài ốc biển, sên biển. Sự đa đạng của chủng loại trầm tích hữu cơ tùy thuộc vào đặc tính sinh học của các loài sinh vật biển sống trong khu vực đó. (ii) trầm tích có nguồn gốc vô cơ chủ yếu là các hợp chất của nhôm silicat và các hợp chất Oxit kim loại như Mn, Fe, Cu. Nguồn gốc trầm tích vô cơ có thể được chia làm hai thành phần chính. Thứ nhất là trầm tích có nguồn gốc từ trầm tích biển lục địa do các dòng hải lưu mang tới, loại thứ hai có nguồn gốc do các hoạt động địa chất hay các phản ứng hóa học xảy ra trong lòng đại dương. 1.2.2. Thành phần cấu tạo hóa học và khoáng chất trong trầm tích Về mặt cấu tạo hóa học và khoáng chất, thành phần hóa học hiện diện trong trầm tích phụ thuộc chủ yếu vào nguồn gốc hình thành và đặc tính của từng vùng biển khác nhau. Theo đó thành phần cấu trúc hóa học và khoáng chất của trầm tích phụ thuộc vào bốn nhóm trầm tích sau: Thành phần trầm tích có nguồn gốc lục địa, thành phần trầm tích có nguồn gốc sinh vật, thành phần trầm tích có nguồn gốc từ 20 Khóa luận tốt nghiệp sự lắng đọng hay kết tủa hóa học và cuối cùng là thành phần trầm tích có nguồn gốc từ bên ngoài vũ trụ. a) Thành phần trầm tích có nguồn gốc lục địa: là dạng trầm tích có nguồn gốc từ sự di chuyển của các hạt đất đá do sự phong hóa hay bào mòn của các yếu tố tự nhiên lên lớp bề mặt lục địa, bụi khí, nham thạch từ hoạt động phun trào của núi lửa từ đất liền. Phần lớn trầm tích có nguồn gốc lục địa lắng đọng chủ yếu trong vùng biển gần bờ, vùng cửa sông. Chúng bao phủ khoảng gần 45% diện tích bề mặt đáy biển, thành phần khoáng chất chủ yếu là hợp chất của SiO2 như các tinh thể thạch anh, hoặc hợp chất của nhôm như đất sét. Tốc độ lắng đọng của trầm tích có nguồn gốc từ lục địa dưới đáy biển khoảng gần 1/1000 (m/năm). b) Thành phần trầm tích có nguồn gốc sinh vật: là những trầm tích có cấu tạo chủ yếu là hóa thạch hoặc những phần còn lại của sinh vật sống trong lòng biển sau khi bị phân hủy. Tốc độ lắng đọng của trầm tích có nguồn gốc sinh học vào khoảng 1/1000 (cm/năm) và kích cỡ hạt trung bình thường khoảng 0,005 mm. Vì đặc tính kích thước nhỏ nên trầm tích có nguồn gốc sinh vật thường tồn tai dưới dạng bùn là chủ yếu, bao gồm hai loại bùn chính là bùn Silicat và bùn đá vôi với thành phần hóa học chính theo thứ tự là CaCO3và SiO2 hoặc SiO2.nH2O. Bùn Silicat với thành phần chính là Silic, bao phủ khoảng 15% bề mặt đáy biển. Có nguồn gốc chủ yếu từ tảo và các loài thực vật biển, sự phân bố của bùn Silicat phản ảnh đặc tính sinh học của mỗi vùng biển. Bùn đá vôi bao phủ khoảng ~ 50% bề mặt biển, thành phần chính của bùn đá vôi là CaCO3. Bùn đá vôi bắt nguồn tự quá trình phân hủy của các loài động vật sống trong biển, chủ yếu là các loài giáp xác, san hô. Thành phần CaCO3 có tính tan mạnh theo độ sâu, tại những nơi có áp suất cao hoặc trong môi trường Axit, do vậy bùn đá vôi chủ yếu được tìm thấy tại những vùng nước nông nơi có nhiệt độ môi trường cao. c) Thành phần trầm tích có nguồn gốc từ sự kết tủa hóa học: được hình thành từ sự kết tủa của các kim loại không hòa tan tạo thành các Manganese nodule (thành
- Xem thêm -

Tài liệu liên quan