Đăng ký Đăng nhập
Trang chủ Hệ Boussinesq Boussinesq trong cơ học chất lỏng...

Tài liệu Hệ Boussinesq Boussinesq trong cơ học chất lỏng

.PDF
30
695
120

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN ĐỨC LỘC HỆ BOUSSINESQ/BOUSSINESQ TRONG CƠ HỌC CHẤT LỎNG LUẬN VĂN THẠC SĨ TOÁN HỌC Hà Nội - Năm 2013 ĐẠI HỌC QUỐC GIA HÀ NỘI ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN ĐỨC LỘC HỆ BOUSSINESQ/BOUSSINESQ TRONG CƠ HỌC CHẤT LỎNG Chuyên ngành: TOÁN HỌC TÍNH TOÁN Mã số : 60 46 30 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. CUNG THẾ ANH Hà Nội - Năm 2013 Mục lục Lời cảm ơn ii Lời nói đầu iii Bảng kí hiệu vii 1 Thiết lập các hệ Boussinesq/Boussinesq 1 1.1 Các phương trình Euler và mô hình đầy đủ . . . . . . . . . . . . . 1 1.2 Khai triển tiệm cận của các toán tử . . . . . . . . . . . . . . . . . 5 1.3 Thiết lập các hệ Boussinesq/Boussinesq . . . . . . . . . . . . . . . 8 2 Tính đặt đúng và xấp xỉ số của một hệ Boussinesq/Boussinesq 11 2.1 Tính đặt đúng của bài toán giá trị biên ban đầu trong trường hợp a2 , a4 > 0, a1 = a3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Xấp xỉ số của bài toán giá trị biên ban đầu trong trường hợp a2 , a4 > 0, a1 = a3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Kết luận 20 Tài liệu tham khảo 21 i Lời nói đầu Sự lan truyền của sóng biên độ nhỏ trên bề mặt chất lỏng lí tưởng (trên đáy nằm ngang) dưới tác dụng của trọng lực được mô tả bởi họ các hệ Boussinesq [8],  (1 − εa2 ∆)∂t ζ + ∇ · V + ε(∇ · (ζV ) + a1 ∆∇ · V ) = 0, (1) (1 − εa4 ∆)∂t V + ∇ζ + ε( 1 ∇|V |2 + a3 ∆∇ζ) = 0, 2 với a1 , a2 , a3 , a4 xác định như sau:  2  a1 = θ 1 − 2 6 a3 = 1 − θ2 µ, 2  λ, a2 = a4 = θ2 1 − 2 6  (1 − λ), 1 − θ2 (1 − µ), 2 trong đó 0 ≤ θ ≤ 1 và λ, µ ∈ R là ba tham số. Đại lượng ζ(X, t) + h0 , X ∈ Rd (d = 1, 2) là độ sâu toàn phần của chất lỏng tại điểm X tại thời điểm t, h0 là độ sâu nước không xoáy. Biến V (X, t) là vận tốc ngang tại điểm (X, z) = (X, θh0 ) tại thời điểm t. Xấp xỉ Boussinesq có hiệu lực khi ε = a/h0  1, λ/h0  1, trong đó a là cao độ lớn nhất trên mức h0 , và λ là bước sóng điển hình. Các hệ Boussinesq mô tả chuyển động của sóng dài có biên độ nhỏ trên bề mặt chất lỏng lí tưởng. Hơn nữa, như được đề cập trong [8], từ hệ (1), ta có thể thu được rất nhiều hệ quen thuộc trong vật lí toán như: hệ Boussinesq cổ điển, hệ Kaup, hệ Bona-Smith, hệ cặp BBM, hệ cặp KdV, hệ cặp KdV-BBM, hệ cặp BBM-KdV,... Tính đặt đúng địa phương của bài toán Cauchy và bài toán giá trị biên ban đầu cho các hệ dạng Boussinesq đã được nghiên cứu bởi nhiều nhà toán học (xem [5, 7, 9, 13, 14, 15, 16, 19]). Trong đó, Bona, Colin và Lannes [10] đã chứng minh được nghiệm của các hệ đã đề cập đến đều cho xấp xỉ tốt nghiệm của các phương trình Euler trên khoảng thời gian dài cỡ 1/ε. Gần đây, kết quả này đã được mở rộng trong trường hợp đáy không phẳng bởi Chazel [12]. Song song với lí thuyết sóng nước bề mặt, lí thuyết toán học về sóng trên mặt phân cách giữa hai lớp chất lỏng không trộn lẫn với mật độ khác nhau cũng có sức hút thú vị vì đây là sự lí tưởng đơn giản nhất của sự lan truyền sóng iii Lời nói đầu trong và vì sự phức tạp và những thách thức của việc mô hình hóa, các vấn đề định tính và xấp xỉ số nghiệm xuất hiện khi nghiên cứu hệ này. Vì vậy, trong vài thập kỉ gần đây, lí thuyết sóng trong đã được rất nhiều nhà toán học và nhà vật lí nghiên cứu, đặc biệt là tính đặt đúng và mô hình tiệm cận. Một bước tiến quan trọng trong lí thuyết sóng trong đạt được vào năm 2008 bởi Bona, Lannes và Saut [11]. Họ đã đề xuất một phương pháp tổng quát thiết lập một cách hệ thống và cho một lớp lớn các chỉnh thể, các mô hình tiệm cận cho sự lan truyền sóng trong tại mặt phân cách giữa hai lớp chất lỏng không trộn lẫn với mật độ khác nhau, dưới ảnh hưởng của trọng lực, mặt trên là cứng, đáy phẳng và không xuất hiện sức căng bề mặt. Họ đã thiết lập một vài mô hình cổ điển và một số mô hình mới. Họ cũng chứng minh rằng các mô hình tiệm cận là tương thích với hệ phương trình Euler đầy đủ. Các kết quả này sau đó được mở rộng sang trường hợp đáy không phẳng và có sức căng bề mặt [1]. Trong luận văn này, tác giả sẽ tìm hiểu bài toán sóng trong với đáy phẳng và không xuất hiện sức căng bề mặt khi dòng có cấu trúc Boussinesq ở cả miền chất lỏng trên và dưới. Hệ thống bao gồm một chất lỏng thuần nhất có độ sâu d1 với mật độ %1 nằm trên một lớp chất lỏng thuần nhất khác có độ sâu d2 với mật độ %2 > %1 . Đặt a là biên độ điển hình của sự biến dạng mặt phân cách và λ là bước sóng điển hình. Ta đưa ra các tham số sau: γ := %1 , %2 δ := d1 , d2 ε := a , d1 d21 , λ2 µ := ε2 := a = εδ, d2 µ2 := d22 µ = 2. 2 λ δ Dựa theo cách tiếp cận trong [2, 11], khi ε ∼ µ ∼ ε2 ∼ µ2  1, theo các biến không thứ nguyên, mô hình đầy đủ sẽ tương thích với hệ Boussinesq/Boussinesq dưới đây:  δ2 − γ 1   (1 − µa ∆)∂ ζ + ∇ · v + ε ∇ · (ζvα ) + µa1 ∇ · ∆vα = 0  α 2 t γ+δ (γ + δ)2 (2) ε δ2 − γ  2  ∇|vα | + µa3 (1 − γ)∆∇ζ = 0, (1 − µa4 ∆)∂t vα + (1 − γ)∇ζ + 2 2 (γ + δ) trong đó ζ là độ lệch so với mặt phân cách ở trạng thái tĩnh, vα = (1 − µα∆)−1 v với v là "biến vận tốc" và các hằng số a1 , a2 , a3 , a4 cho bởi: a1 = (1 − α1 )(1 + γδ) − 3δα(γ + δ) 2 3δ(γ + δ) a4 = α(1 − α2 ). a3 = αα2 , , a2 = γα1 , 3(γ + δ) Quan hệ phân tán liên kết với hệ (2) là 2 2 ω = |k| 1 − µa1 |k|2 )(1 − γ)(1 − µa3 |k|2 ) ( γ+δ (1 + µa2 |k|2 )(1 + µa4 |k|2 ) iv . Lời nói đầu Do đó, hệ (2) là đặt đúng tuyến tính khi a2 , a4 ≥ 0 và a1 , a3 ≤ 0. Khi γ = 0, δ = 1, ta khôi phục lại hệ Boussinesq (1) cho sóng bề mặt. Hệ Boussinesq/Boussinesq được thiết lập lần đầu tiên trong [11] khi đáy phẳng, và sau đó trong [2] trong hoàn cảnh tổng quát hơn khi đáy không phẳng và có sức căng bề mặt. Tính đặt đúng địa phương của bài toán Cauchy đối với các hệ Boussinesq/Boussinesq được nghiên cứu khá trọn vẹn trong các công trình [2, 3]. Trong luận văn này, tác giả sẽ nghiên cứu tính đặt đúng và xấp xỉ số nghiệm của bài toán giá trị biên ban đầu đối với hệ Boussinesq/Boussinesq (2) trong một trường hợp đặc biệt: a2 , a4 > 0, a1 = a3 = 0. Ngoài lời cảm ơn, lời nói đầu, bảng kí hiệu, kết luận và tài liệu tham khảo, luận văn được chia thành hai chương: Chương 1: Thiết lập hệ Boussinesq/Boussinesq Dựa vào hai bài báo [2] và [11] trong mục Tài liệu tham khảo, chương 1 sẽ thiết lập hệ Boussinesq/Boussinesq cho bài toán sóng trong với đáy phẳng và không xuất hiện sức căng bề mặt khi dòng có cấu trúc Boussinesq ở cả miền chất lỏng trên và dưới. Chương 2: Tính đặt đúng và xấp xỉ số của một hệ Boussinesq/Boussinesq Chương 2 sẽ chứng minh tính đặt đúng (sự tồn tại và duy nhất nghiệm) và đưa ra phương pháp xấp xỉ số nghiệm của bài toán giá trị biên ban đầu của hệ Boussinesq/Boussinesq đã được thiết lập trong Chương 1 trong trường hợp a2 , a4 > 0, a1 = a3 = 0. Các kết quả của chương này là mới và đang được hoàn thiện trước khi công bố (xem [4]). Các kí hiệu: Kí hiệu X là biến d-chiều theo chiều ngang (d = 1, 2). Vì vậy, X = x khi d = 1 và X = (x, y) khi d = 2, z là biến theo chiều dọc. Kí hiệu ∇ và ∆ lần lượt là toán tử gradient và toán tử Laplace, ∇X,z và √ ∆X,z là phiên bản (d + 1)-biến. Với µ > 0, ta kí hiệu ∇µX,z = ( µ∇T , ∂z )T và ∆µX,z = ∇µX,z · ∇µX,z = µ∆X + ∂z2 . Nếu f và u là hai hàm xác định trên Rd , ta dùng kí hiệu nhân tử Fourier f (D)u xác định bởi biến đổi Fourier: f\ (D)u = f u b. Phép chiếu trực giao trên trường véc tơ gradient trong L2 (Rd )d được kí hiệu v Lời nói đầu bởi Π và xác định bởi công thức Π=− ∇∇T |D|2 . (Π = Id khi d = 1). Toán tử Λ = (1 − ∆)1/2 được xác định tương đương bởi kí hiệu nhân tử Fourier Λ = (1 + |D|2 )1/2 . Hai nhân tử Fourier Tµ và Tµ2 xác định như sau: Tµ = tanh(∂µ |D|), Tµ2 = tanh(∂µ2 |D|), trong đó µ, µ2 > 0 và |D| = (−∆)1/2 . vi Bảng kí hiệu Lp (Ω) W k,p (Ω) H k (Ω) Hk (Ω) H −k (Ω) H−k (Ω) H0k (Ω) Hk0 (Ω) (., .) . ··· không gian Lebesgue, 1 ≤ p ≤ ∞ không gian Sobolev không gian Sobolev W k,2 (Ω) không gian tích H k (Ω) × H k (Ω) không gian đối ngẫu của H k (Ω) không gian đối ngẫu của Hk (Ω) không gian các hàm trong H k (Ω) mà "bằng không trên biên ∂Ω" không gian tích H0k (Ω) × H0k (Ω) tích vô hướng trong L2 bất đẳng thức ≤ C · · · , trong đó C là hằng số dương độc lập với ε vii Chương 1 Thiết lập các hệ Boussinesq/Boussinesq 1.1 Các phương trình Euler và mô hình đầy đủ Ta nghiên cứu bài toán sóng trong trong trường hợp đáy phẳng và không xuất hiện sức căng bề mặt. Mô hình bài toán (hình 1) bao gồm một lớp chất lỏng thuần nhất có độ sâu d1 và mật độ %1 nằm trên một lớp chất lỏng thuần nhất khác có độ sâu d2 và mật độ %2 > %1 . Đặt Ωit là miền chiếm bởi chất lỏng i (i = 1, 2) tại thời điểm t, Γ1 := {z = 0} , Γ2 := {z = −d1 − d2 } là hai biên cứng và Γt := {z = −d1 + ζ(t, X)} là mặt phân cách giữa hai lớp chất lỏng. Theo [11], 1 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq chuyển động của sóng trong, với hai hàm thế vận tốc φ1 , φ2 được mô tả bởi hệ phương trình: ∆X,z φi = 0 trong Ωit . (1.1) Giả thiết các mật độ %i (i = 1, 2) của hai chất lỏng là hằng số, ta có hai phương trình Bernouilli, 2 P 1 (1.2) ∂t φi + ∇X,z φi = − − gz trong Ωit , 2 %i trong đó g là gia tốc trọng trường và P là áp suất bên trong lớp chất lỏng. Các phương trình trong (1.2) được bổ sung thêm hai điều kiện biên dưới đây để đảm bảo vận tốc phải theo phương nằm ngang tại hai biên cứng Γ1 := {z = 0} , Γ2 := {z = −d1 − d2 }, ∂z φi = 0 trên Γi , (i = 1, 2). (1.3) Giả thiết mặt phân cách được mô tả bởi đồ thị của hàm ζ(t, X), (ζ(t, X) là độ lệnh so với mặt phân cách ở trạng thái tĩnh (X, −d1 ) tại tọa độ X tại thời điểm t) và tại mặt phân cách Γt := {z = −d1 + ζ(t, X)} không có sự xáo trộn của hai chất lỏng. q Điều kiện này, với chất lỏng thứ i (i = 1, 2) được mô tả bởi quan hệ ∂t ζ = 1 + |∇ζ|2 vni , trong đó vni là đạo hàm của vận tốc theo phương pháp tuyến trên của chất lỏng i trên bề mặt phân cách, q ∂t ζ = 1 + |∇ζ|2 ∂n φ1 trên Γt . (1.4) Vì thành phần của vận tốc theo phương pháp tuyến phải liên tục tại mặt phân cách nên ∂n φ1 = ∂n φ2 trên Γt , (1.5) với ∂n := n · ∇X,z và n := p 1 1 + |∇ζ|2 (−∇ζ, 1)T . Điều kiện cuối cùng liên quan tới áp suất bên trong lớp chất lỏng, P liên tục tại mặt phân cách. (1.6) Một họ các phương trình mới được rút ra từ các phương trình sóng trong (1.1)(1.6). Ta định nghĩa vết của hai hàm thế φ1 , φ2 tại mặt phân cách, ψi (t, X) := φi (t, X, −d1 + ζ(t, X)), (i = 1, 2). Bằng cách ước lượng từ (1.2) tại mặt phân cách và dùng (1.4) và (1.5), ta thu được họ các phương trình liên quan tới ζ và ψi : q ∂t ζ − 1 + |∇ζ|2 ∂n φi = 0, (1.7) 2 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq p ( 1 ∂t ψi + gζ + |∇ψi |2 − 2 %i 1 + |∇ζ|2 (∂n φi ) + ∇ζ · ∇ψi )2 2(1 + |∇ζ|2 )2 ! = −P, (1.8) trong đó ∂n φi và P được ước lượng tại mặt phân cách z = −d1 + ζ(t, X). Bằng việc đưa ra hai toán tử: toán tử Dirichlet-Neumann G[ζ] và toán tử mặt phân cách H[ζ], xác định bởi: q 1 + |∇ζ|2 (∂n φ1 )|z=−d1 +ζ(X) , G[ζ]ψ1 = H[ζ]ψ1 = ∇ψ2 , và do tính liên tục của áp suất tại mặt phân cách, ta thu được 1 ∂t (ψ2 − γψ1 ) + g(1 − γ)ζ + (|H[ζ]ψ1 |2 − γ |∇ψ1 |2 ) + N (ζ, ψ1 ) = 0, 2 trong đó γ = %1 /%2 và N (ζ, ψ1 ) := γ(G[ζ]ψ1 + ∇ζ · ∇ψ1 )2 − (G[ζ]ψ1 + ∇ζ · H[ζ]ψ1 )2 2(1 + |∇ζ|2 )2 . Lấy gradient của phương trình này và dùng (1.7), ta thu được hệ phương trình  ∂t ζ − G[ζ]ψ1 = 0, ∂t (H[ζ]ψ1 − γ∇ψ1 ) + g(1 − γ)∇ζ + 1 ∇(|H[ζ]ψ1 |2 − γ |∇ψ1 |2 ) + ∇N (ζ, ψ1 ) = 0, 2 (1.9) theo ζ và ψ1 . Hệ phương trình này được dùng để thiết lập mô hình tiệm cận. Khai triển tiệm cận của (1.9) sẽ rõ ràng hơn khi các phương trình này được viết theo các biến không thứ nguyên. Kí hiệu a là biên độ điển hình của sự biến dạng mặt phân cách, λ là bước sóng điển hình, ta đưa ra các biến độc lập không thứ nguyên z t e := X , e X ze := , t := √ . λ d1 λ/ gd1 Tương tự, ta xác định các hàm không thứ nguyên ζ ζe := , a ψe1 := ψ p1 aλ , g/d1 và các tham số không thứ nguyên γ := %1 , %2 δ := d1 , d2 ε := a , d1 µ := d21 , λ2 ε2 := a = εδ, d2 µ2 := d22 µ = 2. 2 λ δ Khi đó, theo các biến không thứ nguyên, miền chất lỏng Ω1 ở phía trên và miền chất lỏng Ω2 ở phía dưới có dạng  Ω1 = (X, z) ∈ Rd+1 : −1 + εζ(X) < z < 0 , n o 1 d+1 Ω2 = (X, z) ∈ R : −1 − < z < −1 + εζ(X) . δ 3 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq Để tránh mặt phân cách chạm vào biên ngang, ta giả sử tồn tại các hằng số dương H1 và H2 sao cho 1 − εζ ≥ H1 trên Rd , (1.10) 1 + εδζ ≥ H2 trên Rd . (1.11) Để viết (1.9) theo các biến không thứ nguyên, theo [11], ta đưa ra định nghĩa của toán tử Dirichlet-Neumann không thứ nguyên Gµ [εζ] và toán tử mặt phân cách không thứ nguyên Hµ,δ [εζ]. Định nghĩa 1.1.1. Cho ζ ∈ W 2,∞ (Rd ) sao cho (1.10) được thỏa mãn và cho ψ1 ∈ H 3/2 (Rd ). Nếu φ1 là nghiệm duy nhất trong H 2 (Ω1 ) của bài toán giá trị biên ( µ∆φ1 + ∂z2 φ1 = 0 trong Ω1 , (1.12) ∂z φ1 |z=0 = 0, φ1 |z=−1+εζ(X) = ψ1 , thì Gµ [εζ]ψ1 ∈ H 1/2 (Rd ) được xác định bởi Gµ [εζ]ψ1 = −µε∇ζ · ∇φ1 |z=−1+εζ(X) + ∂z φ1 |z=−1+εζ(X) q = 1 + ε2 |∇ζ|2 ∂n φ1 |z=−1+εζ(X) , trong đó ∂n φ1 |z=−1+εζ(X) là đạo hàm đối chuẩn tắc trên liên kết với toán tử elliptic µ∆φ1 + ∂z2 φ1 . Định nghĩa 1.1.2. Cho ζ ∈ W 2,∞ (Rd ) sao cho (1.10) và (1.11) được thỏa mãn và cho ψ1 ∈ H 3/2 (Rd ). Nếu φ2 là nghiệm duy nhất trong H 2 (Ω2 ) (sai khác hằng số) của bài toán giá trị biên   µ∆φ2 + ∂z2 φ2 = 0 trong Ω2 ,    ∂ φ | n 2 z=−1− 1 = 0, δ (1.13) 1  µ  ∂n φ2 |z=−1+εζ(X) = q G [εζ]ψ1 ,   2  2 1 + ε |∇ζ| thì Hµ,δ [εζ]ψ1 ∈ H 1/2 (Rd ) xác định bởi Hµ,δ [εζ]ψ1 = ∇(φ2 |z=−1+εζ(X) ). Phương trình (1.9) được viết theo các biến không thứ nguyên như sau  1  e ψe1 = 0,  ∂et ζe − Gµ [εζ]   µ (1.14) e ψe1 − γ∇ψe1 ) + (1 − γ)∇ζe + ε ∇(|Hµ,δ [εζ] e ψe1 |2 − γ|∇ψe1 |2 ) ∂et (Hµ,δ [εζ]  2    µ,δ e e +ε∇N (εζ, ψ1 ) = 0, 4 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq trong đó N µ,δ e ψe1 ) := µ (ζ, e ψe1 + ∇ζ · ∇ψe1 )2 − ( 1 Gµ [ζ] e ψe1 + ∇ζe · Hµ,δ [ζ] e ψe1 )2 γ( µ1 Gµ [ζ] µ e 2 )2 2(1 + |∇ζ| . Ta đưa ra hệ thống mô hình các phương trình sóng trong trong chỉnh thể Boussinesq/Boussinesq ε ∼ µ ∼ ε2 ∼ µ2  1 bằng cách thiết lập dạng tiệm cận của phương trình (1.14) trong chỉnh thể này. Mô hình tiệm cận là một hệ (d + 1) phương trình theo biến ζ và "biến vận tốc" v xác định bởi v := Hµ,δ [εζ]ψ1 − γ∇ψ1 . (1.15) (Với bài toán sóng nước bề mặt thông thường được khôi phục bằng việc cho γ = 0 và δ = 1, v là vận tốc ngang tại bề mặt thoáng). Ta thiết lập các phương trình sóng trong (1.14) là tương thích với mô hình tiệm cận cho (ζ, v). Định nghĩa 1.1.3. Các phương trình sóng trong (1.14) là tương thích với hệ S của (d + 1) phương trình cho ζ và v nếu với mọi nghiệm đủ trơn (ζ, ψ1 ) của (1.14) sao cho (1.10) và (1.11) được thỏa mãn, cặp (ζ, v = Hµ,δ [εζ]ψ1 − γ∇ψ1 ) là lời giải của S với số dư nhỏ được gọi là độ chính xác của mô hình tiệm cận. 1.2 Khai triển tiệm cận của các toán tử Từ Bổ đề 1 và Chú ý 11 trong [11], ta có khai triển tiệm cận của toán tử Gµ [εζ]. Mệnh đề 1.2.1. Cho s > d/2 và ζ ∈ H s+3/2 (Rd ) sao cho (1.10) được thỏa mãn. Khi đó với mọi µ ∈ (0, 1) và ψ sao cho ∇ψ ∈ H s+5/2 (Rd ), ta có   2 µ µ G [εζ]ψ − µ∇ · ((1 − εζ)∇ψ) + ∇ · ∆∇ψ ≤ µ3 C(|ζ| s+3/2 , |∇ψ| s+5/2 ) H H s 3 H đều theo ε ∈ [0, 1]. Bài toán giá trị biên (1.13) đóng vai trò quan trọng trong việc phân tích của toán tử Hµ,δ [εζ]. Ta biến đổi bài toán (1.13) thành bài toán giá trị biên, hằng số biến thiên trên một lá phẳng S = Rd × (−1, 0) sử dụng vi phôi   z σ : S → σ(X, z) = X, (1 + εδζ) + (−1 + εζ) . δ Do Mệnh đề 2.7 trong [17], ta có φ2 là nghiệm của (1.13) nếu và chỉ nếu φ2 := φ2 ◦ σ là nghiệm của  ∇µ2 · Qµ2 [ε2 ζ]∇µ2 φ = 0 trong S, X,z X,z 2 (1.16) 1 ∂n φ |z=0 = Gµ [εζ]ψ1 , ∂n φ |z=−1 = 0, 2 2 δ 5 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq với ! √ (1 + ε2 ζ)Id×d − µ2 ε2 (z + 1)∇ζ . √ 1+µ2 ε22 (z+1)2 |∇ζ|2 − µ2 ε2 (z + 1)∇ζ T 1+ε2 ζ Qµ2 [ε2 ζ] = Khi đó, khai triển tiệm cận của Hµ,δ [εζ]ψ1 = ∇(φ2 |z=0 ) thu được bằng cách tìm nghiệm xấp xỉ φapp của (1.16) và dùng quan hệ tương đương Hµ,δ [εζ]ψ1 ∼ ∇(φapp |z=0 ) (Mệnh đề 3 trong [11]). Đầu tiên, ta tìm nghiệm xấp xỉ φapp của (1.16). Ta phân tích ma trận Qµ2 [ε2 ζ] như sau: Qµ2 [ε2 ζ] = Q0 + ε2 Q1 + ε22 Q2 , trong đó Id×d 0 , 0 1   √ ζId×d − µ2 (z + 1)∇ζ , √ −ζ − µ2 (z + 1)∇ζ T Q0 = Q1 =     0 0 Q2 =  ζ 2 + µ2 (z + 1)2 |∇ζ|2  , 0 1 + ε2 ζ và tìm φapp dưới dạng φapp = φ(0) + ε2 φ(1) . Ta có 2 2 ∇µX,z · Qµ2 [ε2 ζ]∇µX,z φapp 2 2 = ∇µX,z · (Q0 + ε2 Q1 + ε22 Q2 )∇µX,z (φ(0) + ε2 φ(1) ) 2 2 2 2 = ∆µX,z φ(0) + ε2 (∆µX,z φ(1) + ∇µX,z · Q1 ∇µX,z φ(0) ) + O(ε22 ), và tại z = 0 và z = −1, 2 φapp ∂n φapp = ez · Qµ2 [ε2 ζ]∇µX,z 2 = ez · (Q0 + ε2 Q1 + ε22 Q2 )∇µX,z (φ(0) + ε2 φ(1) ) 2 = ∂z φ(0) + ε2 (∂z φ(1) + ez · Q1 ∇µX,z φ(0) ) + O(ε22 ). Do đó, từ Mệnh đề (1.2.1), ta có 1 µ µ µ2 G [εζ]ψ1 = ∇ · (h1 ∇ψ1 ) + ∇ · (∆∇ψ1 ) + O δ δ 3δ  µ3 δ  , trong đó h1 = 1 − εζ , điều này suy ra φapp là nghiệm xấp xỉ của (1.16) có cấp 6 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq chính xác O(ε22 + µ3 /δ) do φ(0) và φ(1) là nghiệm của các bài toán giá trị biên sau: ( µ 2 ∆X,z φ(0) = 0, µ ∂z φ(0) |z=0 = ∇ · (h1 ∇ψ1 ), δ ∂z φ(0) |z=−1 = 0,  µ 2 2  ∆ 2 φ(1) = −∇µX,z φ(1) · Q1 ∇µX,z φ(0) ,   X,z 2 µ 2 ∇ · (∆∇ψ1 ) − ez · Q1 ∇µX,z φ(0) |z=0 , 3δ 2 = −ez · Q1 ∇µX,z φ(0) |z=−1 . ∂z φ(1) |z=0 =    ∂z φ(1) |z=−1 Ta có φ (0) √ 1 √ cosh( µ2 (z + 1) |D|) (X, z) = µ ∇ · (h1 ∇ψ1 ). √ √ cosh( µ2 |D|) |D| tanh( µ2 |D|) và 2 2 2 [(z + 1)ζ∂z φ(0) ], − ∇µX,z · Q1 ∇µX,z φ(0) = ∆µX,z 2 φ(0) |z=0 = [µ2 ∇ · (ζ∇φ(0) ) + ∂z ((z + 1)ζ∂z φ(0) )]|z=0 , − ez · Q1 ∇µX,z 2 − ez · Q1 ∇µX,z φ(0) |z=−1 = 0. Điều này kéo theo φ(1) = (z + 1)ζ∂z φ(0) + u, trong đó u là nghiệm của bài toán giá trị biên  2 ∆µX,z u = 0, 2 ∂z u|z=0 = µ ∇ · (∆∇ψ1 ) + µ2 ∇ · (ζ∇φ(0) ), ∂z u|z=−1 = 0. 3δε2 Bài toán trên có nghiệm (xem [3], [11]) √ cosh( µ2 (z + 1) |D|) 1 u(X, z) = √ √ cosh( µ2 |D|) |D| tanh( µ2 |D|) µ2 √ × √ ∇ · (∆∇ψ1 ) + µ2 ∇ · (ζ∇φ(0) ) . 3δε2 µ2   Trong chỉnh thể Boussinesq/Boussinesq, ta có µ ∼ ε ∼ µ2 ∼ ε2  1 nên 1 + 13 µ2 |D|2 1 1 1 ∼√ ∼ √ , √ tanh( µ2 |D|) µ2 |D| 1 − 1 µ2 |D|2 µ2 |D| 3 1 − 32 µ2 |D|2 1 1 1 ∼ √ ∼ . √ √ sinh(2 µ2 |D|) 2 µ2 |D| 1 + 2 µ2 |D|2 2 µ2 |D| 3 Thay vào biểu thức trên cho ∇(φapp |z=0 ), ∇(φapp |z=0 ) = [∇φ(0) + (z + 1)∇(ζ∂z φ(0) ) + ∇u]|z=0 , 7 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq ta thu được 1 1 ∇(φapp |z=0 ) = − δ∇ψ1 − µδ 1 − 2 ∆∇ψ1 + ε2 (1 + δ)Π(ζ∇ψ1 ) + O(ε2 ). 3 δ   Do đó, ta có mệnh đề sau. Mệnh đề 1.2.2. [3] Cho t0 > d/2, s ≥ t0 + 1/2, và ζ ∈ H s+3/2 (Rd ) sao cho (1.10) và (1.11) được thỏa mãn. Khi đó, với mọi ψ1 sao cho ∇ψ1 ∈ H s+5/2 (Rd ), ta có h   i 1 1 µ,δ H [εζ]ψ1 − −δ∇ψ1 − µδ 1 − 2 ∆∇ψ1 + ε2 (1 + δ)Π(ζ∇ψ1 ) s 3 δ H   5/2 2√ ≤ µ + ε2 µ C √ µ2 1 1 max max , ,δ , µ2 , |ζ|H s+3/2 H1 H2 |∇ψ1 |H s+5/2 . Ước lượng này là đều theo ε ∈ [0, 1], µ ∈ (0, 1) và δ ∈ (0, δ max ) sao cho µ2 = µ/δ 2 ∈ (0, µmax ). 2 √ Chứng minh. Tương tự chứng minh Hệ quả 1 trong [11]. Chú ý rằng µ xuất √ hiện trong số hạng ε22 µ của biểu thức cho φ(0) . Điều này cho phép ta tăng độ chính xác trong khai triển biểu thức của toán tử Hµ,δ [εζ]. 1.3 Thiết lập các hệ Boussinesq/Boussinesq Ta sẽ thiết lập dạng tiệm cận của phương trình (1.14) trong chỉnh thể Boussinesq/Boussinesq. Mô hình tiệm cận được thiết lập từ (1.14) bằng cách thay thế hai toán tử Gµ [εζ], Hµ,δ [εζ] bằng các khai triển tiệm cận của chúng và dùng "thủ thuật BBM", cùng sự thay đổi các biến. Ta chứng minh trong chỉnh thể hiện tại, các phương trình sóng trong (1.14) là tương thích với hệ Boussinesq/Boussinesq dưới đây:  1 δ2 − γ  (1 − µa2 ∆)∂t ζ + ∇ · vα + ε ∇ · (ζvα ) + µa1 ∇ · ∆vα = 0, 2 γ+δ (γ + δ) 2  (1 − µa4 ∆)∂t vα + (1 − γ)∇ζ + ε δ − γ ∇ |vα |2 + µa3 (1 − γ)∆∇ζ = 0, 2 (γ + δ)2 (1.17) trong đó vα = (1 − µα∆)−1 v và các hằng số a1 , a2 , a3 và a4 được xác định ở bên dưới. Định lí 1.3.1. Cho 0 < cmin < cmax , 0 < µmin < µmax , và đặt 2 2 a1 = (1 − α1 )(1 + γδ) − 3δα(γ + δ) , 3δ(γ + δ)2 a3 =αα2 , a4 = α(1 − α2 ), 8 a2 = γα1 , 3(γ + δ) Chương 1. Thiết lập các hệ Boussinesq/Boussinesq với α1 , α ≥ 0 và α2 ≤ 1. Với cách chọn các tham số như trên, các phương trình sóng trong (1.14) là tương thích với các phương trình Boussinesq/Boussinesq (1.17), với độ chính xác O(ε2 ) và đều theo ε ∈ [0, 1], µ, δ ∈ (0, 1) thỏa mãn điều kiện cmin ≤ ε ≤ cmax , µ µmin ≤ 2 µ ≤ µmax . 2 δ2 Chú ý 1.3.1. Cho γ = 0, δ = 1 trong các phương trình của hệ Boussinesq/Boussinesq (1.17), ta có hệ thu gọn sau    1 − µ α1 ∆ ∂t ζ + ∇ · v + ε∇ · (ζv) + µ 1 − α1 − 3α ∆∇ · v = 0, 3 3 (1 − µα(1 − α2 )∆)∂t v + ∇ζ + ε ∇ |v|2 + µαα2 ∆∇ζ = 0. 2 Đây chính là hệ Boussinesq của sóng bề mặt thiết lập trong [8]. Chú ý 1.3.2. Quan hệ phân tán liên kết với (1.17) là 2 2 ω = |k| 1 ( γ+δ − µa1 |k|2 )(1 − γ)(1 − µa3 |k|2 ) (1 + µa2 |k|2 )(1 + µa4 |k|2 ) . Do đó, (1.17) là đặt đúng tuyến tính khi a2 , a4 ≥ 0 và a1 , a3 ≤ 0. Chứng minh. Việc chứng minh sẽ qua một vài bước, tương ứng với các giá trị của các tham số α1 , α2 , α. Trong chỉnh thể này, ta có ε ∼ µ ∼ ε2 ∼ µ2 khi ε → 0. Bước 1: α1 = α = α2 = 0.Từ khai triển của toán tử Dirichlet-Neumann, ta có  ∂t ζ − ∇ · ((1 − εζ)∇ψ1 ) − µ ∇ · (∆∇ψ1 ) = O(ε2 ),  3  ∂t v + (1 − γ)∇ζ + ε ∇ Hµ,δ [εζ]ψ1 2 − γ |∇ψ1 |2 = O(ε2 ), 2 với O(µ) = O(ε). Từ quan hệ Hµ,δ [εζ]ψ1 = v + γ∇ψ1 và Mệnh đề 1.2.2, ta có   2 ∇ψ1 = − 1 1−δ 1+δ 1 1+µ ∆ + ε2 Π[ζ.] v + O(ε2 ). γ+δ 3δ (γ + δ) γ+δ Thay biểu thức này vào hệ trên, ta có kết quả cần chứng minh. Bước 2: α1 ≥ 0, α = α2 = 0. Ta dùng thủ thuật BBM cổ điển. Từ phương trình đầu, ta có ∇ · v = (1 − α1 )∇ · v − α1 (γ + δ)∂t ζ + O(ε). Tiếp theo, ta thay biểu thức của ∇ · v vào số hạng thứ ba của phương trình đầu tiên của hệ được thiết lập ở Bước 1, ta có kết quả cần chứng minh. Bước 3: α1 , α ≥ 0, α2 = 0. 9 Chương 1. Thiết lập các hệ Boussinesq/Boussinesq Thay v bằng (1 − µα∆)vα ở hệ được thiết lập ở Bước 2 và bỏ qua số hạng O(ε2 ), ta có kết quả cần chứng minh. Bước 4: α1 , α ≥ 0, α2 ≤ 1. Ta dùng thủ thuật BBM. Từ phương trình thứ hai trong hệ và từ Bước 3, ta thấy rằng với mọi α2 ≤ 1, ∂t vα = (1 − α2 )∂t vα − α2 (1 − γ)∇ζ + O(ε). Thay vào hệ được thiết lập ở Bước 3, ta có kết quả cần chứng minh. 10 Chương 2 Tính đặt đúng và xấp xỉ số của một hệ Boussinesq/Boussinesq Kí hiệu vα , ∂t ζ, ∂t V lần lượt bởi V, ζt , Vt . Khi đó, hệ (1.17) được viết dưới dạng:  δ2 − γ 1  (1 − µa2 ∆)ζt + ∇·V +ε ∇ · (ζV ) + µa1 ∇ · ∆V = 0, γ+δ (γ + δ)2 (2.1) 2  (1 − µa4 ∆)Vt + (1 − γ)∇ζ + ε δ − γ ∇ |V |2 + µa3 (1 − γ)∆∇ζ = 0. 2 (γ + δ)2 Theo Chú ý 1.3.2 ở Chương 1, hệ (2.1) là đặt đúng tuyến tính khi a2 , a4 ≥ 0, a1 , a3 ≤ 0. Trong chương này ta xét tính đặt đúng và đưa ra phương pháp xấp xỉ số nghiệm của bài toán giá trị biên ban đầu đối với hệ (2.1) trong trường hợp đặc biệt: khi a2 , a4 > 0, a1 = a3 = 0. 2.1 Tính đặt đúng của bài toán giá trị biên ban đầu trong trường hợp a2 , a4 > 0, a1 = a3 = 0 Do µ ∼ ε  1, không giảm tổng quát, ta coi µ = ε, và do a2 , a4 > 0 nên các toán tử (I − εa2 ∆), (I − εa4 ∆) có nghịch đảo. Khi đó, hệ (2.1) có thể viết dưới dạng    1 δ2 − γ  −1  ∇·V +ε ∇ · (ζV ) = 0, ζt + (I − εa2 ∆) (γ + δ)2 γ + δ  (2.2) 2−γ ε δ  −1 2  (1 − γ)∇ζ + ∇|V | = 0. Vt + (I − εa4 ∆) 2 2 (γ + δ) Ta xét hệ (2.2) trong miền bị chặn Ω trong R2 , với điều kiện ban đầu ζ(x, 0) = ζ0 (x), V (x, 0) = V0 (x), 11 x = (x, y) ∈ Ω, Chương 2. Tính đặt đúng và xấp xỉ số của một hệ Boussinesq/Boussinesq và điều kiện biên ζ(x, t) = 0, V (x, t) = 0, x ∈ ∂Ω, t ≥ 0. Bổ đề 2.1.1. [13] Cho s1 , s2 , s3 ∈ R sao cho s1 ≥ s3 , s2 ≥ s3 , s1 + s2 ≥ 0, s1 + s2 − s3 > d/2. Khi đó, (f, g) 7→ f g là dạng song tuyến tính liên tục từ H s1 (Rd )×H s2 (Rd ) vào H s3 (Rd ). Bổ đề này chỉ ra rằng với f, g ∈ H s (R2 ), s > 0, ta có kf gks−1 ≤ Ckf ks kgks . Định lí 2.1.1. Cho (ζ0 , V0 ) ∈ H01 × H10 . Khi đó, tồn tại T > 0, độc lập với ε, và tồn tại duy nhất nghiệm (ζ, V ) ∈ C 1 ([0, T ]; H01 ) × C 1 ([0, T ]; H10 ) của bài toán biên ban đầu đối với hệ (2.2). Chứng minh. Kí hiệu (I − εa2 ∆)−1 và (I − εa4 ∆)−1 lần lượt là toán tử nghịch đảo của (I − εa2 ∆) và (I − εa4 ∆) với miền xác định H 2 ∩ H01 , H2 ∩ H10 . Bài toán (2.2) với điều kiên biên và điều kiên ban đầu được viết dưới dạng: (ζt , Vt ) = −F (ζ, V ), trong đó F (ζ, V ) là trường véc tơ trên H01 × H10 xác định bởi   2 F (ζ, V ) = −1 (I − εa2 ∆) −1 (I − εa4 ∆)  δ −γ 1 ∇·V +ε ∇ · (ζV ) , γ+δ (γ + δ)2  ε δ2 − γ (1 − γ)∇ζ + ∇|V |2 2 (γ + δ)2  . F được định nghĩa đúng đắn trên H01 × H10 vì theo định lí nhúng Sobolev ζV ∈ L2 và |V |2 ∈ L2 . Do đó, (I − εa2 ∆)−1 (∇ · ζV ) ∈ H01 và (I − εa4 ∆)−1 ∇ |V |2 ∈ H10 . Hơn nữa, F là C 1 trên H01 × H10 , với đạo hàm F 0 (ζ ∗ , V ∗ ) xác định bởi  2 F 0 (ζ ∗ , V ∗ )(ζ, V ) = ε 1 δ −γ −1 ∗ ∗ (I − εa ∆) ∇ · (ζV + ζ V ) + (I − εa2 ∆)−1 ∇ · V, 2 (γ + δ)2 γ+δ −1 (1 − γ)(I − εa4 ∆) δ2 − γ ∇ζ + ε (I − εa4 ∆)−1 ∇(V ∗ · V ) . (γ + δ)2  Tính liên tục của F 0 được suy ra từ định lí nhúng Sobolev và tính chính qui của các toán tử (I − εa2 ∆)−1 , (I − εa4 ∆)−1 . Theo định lí về sự tồn tại nghiệm của phương trình vi phân trong không gian Banach (định lí 2.3, trang 45 trong [18]), ta suy ra tồn tại duy nhất một nghiệm cực đại (ζ, V ) ∈ C 1 ([0, Tε ]; H01 ) × C 1 ([0, Tε ]; H10 ) 12
- Xem thêm -

Tài liệu liên quan