Giải số hệ phương trình nước nông phi thủy tĩnh ứng dụng mô phỏng sóng triều và dòng chảy

  • Số trang: 72 |
  • Loại file: PDF |
  • Lượt xem: 107 |
  • Lượt tải: 0
tailieuonline

Đã đăng 27429 tài liệu

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------------------------- LÊ THỊ THÁI GIẢI SỐ HỆ PHƢƠNG TRÌNH NƢỚC NÔNG PHI THỦY TĨNH ỨNG DỤNG MÔ PHỎNG SÓNG TRIỀU VÀ DÕNG CHẢY LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------------------------- LÊ THỊ THÁI GIẢI SỐ HỆ PHƢƠNG TRÌNH NƢỚC NÔNG PHI THỦY TĨNH ỨNG DỤNG MÔ PHỎNG SÓNG TRIỀU VÀ DÕNG CHẢY LUẬN VĂN THẠC SĨ KHOA HỌC Chuyên ngành : Cơ học chất lỏng Mã số : 60440108 Ngƣời hƣớng dẫn khoa học: PGS.TS Phùng Đăng Hiếu Hà Nội - 2014 Lời cảm ơn Những lời đầu tiên, tôi xin gửi lời cảm ơn chân thành nhất tới PGS.TS Phùng Đăng Hiếu. Thầy đã hết sức quan tâm, tin tưởng, động viên và hướng dẫn tôi nghiên cứu cũng như hoàn thành luận văn. Trong suốt quá trình học tập, tôi đã được các thầy trong bộ môn Cơ học, khoa Toán Cơ Tin học trực tiếp giảng dạy các chuyên đề sau đại học, cũng như tạo mọi điều kiện tối đa để tôi có thể tập trung hoàn thành luận văn. Đặc biệt là PGS.TS Trần Văn Cúc, PGS.TS Trần Văn Trản, TS. Vũ Đỗ Long, PGS.TS Phạm Chí Vĩnh, TS. Bùi Thanh Tú là những người Thầy mà tôi luôn kính trọng và biết ơn sâu sắc vì sự giảng dạy quý báu, tận tình về kiến thức chuyên môn cũng như kinh nghiệm trong cuộc sống. Nhân đây tôi cũng xin bày tỏ lòng biết ơn sâu sắc tới thầy giáo PGS.TS. Nguyễn Văn Nội, Phòng Sau đại học, Khoa Toán Cơ Tin học, Phòng CT - CT Sinh viên ĐHKHTN đã tạo điều kiện cho tôi được bảo vệ luận văn thạc sỹ. Cuối cùng nhưng không thể thiếu được, cho tôi gửi lời cảm ơn đến gia đình, bạn bè, những người đã luôn yêu thương, chăm lo và động viên tôi vượt qua những khó khăn, để tôi có thể tập trung học tập và phấn đấu rèn luyện chuyên môn. Hà Nội, năm 2014 Tác giả i Mục lục Chương 1: Tổng quan 1.1 1.2 1.3 1 . . . . . . . 1 2 3 3 4 4 4 Chương 2: Mô hình giải số hệ phương trình nước nông phi thủy tĩnh 5 2.1 Khái quát về biển đảo Việt Nam . . . . Ý nghĩa và tính cấp thiết của vấn đề . . Khái quát luận văn . . . . . . . . . . . . 1.3.1 Đối tượng và phạm vi nghiên cứu 1.3.2 Mục tiêu nghiên cứu . . . . . . . 1.3.3 Phương pháp nghiên cứu . . . . . 1.3.4 Cấu trúc luận văn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hệ phương trình thủy động lực ba chiều . . . . . . . . . 5 2.1.1 Hệ phương trình xuất phát và các giả thiết áp dụng 5 2.1.2 Mô hình tính toán cho dòng chảy trong vùng nước nông theo hệ phương trình phi thủy tĩnh . . . . . 11 Chương 3: Thuật toán và mô hình số trị 3.1 3.2 3.3 3.4 Mô hình số trị . . . . . . . . . . . Mô hình số . . . . . . . . . . . . 3.2.1 Thành phần thủy tĩnh . . 3.2.2 Thành phần phi thủy tĩnh Điều kiện biên dao động khô - ướt Sơ đồ khối và thuật toán . . . . . 3.4.1 Sơ đồ khối . . . . . . . . . 3.4.2 Bài toán 1D . . . . . . . . 3.4.3 Bài toán 2D . . . . . . . . ii . . . . . . . . . . . . . . . . . . 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 14 14 17 20 22 22 23 24 Chương 4: Các kết quả kiểm ứng dụng thực nghiệm 4.1 4.2 Kiểm 4.1.1 4.1.2 4.1.3 nghiệm với điều kiện thí nghiệm vật lý . . . . . . . Điều kiện thí nghiệm . . . . . . . . . . . . . . . . Kết quả kiểm nghiệm . . . . . . . . . . . . . . . . Đánh giá độ nhạy của bước lưới và ảnh hưởng của hệ số Courant . . . . . . . . . . . . . . . . . . . . Ứng dụng cho mô phỏng thủy triều ven bờ cho vịnh Đà Nẵng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Khái quát khu vực ứng dụng . . . . . . . . . . . . 4.2.2 Điều kiện tính toán . . . . . . . . . . . . . . . . . 4.2.3 Kết quả tính toán áp dụng . . . . . . . . . . . . . Chương 5: Kết luận và kiến nghị 5.1 5.2 Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . Kiến nghị . . . . . . . . . . . . . . . . . . . . . . . . . . iii 25 25 25 27 32 38 38 40 41 60 60 60 Danh sách hình vẽ Hình 3.1: Lưới sai phân 14 Hình 3.2: Sơ đồ khối bài toán 1D 22 Hình 4.1: Sơ đồ thí nghiệm của Beji và Battjes (1993) 26 Hình 4.2: So sánh dao động mực nước giữa mô hình phi thủy tĩnh và mô hình thủy tĩnh với số liệu thí nghiệm tại điểm đo từ G1 đến G4 27 Hình 4.3: So sánh dao động mực nước giữa mô hình phi thủy tĩnh và mô hình thủy tĩnh với số liệu thí nghiệm tại điểm đo từ G5 đến G8 28 Hình 4.4: So sánh dao động mực nước giữa kết quả tính toán theo mô hình số và số liệu thí nghiệm với bước lưới thay đổi tại điểm đo G1 (bước lưới: a) L/10; b) L/15; c) L/25; d) L/50; e) L/100; f) L/200) 33 Hình 4.5: So sánh dao động mực nước giữa kết quả tính toán theo mô hình số và số liệu thí nghiệm với bước lưới thay đổi tại điểm đo G3 (bước lưới: a) L/10; b) L/15; c) L/25; d) L/50; e) L/100; f) L/200) 34 Hình 4.6: Ảnh vệ tinh vịnh Đà Nẵng 38 iv Hình 4.7: So sánh dao động mực nước triều giữa tính toán và phân tích theo hằng số điều hòa vịnh Đà Nẵng (a. Hòn Chảo - b. Cửa vịnh - c. Giữa vịnh) 42 Hình 4.8: Phân bố vận tốc tính toán tại thời điểm nước lớn/ -3h (0h ngày 01/05/2014) 45 Hình 4.9: Phân bố vận tốc tính toán tại thời điểm nước lớn/-2h (1h ngày 01/05/2014) 45 Hình 4.10: Phân bố vận tốc tính toán tại thời điểm nước lớn/-1h (2h ngày 01/05/2014) 46 Hình 4.11: Phân bố vận tốc tính toán tại thời điểm nước lớn (3h ngày 01/05/2014) 46 Hình 4.12: Phân bố vận tốc tính toán tại thời điểm nước ròng (10h ngày 01/05/2014) 47 Hình 4.13: Phân bố vận tốc tính toán tại thời điểm nước ròng/+1h (11h ngày 01/05/2014) 47 Hình 4.14: Phân bố vận tốc tính toán tại thời điểm nước trung bình (17h ngày 01/05/2014) 48 Hình 4.15: Phân bố vận tốc tính toán tại thời điểm nước trung bình/+1h (18h ngày 01/05/2014) 48 Hình 4.16: Phân bố vận tốc tính toán tại thời điểm nước lớn/-2h (1h ngày 02/05/2014) 49 Hình 4.17: Phân bố vận tốc tính toán tại thời điểm nước lớn/-1h (2h ngày 02/05/2014) 49 v Hình 4.18: Phân bố vận tốc tính toán tại thời điểm nước lớn (3h ngày 02/05/2014) 50 Hình 4.19: Phân bố vận tốc tính toán tại thời điểm nước ròng/-1h (11h ngày 02/05/2014) 50 Hình 4.20: Phân bố vận tốc tính toán tại thời điểm nước ròng (12h ngày 02/05/2014) 51 Hình 4.21: Phân bố vận tốc tính toán tại thời điểm nước trung bình (18h ngày 02/05/2014) 51 Hình 4.22: Phân bố vận tốc tính toán tại thời điểm nước trung bình/+1h (19h ngày 02/05/2014) 52 Hình 4.23: Phân bố vận tốc tính toán tại thời điểm nước lớn/-1h (2h ngày 03/05/2014) 52 Hình 4.24: Phân bố vận tốc tính toán tại thời điểm nước lớn (3h ngày 03/05/2014) 53 Hình 4.25: Phân bố vận tốc tính toán tại thời điểm nước ròng/-1h (11h ngày 03/05/2014) 53 Hình 4.26: Phân bố vận tốc tính toán tại thời điểm nước ròng (12h ngày 03/05/2014) 54 Hình 4.27: Phân bố vận tốc tính toán tại thời điểm nước trung bình (19h ngày 03/05/2014) 54 Hình 4.28: Phân bố vận tốc tính toán tại thời điểm nước trung bình/+1h (20h ngày 03/05/2014) 55 Hình 4.29: Phân bố vận tốc tính toán tại thời điểm nước ròng (12h ngày 04/05/2014) 55 vi Hình 4.30: Phân bố vận tốc tính toán tại thời điểm nước ròng (13h ngày 05/05/2014) 56 Hình 4.31: Phân bố vận tốc tính toán tại thời điểm nước trung bình/-1h (21h ngày 05/05/2014) 56 Hình 4.32: Phân bố vận tốc tính toán tại thời điểm nước trung bình (22h ngày 05/05/2014) 57 Hình 4.33: Phân bố vận tốc tính toán tại thời điểm nước ròng/-1h (13h ngày 06/05/2014) 57 Hình 4.34: Phân bố vận tốc tính toán tại thời điểm nước ròng (14h ngày 06/05/2014) 58 Hình 4.35: Phân bố vận tốc tính toán tại thời điểm nước trung bình (22h ngày 06/05/2014) 58 Hình 4.36: Phân bố vận tốc tính toán tại thời điểm nước lớn (1h ngày 14/05/2014) 59 Hình 4.37: Phân bố vận tốc tính toán tại thời điểm nước ròng (9h ngày 14/05/2014) 59 vii Danh sách bảng Bảng 4.1: Vị trí các điểm đo (x0 = 6m tính từ điểm tạo sóng) trong thí nghiệm của Beji và Battjes 26 Bảng 4.2: Sai số giữa kết quả tính toán bằng mô hình phi thủy tĩnh và mô hình thủy tĩnh với số liệu thí nghiệm 29 Bảng 4.3: Chỉ số Nash giữa kết quả tính toán với số liệu thí nghiệm 30 Bảng 4.4: Sai số tính toán giữa kết quả tính toán theo mô hình số với độ dài bước lưới thay đổi tương đối so với độ dài sóng 35 Bảng 4.5: Sai số tính toán với hệ số Courant thay đổi 36 Bảng 4.6: Hằng số điều hòa thủy triều trạm Sơn Trà Mực nước trung bình 96.1 cm 40 Bảng 4.7: Sai số giữa kết quả tính toán và số liệu phân tích 43 Bảng 4.8: Chỉ số Nash của quá trình tính toán dao động thủy triều viii 43 Chương 1 Tổng quan 1.1 Khái quát về biển đảo Việt Nam Việt Nam là một quốc gia ven biển nằm trong khu vực trung tâm của Đông Nam Á, là một quốc gia giàu tiềm năng biển. Với diện tích bờ biển Việt Nam dài 3.260km, từ Quảng Ninh ở phía đông bắc tới Kiên Giang ở phía tây nam và 114 cửa sông lớn nhỏ. Có 28/63 tỉnh, thành phố của Việt Nam nằm ven biển, chiếm 42% diện tích và 45% dân số cả nước, có khoảng 15,5 triệu người sống gần bờ biển và hơn 175 ngàn người sống ở đảo. Tính trung bình tỷ lệ diện tích theo số km bờ biển thì cứ 100 km2 có 1km bờ biển (so với trung bình của thế giới là 600 km2 đất liền trên 1km bờ biển). Vùng biển Việt Nam có khoảng 3.000 đảo lớn nhỏ và 2 quần đảo xa bờ là Hoàng Sa và Trường Sa. Trong đó, 84 đảo có diện tích trên 1km2 , 24 đảo có diện tích trên 10 km2 , 66 đảo có dân sinh sống với tổng số dân là 175 nghìn người. Hai quần đảo Hoàng Sa và Trường Sa là một bộ phận của lãnh thổ quốc gia đã làm tăng giá trị kinh tế và an ninh quốc phòng đất nước. Các đảo có diện tích lớn nhất là: Cái Bầu: 200 km2 , trên 21 nghìn dân; Phú Quốc: 320 km2 , 50 nghìn dân; Côn Đảo: 56,7 km2 , 1.640 dân; Phú Quý: 32 km2 , gần 18 nghìn dân; Cát Bà: 149 km2 , trên 15 nghìn dân; Đảo Lý Sơn: 10 km2 , có trên 16 nghìn dân sinh sống. 1 1.2 Ý nghĩa và tính cấp thiết của vấn đề Vùng biển và ven biển là nơi có nhiều nguồn tài nguyên thiên nhiên phong phú và đa dạng giúp mang lại nhiều lợi ích kinh tế nói chung. Tuy nhiên, biển lại luôn tiềm ẩn những nguy cơ gây nên những thảm họa thiên tai nguy hiểm như: bão, nước dâng do bão, sóng lớn, thủy triều, mực nước biển dâng dị thường ... Việc mô phỏng và dự báo được sự lan truyền, biến dạng của sóng triều, nước dâng do bão hay sóng thần trong khu vực ven bờ rất có ý nghĩa trong việc cung cấp thông tin quan trọng cho cộng đồng góp phần giảm thiểu những thiệt hại về người và tài sản do chúng gây ra. Thông thường, việc mô phỏng thủy triều, sóng thần hay nước dâng do bão thường dựa trên hệ phương trình nước nông truyền thống với giả thiết phân bố áp suất thủy tĩnh như. Nguyễn Thị Việt Liên (1996). Luận án phó tiến sỹ khoa học Toán - Lý, Mô hình số trị bài toán thủy triều biển Đông. Tác giả đã đưa ra mô hình số trị thủy động để dự báo phân bố mực triều và dòng triều. Trần Văn Cúc (2002). Hội nghị Cơ học toàn quốc lần thứ VII, Mô hình ba chiều dòng chảy ven bờ. Tác giả đã dựa trên việc kết hợp các mô hình trước đó kèm theo những giả thiết thực nghiệm quen thuộc để đưa ra một mô hình mà có thể tách bài toán lớn thủy nhiệt động lực thành nhóm các bài toán nhỏ, độc lập. Trần Văn Cúc và cộng sự (2003). Đề tài cấp trường - Trường ĐH Khoa học Tự nhiên - ĐH Quốc gia Hà Nội, Mô hình toán học bài toán ba chiều về hoàn lưu ở biển. Các tác giả đã phát triển mô hình ba chiều dòng chảy ven bờ tách nhóm các bài toán độc lập để mô phỏng cho các bài toán hoàn lưu vùng ven biển. Phùng Đăng Hiếu (2008). VNU Journal of Science, Earth Sciences, Finite volume method for long wave runup: 1D model. Tác giả đã đưa ra mô hình số để giải hệ phương trình nước nông 1D đối với bài toán lan truyền sóng và sóng phản xạ. Mô hình được xây dựng dựa trên phương pháp thể tích hữu hạn. Christophe Berthon, Franc,oise Foucher (2011). Springer - Verlag Berlin Heidelberg Hydrostatic upwind scheme for shallow - water equations. Tác giả đã xấp xỉ hệ phương trình nước nông có địa hình không bằng phẳng bằng cách rời rạc địa hình để mô hình cân bằng. Mô hình cũng giải quyết được vấn đề đối với khu vực khô. 2 Rainer Lehfeldt và cộng sự (2007), Propagation of a Tsunami - Wave in the North Sea. Tác giả đã nghiên cứu sóng thần trong ba trường hợp: không chịu ảnh hưởng thủy triều, có chịu ảnh hưởng thủy triều, trong điều kiện bão dâng bằng các phương pháp thủy động lực học khác nhau. Ngoài ra còn một số tác giả khác trong nước như: Đinh Văn Mạnh, Phan Ngọc Vinh, Lưu Quang Hưng,..., và nhiều tác giả khác trên thế giới. Tuy nhiên, ngoài nước cũng đã có một số tác giả sử dụng hệ phương trình nước nông phi thủy tĩnh để thử ngiệm tính toán như: - Năm 1999, Stelling và Zijlema đã phát triển hệ phương trình nước nông phi thủy tĩnh để tính toán sự lan truyền sóng trong phòng thí nghiệm bằng phương pháp phần tử hữu hạn. - Năm 2004, Kowalik và cộng sự đã sử dụng hệ phương trình nước nông phi thủy tĩnh để mô phỏng sóng thần ở Indonesia. - Năm 2008, Stelling và Zijlema đã phát triển mô hình hệ phương trình nước nông phi thủy tĩnh trên mô hình đã có bằng cách chia khối nước thành nhiều lớp để tính toán cho bài toán trong miền tính giới hạn xung quanh một trụ tròn. - Năm 2008, Yoshuki Yamazaki và cộng sự đã sử dụng hệ phương trình nước nông phi thủy tĩnh để thử nghiệm mô phỏng sự lan truyền sóng và sóng phản xạ trong phòng thí nghiệm. Trong nghiên cứu này, tác giả sử dụng một hệ phương trình mới đó là hệ phương trình nước nông phi thủy tĩnh để thử nghiệm tính toán cho bài toán thủy triều ven bờ. Nếu việc áp dụng mô hình này thành công sẽ mở ra khả năng áp dụng tính toán dự báo thực tế cho một số bài toán như: tính toán mô phỏng và dự báo nước dâng do bão kết hợp với thủy triều hay việc tính toán sự lan truyền của sóng thần phát sinh do động đất đáy biển. 1.3 1.3.1 Khái quát luận văn Đối tượng và phạm vi nghiên cứu Ở đây, bài toán được quan tâm đến chính là tìm thành phần phân bố vận tốc, áp suất, hình dạng mặt thoáng của biển vùng ven bờ có sự tương tác với đáy ven bờ. Mục đích mô phỏng được sự lan truyền sóng 3 và sự tương tác của nó với vùng ven bờ. Trên cơ sở đó, có thể áp dụng để dự báo được sự lan truyền sóng lớn như sóng thần, hay dao động của mực nước biển dâng do bão, thủy triều ... Đối tượng nghiên cứu trong phạm vi luận văn là các mô hình toán học đóng vai trò quan trọng trong mô tả hoàn lưu biển, bao gồm hệ phương trình nước nông phi thủy tĩnh. Luận văn giới hạn trong việc nghiên cứu mô hình số trị, thí nghiệm số kiểm chứng mô hình và ứng dụng cho bài toán lan truyền thủy triều ven bờ. 1.3.2 Mục tiêu nghiên cứu - Nắm vững các giả thiết và cách xây dựng hệ phương trình nước nông phi thủy tĩnh. - Xây dựng được chương trình máy tính dựa trên việc giải số hệ phương trình nước nông phi thủy tĩnh. - Tính toán kiểm nghiệm so sánh với số liệu thí nghiệm và kết quả tính toán theo hệ phương trình nước nông truyền thống. - Ứng dụng cho bài toán thủy triều ven bờ. 1.3.3 Phương pháp nghiên cứu Luận văn sử dụng phương pháp mô hình hóa, phương pháp mô hình số lập trình máy tính và phuơng pháp thống kê, phân tích. 1.3.4 Cấu trúc luận văn Luận văn bao gồm 5 chương Chương 1: Tổng quan Chương 2: Mô hình giải số hệ phương trình nước nông phi thủy tĩnh Chương 3: Thuật toán và mô hình số trị Chương 4: Các kết quả ứng dụng thực nghiệm Chương 5: Kết luận và kiến nghị 4 Chương 2 Mô hình giải số hệ phương trình nước nông phi thủy tĩnh 2.1 Hệ phương trình thủy động lực ba chiều 2.1.1 Hệ phương trình xuất phát và các giả thiết áp dụng Hệ phương trình Navier - Stokes cho chất lỏng nhớt không nén [14], [1] trong hệ tọa độ Descartes có dạng:  2  ∂u ∂u ∂u ∂u 1 ∂P ∂ u ∂ 2u ∂ 2u +u +v +ω =− +υ + + ∂t ∂x ∂y ∂z ρ ∂x ∂x2 ∂y 2 ∂z 2  2  ∂v ∂v ∂v 1 ∂P ∂ v ∂ 2v ∂ 2v ∂v +u +v +ω =− +υ + + ∂t ∂x ∂y ∂z ρ ∂y ∂x2 ∂y 2 ∂z 2  2  ∂ω ∂ω ∂ω ∂ω 1 ∂P ∂ ω ∂ 2ω ∂ 2ω +u +v +ω =− +υ + 2 + 2 −g ∂t ∂x ∂y ∂z ρ ∂z ∂x2 ∂y ∂z được (2.1) (2.2) (2.3) Phương trình liên tục của chất lỏng không nén được [1]: ∂u ∂v ∂ω + + =0 ∂x ∂y ∂z 5 (2.4) Phương trình mặt thoáng có dạng: ζ = ζ (x, y, t) (2.5) Trong đó: - (u, v, ω) là các thành phần vận tốc - t là thời gian - ρ là khối lượng riêng của nước - υ là hệ số độ nhớt động - p là áp suất - g là gia tốc trọng trường Vận tốc theo phương đứng ω thay đổi tuyến tính từ đáy đến bề mặt thoáng đối với các mô hình sóng phân tán yếu trong dòng chảy trung bình. Vì vậy, thành phần tiêu tán và phân tán theo phương thẳng đứng là rất nhỏ so với các thành phần theo phương ngang, do đó được bỏ qua trong phương trình động lượng theo phương thẳng đứng (2.3) [14]. Áp suất tại một điểm bất kỳ được chia thành hai thành phần là áp suất thủy tĩnh và phi thủy tĩnh như sau [14]: P = ρg (ζ − z) + q (x, y) (2.6) Thành phần ρg (ζ − z) là áp suất thủy tĩnh và thành phần q (x, y) được gọi là áp suất phi thủy tĩnh, xuất hiện do quá trình chuyển động của chất lỏng. Điều kiện biên trên mặt thoáng và tại đáy như sau: Tại z = ζ ta có: ω|z=ζ = d (ζ) ∂ζ ∂ζ ∂ζ = +u +v dt ∂t ∂x ∂y (2.7) ∂h ∂h d (−h) = −u −v dt ∂x ∂y (2.8) Tại z = −h ta có: ω|z=−h = Trong đó, h là độ sâu nước từ đáy lên mặt thoáng yên tĩnh tại thời điểm đang xét. Đặt D = ζ + h là độ sâu tổng cộng của vùng nước được tính từ đáy lên bề mặt thoáng Tích phân hệ phương trình xuất phát theo độ sâu để biểu diễn cho 6 dòng trung bình. Trước khi thực hiện sử dụng định nghĩa trung bình theo chiều sâu của một đại lượng bất kỳ f như sau [1]: Zζ 1 D F = f dz (2.9) −h - Tích phân phương trình liên tục (2.4): Zζ  1 D ∂u ∂v ∂ω + + ∂x ∂y ∂z  dz = 0 −h Xét từng thành phần sau: Theo công thức (2.9) Zζ  ∂u ∂v + ∂x ∂y  dz = D ∂U ∂V +D ∂x ∂y (2.10) −h Zζ ∂ω dz = ω (ζ) − ω (−h) ∂z −h Sử dụng điều kiện biên mặt thoáng động (2.7) và tại đáy biển (2.8) thay vào phương trình trên được: Rζ −h = = ∂ω ∂z dz ∂ζ ∂t ∂ζ ∂t = ∂ζ ∂t + ∂ζ U ∂x +V ∂ζ ∂y −  −U ∂h ∂x −V ∂h ∂y  ∂ζ ∂ζ + U ∂x + V ∂y + U ∂h + V ∂h ∂y    ∂x ∂ζ ∂ζ ∂h + U ∂x + ∂x + V ∂y + ∂h ∂y Zζ ⇔ ∂ω ∂ζ ∂D ∂D dz = +U +V ∂z ∂t ∂x ∂y −h Cộng hai phương trình (2.10) và (2.11) ta được:     ∂ζ ∂D ∂U ∂D ∂V + U +D + V +D =0 ∂t ∂x ∂x ∂y ∂y 7 (2.11) Hay ∂ζ ∂ (U D) ∂ (V D) + + =0 ∂t ∂x ∂y Trong đó, theo định nghĩa trung bình trong công thức (2.9) có: (2.12) Zζ 1 U= D udz −h Zζ 1 V = D vdz −h - Tiếp theo, lấy trung bình độ sâu 2 vế của phương trình động lượng theo phương z (2.3) được:  Rζ ∂ω Rζ  ∂ω 1 ∂ω ∂ω 1 u ∂x + v ∂y + ω ∂z dz D ∂t dz + D −h −h (2.13) Rζ ∂P Rζ  ∂ 2 ω ∂ 2 ω ∂ 2 ω  Rζ g 1 υ = − ρD dz ∂z dz + D ∂x2 + ∂y 2 + ∂z 2 dz − D −h −h Bỏ qua thành phần υ D Rζ  ∂ 2 ω −h ∂x2 + ∂2ω ∂y 2 + 1 D ∂2ω ∂z 2 Rζ  −h  −h u ∂ω ∂x + v ∂ω ∂y + ω ∂ω ∂z  dz ở vế trái và thành phần dz ở vế phải được: 1 D Zζ ∂ω ∂W dz = ∂t ∂t (2.14) −h Thành phần vế phải: Zζ ∂P dz = P (ζ) − P (−h) ∂z −h Giả thiết rằng áp suất trên bề mặt mặt thoáng P (ζ) = 0, từ phương trình (2.6) có: Zζ ∂P dz = 0 − {ρg (ζ + h) + q} ∂z −h 8 1 − ρD Zζ ∂P q dz = +g ∂z ρD (2.15) −h g − D Zζ dz = −g (2.16) −h Do đó, kết hợp các phương trình (2.14); (2.15) và (2.16) được : D 1 ∂W q ∂W = q⇔ = ∂t ρ ∂t ρD (2.17) - Lấy trung bình độ sâu của phương trình động lượng theo phương x (2.1) được: Zζ   ∂u ∂u ∂u ∂u 1 +u +v +ω dz = − ∂t ∂x ∂y ∂z ρ −h Zζ ∂P dz+υ ∂x −h Zζ   ∂ 2u ∂ 2u ∂ 2u + + dz ∂x2 ∂y 2 ∂z 2 −h (2.18) Bỏ qua các đại lượng 1 D Rζ −h ω ∂u ∂z dz và Rζ υ D −h  ∂2u ∂x2 + ∂2u ∂y 2  dz. Do đó, từ phương trình (2.18) kết hợp với phương trình (2.6) có:   Rζ  ∂u ∂u ∂u ∂u ∂U ∂U ∂t + u ∂x + v ∂y + ω ∂z dz = D ∂t + U ∂x + V −h = − ρ1 Rζ  −h ∂ζ ρg ∂x + ∂q ∂x  dz + υ ∂U ∂y  (2.19) Rζ −h ∂ ∂z ∂u ∂z  dz Thành phần:  Zζ  1 ∂ζ ∂q ∂ζ 1 ∂q − ρg + dz = −g D − D ρ ∂x ∂x ∂x ρ ∂x −h Zζ υ −h ∂ ∂z   ∂u dz = υ ∂z ! ∂u ∂u − = υ (τsx − τbx ) ∂z z=ζ ∂z z=−h Với τsx ; τbx là các ứng suất trên mặt thoáng z = ζ và tại mặt đáy z = −h. Các thành phần ứng suất đó được xác định [4], [6] như sau: p τsx = γρU U 2 + V 2 9 Với γ là hệ số kéo theo của gió tại bề mặt √ U U2 + V 2 τbx = ρg Cz2 với Cz2 là hệ số ma sát đáy Chezy, phụ thuộc vào nhiều yếu tố của miền tính. Kết hợp các phương trình trên và sử dụng hệ số Chezy tính theo công thức Manning, [14], [4] từ (2.18) suy ra [14] : √ ∂U ∂U ∂U ∂ζ 1 1 ∂q 1 q ∂ (ζ − h) 2 g U U 2 + V 2 +U +V = −g − − −n 1/3 ∂t ∂x ∂y ∂x 2 ρ ∂x 2 ρD ∂x ρD D (2.20) - Tương tự lấy trung bình độ sâu đối với phương trình động lượng theo phương y (2.2): 1 D Rζ  ∂v ∂t −h + ∂v u ∂x + ∂v v ∂y + ω ∂v ∂z  dz = − 1 ρD Rζ −h ∂P ∂y dz + υ D Rζ  ∂ 2 v −h ∂x2 ∂2v ∂y 2 + + ∂2v ∂z 2  dz (2.21) 1 D Bỏ qua các thành phần Rζ −h ω ∂v ∂z dz và Rζ  ∂2v ∂x2 + ∂ζ ∂q ρg + ∂y ∂y  1 D −h υ ∂2v ∂y 2  dz. Do đó, phương trình (2.21) trở thành: 1 D Zζ  ∂v ∂v ∂v +u +v ∂t ∂x ∂y  1 dz = − ρD −h Zζ  υ dz + D −h Zζ ∂ ∂z   ∂v dz ∂z −h (2.22) Thành phần: Zζ  ∂v ∂v ∂v +u +v ∂t ∂x ∂y   dz = D ∂V ∂V ∂V +U +V ∂t ∂x ∂y  −h 1 − ρ Zζ ∂P 1 dz = − ∂y ρ −h  Zζ  ∂ζ ∂q ∂ζ D ∂q ρg + dz = −gD − ∂y ∂y ∂y ρ ∂y −h 1 − ρ  Zζ  ∂ζ ∂q ∂ζ 1 ∂q ρg + dz = −g D − D ∂y ∂y ∂y ρ ∂y −h 10
- Xem thêm -