Đăng ký Đăng nhập
Trang chủ Kỹ thuật - Công nghệ Kỹ thuật viễn thông Ebook truyền dẫn vô tuyến số - ts. nguyễn phạm anh dũng...

Tài liệu Ebook truyền dẫn vô tuyến số - ts. nguyễn phạm anh dũng

.PDF
266
2108
98

Mô tả:

LỜI NÓI ĐẦU Sự phát triền nhanh chóng của công nghệ thông tin vô tuyến trong những năm qua và dự báo sự bùng phát của công nghệ này trong những năm tới sẽ dẫn tới sự thiếu hụt nguồn nhân lực có trình độ và kinh nghiệm cao trong lĩnh vực này. Các trường đại học trên thế giới đã và đang nghiên cứu nhiều chương trình và biện pháp để có thể đào tạo các chuyên gia và các kỹ sư vô tuyến có trình độ cao. Môn học "Truyền dẫn vô tuyến số" là một trong số các môn học liên quan đến lĩnh vực công nghệ vô tuyến được giảng dậy tại Học viện Công nghệ Bưu chính Viễn thông. Mục đích cuả môn học này là cung cấp các kiến thức cơ sở về truyền dẫn vô tuyến số để sinh viên có thể học được các môn tiếp theo của công nghệ vô tuyến như: Lý thuyết trải phổ và đa truy nhập, Thông tin vệ tinh, Thông tin di động, và các chuyên đề tự chọn. Cuốn sách này bao gồm các bài giảng về môn học "Truyền dẫn vô tuyến số" đựơc biên soạn theo chương trình đại học công nghệ viễn thông của Học viện Công nghệ Bưu chính Viễn thông cho đối tượng sinh viên được đào tạo từ xa. .v n Cuốn sách này chia là bẩy chương được bố cục hợp lý cùng với nhiều bài tập và đáp án cụ thể cho từng bài tập để sinh viên có thể tự học. Mỗi chương đều có phần giới thiệu chung, nội dung, tổng kết, câu hỏi và bài tập. Cuối cuốn sách là hướng dẫn trả lời và đáp án cho các bài tập. du Cuốn sách này được biên soạn trên cơ sở sinh viên đã học các môn như: Anten và truyền sóng, và các môn cơ sở liên quan. .e Do hạn chế của thời lượng nên cuốn sách này chỉ bao gồm các phần căn bản liên quan đến các kiến thức căn bản về truyền dẫn vô tuyến số. Để nâng cao kiến thức về lĩnh vực này sinh viên có thể tìm hiểu thêm các tài liệu tham khảo cuối sách. Tác giả op en .p tit TS. Nguyễn Phạm Anh Dũng 2 n .v du .e tit .p en op Chương 1 . Giới thiệu chung CHƯƠNG 1: GIỚI THIỆU CHUNG 1.1. GIỚI THIỆU CHUNG 1.1.1. Các chủ đề được trình bầy trong chương • Vai trò của truyền dẫn vô tuyến số trong mạng viễn thông • Đặc điểm của truyền dẫn vô tuyến số • Các biện pháp khắc phục để nâng cao chất lương truyền dẫn vô tuyến số • Sơ đồ khối chung của một kênh truyền dẫn vô tuyến số • Bố cục giáo trình Học kỹ các tư liệu đựơc trình bầy trong chương • Tham khảo thêm [7] 1.1.3. Mục đích chương .v • n 1.1.2. Hướng dẫn Hiểu vai trò của truyền dẫn vô tuyến số trong viễn thông • Biết ưu nhược và các biện phap cải tiến truyền dẫn vô tuyến số • Hiểu được tổng quan những vấn đề sẽ nghiên cứu ở các chương sau trong tài liệu du • .e 1.2. VAI TRÒ CỦA TRUYỀN DẪN VÔ TUYẾN SỐ TRONG MẠNG VIỄN THỐNG tit Các hệ thống vô tuyến số là các hệ thống thông tin vô tuyến số được sử dụng trong các đường truyền dẫn số giữa các phần tử khác nhau của mạng viễn thông. Các hệ thống vô tuyến số có thể được sử dụng như là: Các đường trung kế số nối giữa các tổng đài số. • Các đường truyền dẫn nối tổng đài chính với các tổng đài vệ tinh (các tầng tập trung thuê bao đặt xa) • Các đường truyền dẫn nối các thuê bao với tổng đài chính hoặc tổng đài vệ tinh. • Các bộ tập trung thuê bao vô tuyến. • Trong các hệ thống thông tin di động để kết nối các máy di động với mạng viễn thông. op en .p • • Trong các hệ thống điện thoại không dây số để kết máy cầm tay vô tuyến với tổng đài nội hạt. 3 Chương 1 . Giới thiệu chung Các hệ thống truyền dẫn vô tuyến số là các phần tử quan trọng cuả mạng viễn thông. Tầm quan trọng này càng được khẳng định khi các công nghệ thông tin vô tuyến mới như thông tin di động được đưa vào sử dụng rộng rãi trong mạng viễn thông. Sơ đồ tổng quát của mạng viễn thông số công cộng ở hình 1.1 cho thấy vai trò nói trên của các hệ thống truyền dẫn vô tuyến số. Từ hình 1.1 ta thấy các tổng đài nội hạt (LS: Local Switching Center) được nối với nhau trong mạng liên tổng đài qua tổng đài quá giang (TS: Transit Switching Center) nhờ mạng truyền dẫn số. Môi trường truyền dẫn có thể là: quang, vi ba mặt đất hoặc vệ tinh. Trước hết các luồng số ra từ tổng đài được ghép chung thành một luồng tổng tốc độ cao để tiết kiệm kênh truyền dẫn, sau đó được đưa lên các thiết bị đầu cuối quang, vô tuyến số mặt đất hoặc vệ tinh rồi phát vào môi trường truyền dẫn tương ứng. du .v n Mạng nội hạt là mạng cho phép kết nối các máy đầu cuối (TE: Terminal Equipment) với tổng đài nội hạt. Việc kết nối này có thể thông qua một trạm tập trung thuê bao đặt xa (RSC Remote Subscriber Concentrator) hay tổng đài vệ tinh. Trước hết lưu lượng tới từ các thuê bao đựơc tập trung vào các luồng số, sau đó các luồng số này được truyền đến các tổng đài nội hạt LS qua các đường truyền dẫn: quang, vi ba mặt đất hoặc vệ tinh. Các bộ tập trung có thể là hữu tuyến hoặc vô tuyến. Các bộ tập trung vô tuyến (Radio Concentrator) sử dụng các nguyên tắc đa truy nhập: FDMA (Frequency Division Multiple Access: đa truy nhập phân chia theo tần số), TDMA (Time Division Multiple Access: đa truy nhập phân chia theo thời gian) và CDMA (Code Division Multiple Access): đa truy nhập phân chia theo mã) để tập trung lưu lượng số từ các thuê bao vào tổng đài. op en .p tit .e Một dạng thiết bị đầu cuối rất tiện lợi và ngày càng phổ biến trong tương lai đó là các máy vô tuyến cầm tay. Các máy cầm tay này có thể là các thiết bị cầm tay của hệ thống di động hoặc các máy thoại không dây số của mạng nội hạt. Các thiết bị này được kết nối với tổng đài LS qua đường truyền dẫn vô tuyến số mặt đất hoặc vệ tinh nhờ trạm thu phát gốc vô tuyến (BS: Base Station). Công nghệ được sử dụng để kết nối các máy vô tuyến cầm tay với tổng đài có thể là FDMA, TDMA hoặc CDMA. Trong tương lai các máy cầm tay vô tuyến có thể chiếm 50% các máy đầu cuối TE. 4 GhÐp kªnh GhÐp kªnh LS Th«ng tin di ®éng/ ®iÖn tho¹i kh«ng d©y BS H GhÐp kªnh GhÐp kªnh TS BS H Th«ng tin di ®éng/ ®iÖn tho¹i kh«ng d©y Chương 1 . Giới thiệu chung LS M¹ng liªn tæng ®µi RSC TE TE TE M¹ng néi h¹t M¹ng néi h¹t RSC .v Ký hiÖu: LS: Tæng ®µi néi h¹t,TS: Tæng ®µi qu¸ giang BS: Tr¹m v« tuyÕn gèc, H: M¸y cÇm tay RSC: Bé tËp trung thuª bao xa, TE: ThiÕt bÞ ®Çu cuèi n TE du Hình 1.1. Sơ đồ tổng quát mô tả ứng dụng truyền dẫn vô tuyến số trong mạng viễn thông .e Sở dĩ truyền dẫn vô tuyến số đóng một vai trò rất quan trọng trong mạng viễn thông hiện nay cũng như trong tương lai vì hai lợi thế sau đây: * Linh hoạt và di động. tit Tuy nhiên truyền dẫn vô tuyến cũng có rất nhiều nhược điểm mà các nhà thiết kế các hệ thống cần khắc phục để có thể sử dụng hiệu quả phương thức truyền dẫn này. 1.3. ĐẶC ĐIỂM TRUYỀN DẪN VÔ TUYẾN SỐ .p So với các hệ thống truyền dẫn khác hệ thống truyền dẫn vô tuyến số có rất nhiều hạn chế do môi trường truyền dẫn là môi truờng hở và băng tần hạn chế. en Môi trường truyền dẫn hở dẫn đến ảnh hưởng sau đây khi sử dụng các thiết bị vô tuyến số: Chịu ảnh hưởng rất lớn vào môi trường truyền dẫn : khí hậu thời tiết. • Chịu ảnh hưởng rất lớn vào địa hình: mặt đất, đồi núi, nhà cửa cây cối... • Suy hao trong môi trường lớn op • • Chịu ảnh hưởng của các nguồn nhiễu trong thiên nhiên: phóng điện trong khí quyển, phát xạ của các hành tinh khác (khi thông tin vệ tinh)... • Chịu ảnh hưởng nhiễu công nghiệp từ các động cơ đánh lửa bằng tia lửa điện • Chịu ảnh hưởng nhiễu từ các thiết bị vô tuyến khác. 5 Chương 1 . Giới thiệu chung • Dễ bị nghe trộm và sử dụng trái phép đường truyền thông tin Một ảnh hưởng rất nguy hiểm ở các đường truyền dẫn vô tuyến số là pha đinh. Từ giáo trình truyền sóng ta đã biết phađinh là hiện tượng thăng giáng thất thường cuả cường độ điện trường ở điểm thu. Nguyên nhân pha đinh có thể do thời tiết và địa hình thay đổi làm thay đổi điều kiện truyền sóng. Pha đinh nguy hiểm nhất là pha đinh nhiều tia xẩy ra do máy thu nhận được tín hiệu không phải chỉ từ tia đi thẳng mà còn từ nhiều tia khác phản xạ từ các điểm khác nhau trên đường truyền dẫn. Các hệ thống truyền dẫn vô tuyến số phải được trang bị các hệ thống và thiết bị chống pha đinh hữu hiệu. Truyền dẫn vô tuyến số được thực hiện ở dải tần từ 1 GHz đến vài chục GHz, trong khi đó truyền dẫn quang được thực hiện ở tần số vào khoảng 2.106 GHz (nếu coi λ=1500 nm) vì thế băng tần truyền dẫn vô tuyến số rất hẹp so với quang. Để minh hoạ điều này ta có thể xét thí dụ sau. Nếu coi rằng băng tần truyền dẫn chiếm 5% tần số mang trung tâm thì: Đối với truyền dẫn vô tuyến ở tần số 10GHz , băng tần cho phép vào khoảng: n 10 GHz×0,05=0,1GHz .v Đối với truyền quang ở bước sóng λ=1500 nm hay tần số f=C/λ= 3.108/1500.10-9= 2.1014Hz=2.105GHz, băng tần truyền dẫn cho phép vào khoảng 2.105×0,05=0,1.105GHz du Từ thí dụ trên ta thấy độ rông băng tần cho phép ở truyền dẫn quang gấp 105 lần độ rộng băng tần truyền dẫn vô tuyến. Ngoài ra dải tần số thấp (từ 1 đến 6 GHz) được ưa sử dụng hơn vì suy hao ở vùng tần số này thấp hơn. Điều này dẫn đến dung lượng truyền dẫn của các đường truyền dẫn vô tuyến số rất bị hạn chế. .e Tuy nhiên truyền dẫn vô tuyến số có hai ưu điểm tuyệt vời mà không hệ thống truyền dẫn nào có thể sánh được: Linh hoạt: có thể triển khai hệ thống truyền dẫn số rất nhanh và khi không cần thiết có thể tháo gỡ và nhanh chóng chuyển sang lắp đặt ở vị trí khác của mạng viễn thông. Ưu điểm này cho phép các nhà khai thác phát triển mạng viễn thông nhanh chóng ở các vùng cơ sở hạ tầng viễn thông chưa phát triển với vốn đầu tư thấp nhất. • Di động: chỉ có truyền dẫn vô tuyến mới đáp ứng được thông tin mọi nơi mọi thời điểm của các khách hàng viễn thông. Nhu cầu này không ngừng tăng ở thế kỷ 21 khi nhu cầu đi lại của con người ngày càng tăng. .p tit • en Ngoài các ưu điểm trên thông tin vô tuyến là phương tiện thông tin duy nhất cho các chuyến bay vào các hành tinh khác, thông tin đạo hàng, định vị .... op Để phát huy được các ưu điểm và khắc phục các nhược điểm của truyền dẫn vô tuyến số các nhà thiết kế các thiết bị và hệ thống truyền dẫn vô tuyến số phải sử dụng các biện pháp công nghệ xử lý số và các công nghệ vô tuyến hiện đại. Dưới đây ta sẽ xét tổng quan các công nghệ này. 6 Chương 1 . Giới thiệu chung 1.4. CÁC BIỆN PHÁP KHẮC PHỤC CÁC NHƯỢC ĐIỂM ĐỂ NÂNG CAO CHẤT LƯỢNG TRUYỀN DẪN VÔ TUYẾN SỐ Để khắc phục các ảnh hưởng khác nhau lên truyền dẫn vô tuyến số do môi trường truyền dẫn hở, các biện pháp kỹ thuật sau đây được sử dụng: • Tổ chức quy hoạch sử dụng tài nguyên vô tuyến hợp lý • Tổ chức cấu hình hệ thống hợp lý • Sử dụng các công nghệ xử lý số phức tạp • Hoàn thiện các mạch điện vô tuyến 1.4.1. Tổ chức quy hoạch sử dụng tài nguyên vô tuyến du .v n Để các thiết bị vô tuyến số không gây nhiễu cho nhau các thiết bị này không được sử dụng đồng thời các tài nguyên vô tuyến mà phải sử dụng chúng một cách luân phiên. Ba tài nguyên vô tuyến sau đây cần được chia sẽ dùng chung cho các thiết vô tuyến số để chúng không gây nhiễu cho nhau: tần số, thời gian và năng lượng. Các hệ thống vô tuyến số sử dụng luân phiên tài nguyên tần số được gọi là phân chia theo tần số (FD: Frequency Division). Các hệ thống vô tuyến số sử dụng luân phiên tài nguyên thời gian được gọi là phân chia theo thời gian (TD: Time division). Cuối cùng các hệ thống vô tuyến số sử dụng với phân chia năng lượng được gọi là thiết bị phân chia theo mã (CD: Code Division). .e Để thực hiện phân chia theo tần số ITU-R và các tổ chức vô tuyến lớn khác của quốc tế như: FCC của Mỹ (Federal Communication Commission: Uỷ ban thông tin liên bang), ARIB cuả Nhật (Association of Radio Industry and Bussiness: Liên hiệp kinh doanh và công nghiệp vô tuyến) đưa ra các khuyến nghị quy hoạch tần số. Các khuyến nghị này quy định các kênh tần số được sử dụng, khoảng cách giữa các kênh này, phân cực giữa các kênh ... Dựa trên các khuyến nghị này các quốc gia sẽ quy hoạch tần số cho mình. tit Các hệ thống FD, TD và CD thường được sử dụng trong các hệ thống đa truy nhập cho các mạng thông tin vô tuyến số nội hạt và di động. Việc tổ chức hợp lý TD và CD sẽ cho phép tăng đáng kể dung lượng của các hệ thống vô tuyến số sử dụng các phương thức đa truy nhập này. en .p Do tài nguyên vô tuyến bị hạn chế (băng tần truyền dẫn hẹp) để tiết kiệm tài nguyên này các phương pháp quy hoạch tài nguyên vô tuyến phải cho phép tái sử dụng tốt nhất các tài nguyên vô tuyến. Vấn đề này sẽ được trình bầy cụ thể trong giáo trình "Đa truy nhập vô tuyến" và các phần thiết kế mạng thông tin vô tuyến ở các giáo trình chuyên môn như: "Hệ thống truyền dẫn vô tuyến số", "Thông tin di động" và "Thông tin vệ tinh". 1.4.2. Tổ chức cấu hình hợp lý op Tổ chức cấu hình cho các hệ thống thông tin vô tuyến số đảm bảo hoạt động của các hệ thống này trong trường hợp xẩy ra sự cố. Thông thường có thể xẩy ra hai loại sự cố sau: • Sự cố thiết bị • Sự cố đường truyền (gây ra do phađinh) 7 Chương 1 . Giới thiệu chung Để đảm bảo truyền dẫn tin cậy thông tin ở hệ thống vô tuyến số, các hệ thống này được trang bị thêm các thiết bị hay hệ thống bảo vệ. Đối với trường hợp sự cố thứ nhất bên cạnh thiết bị công tác để truyền thông tin còn có thiết bị dự phòng để tiếp nhận truyền tin từ thiết bị công tác khi thiết bị này bị sự cố. • Phân tập không gian • Phân tập tần số • Phân tập phân cực • Phân tập góc • Phân tập thời gian n Đối với sự cố thứ hai một hay nhiều đường truyền dẫn truyền dẫn dự phòng được lập cấu hình bên cạnh các hệ thống thống công tác. Khi đường truyền dẫn ở hệ thống công tác bị sự cố, thông tin ở các hệ thống này sẽ được chuyển sang truyền ở các đường truyền dự phòng. Các đừơng truyền dự phòng ở các hệ thống này được gọi là các đường phân tập. Tồn tại các phương pháp phân tập sau đây ở các hệ thống truyền dẫn vô tuyến số: du .v Ở dạng phân tập thứ nhất người ta coi rằng xác suất xẩy ra đồng thời phađinh ở hai điểm không tương quan trong không gian là rất nhỏ. Vì thế nếu ở phía thu ta đặt hai anten thu ở hai điểm không tương quan trong không gian thì ta có thể luôn luôn thu được tín hiệu tốt và bằng các kết hợp (hoặc chọn) tín hiệu giữa hai đường truyền này ta sẽ được một tín hiệu tốt. .e Ở dạng phân tập thứ hai người ta coi rằng xác suất xẩy ra đồng thời phađinh ở hai tần số không tương quan với nhau là rất nhỏ. Vì thế nếu ở sử dụng hai hệ thống truyền dẫn số ở hai tần số khác thì ta có thể luôn luôn thu được tín hiệu tốt và bằng các kết hợp (hoặc chọn) tín hiệu giữa hai đường truyền này ta sẽ được một tín hiệu tốt. tit Các dạng phân tập thứ ba và bốn cũng sử dụng thêm một hệ thống dự phòng ở phân cực và góc khác với hệ thống chính để kết hợp (hoặc chọn) tín hiệu giữa hai đường truyền tạo nên một tín hiệu tốt. .p Đối với dạng phân tập cuối cùng, luồng số cần truyền được chia thành các khối bản tin khác nhau, các khối bản tin này được truyền lặp ở một số thời điểm khác nhau để phía thu có thể chọn ra các khối bản tin tốt nhất. en 1.4.3. Sử dụng các công nghệ xử lý tín hiệu số phức tạp Để chống ảnh hửơng của môi trường hở các hệ thống truyền dẫn số sử dụng các công nghệ xử lý tín hiệu số phức tạp hơn các hệ thống truyền dẫn hữu tuyến khác. Các công nghệ xử lý tín hiệu số sau đây thường được sử dụng ở các hệ thống truyền dẫn số: Mã hoá kênh chống lỗi op • • Đan xen • Ngẫu nhiên hoá • Cân bằng thích ứng 8 Chương 1 . Giới thiệu chung • Mật mã hoá tín hiệu để bảo mật thông tin và chống lại các kẻ truy nhập trái phép đường truyền. Các công nghệ xử lý số này được đưa vào phần xử lý băng tần gốc của các thiết bị vô tuyến số để tăng thêm tính chống phađinh và nhiễu của các thiết bị này. Để tiết kiệm độ rộng băng tần truyền dẫn ngoài các biện pháp quy hoạch tài nguyên vô tuyến hợp lý như đã nói ở trên, cần lựa chọn kỹ thuật điều chế thích hợp. Kỹ thuật điều chế kết hợp mã hoá là kỹ thuật được quan tâm nhiều nhất cho mục đích này. 1.4.4. Hoàn thiện các mạch điện vô tuyến Các mạch điện vô tuyến ngày càng hoàn thiện để hoạt động có hiệu quả hơn và tiêu tốn ít năng lượng hơn. Các công nghệ bán dẫn mới được đưa vào sử dụng trong các mạch điên siêu cao tần cho phép giảm kích cỡ thiết bị, tiêu thu ít năng lượng, tăng cường độ nhậy và lọc nhiễu. n 1.5. SƠ ĐỒ KHỐI CHUNG CỦA KÊNH TRUYỀN DẪN VÔ TUYẾN SỐ 1.5.1. Phía phát • √ Khuyếch đại và cân bằng cáp đường truyền số √ Biến đổi mã đường vào mã máy √ Tái sinh tín hiệu số √ Khôi phục xung đồng hồ tit Khối xử lý số băng gốc phát: du Phối kháng với đường số .e √ √ Ghép thêm các thông tin điều khiển và quản lý đường truyền √ Mật mâ hoá các thông tin quan trọng √ Mã hoá kênh chống lỗi √ Ngẫu nhiên hoá tín hiệu số trước khi đưa lên điều chế .p • Khối KĐ và giao diện đường số có các chức năng sau: en • .v Sơ đồ khối chung của một kênh truyền dẫn vô tuyến số được cho ở hình 1.2. Vai trò của các khối chức năng trong sơ đồ hình 1.2 như sau: Khối điều chế và biến đổi nâng tần: Điều chế sóng mang bằng tín hiệu số để chuyển đổi tín hiệu số này vào vùng tần số cao thuận tiện cho việc truyền dẫn op √ √ • Đối với các máy phát đổi tần với điều chế thực hiện ở trung tần khối biến đổi nâng tần cho phép chuyển tín hiệu trung tần phát vào tần số vô tuyền trước khi phát. Khối khuyếch đại công suất: 9 Chương 1 . Giới thiệu chung √ Khuyếch đại công suất phát đến mức cần thiết trước khi đưa phát vào không trung. 1.5.2. Phía thu: • Khuyếch đại tạp âm nhỏ: √ Khuyếch đại tín hiệu thu yếu trong khi khuyếch đại rất ít tạp âm • Biến đổi hạ tần, khuyếch đại trung tần và giải điều chế : √ Đối với máy thu đổi tần trước khi giải điều chế tín hiệu thu được biến đổi vào trung tần thu nhờ khối biến đổi hạ tần. Trong quá trình biến đổi hạ tần do suất hiện tần số ảnh gương nên khối biến đổi hạ tần thường làm thêm nhiệm vụ triệt tần số ảnh gương. √ Đối với các máy thu đổi tần sau biến đổi hạ tần là khuyếch đại trung tần. Nhiệm vụ của khối chức năng này là khuyếch đại, lọc nhiễu kênh lân cận và cân bằng thích ứng ở vùng tần số cũng như cân bằng trễ nhóm ở các phần tử của kênh truyền dẫn . .v Giải ghép xen √ Giải mã kênh √ Giải ngẫu nhiên √ Phân luồng cho luồng số chính và luổng số điều khiển quản lý đường truyền √ Cân bằng thích ứng ở vùng thời gian để giảm thiểu ảnh hửơng của phađinh Khuyếch đại và giao điện đường số: .e du √ √ Khuyếch tín hiệu số đến mức cần thiết trước khi đưa ra ngòai máy √ Biến đổi mã máy vào mã đường √ Phối kháng với đường số op en .p • Xử lý số băng tần gốc thu: Thực hiện các chức năng ngược với khối xử lý số băng gốc phát như: tit • Giải điều chế tín hiệu thu để phục hồi tín hiệu số n √ 10 du .v n Chương 1 . Giới thiệu chung 1.5.3. Giao diện môi trường truyền dẫn. .e Hệ thống anten-phiđơ và các thiết bị siêu cao tần cho phép các máy thu và máy phát giao tiếp với môi trường truyền dẫn vô tuyến. Giao diện môi trường truyền dẫn và một số mạch siêu cao tần đươc khảo sát ở các giáo trình Anten-truyền sóng và kỹ thuật siêu cao tần. 1.6. BỐ CỤC CUỐN SÁCH op en .p tit Cuốn sách bao gồm 7 chương với kết thúc là phần phụ lục. Chương thứ hai xét dạng tín hiệu trong truyền dẫn vô tuyến số. Chương 3 xét các kỹ thuật điều chế số. Trong chương này các sơ đồ và các tính năng hiệu suất sử dụng băng tần, xác suất lỗi được xét và so sánh cho các phương pháp điều chế khác nhau. Chương bốn xét các phương pháp mã hoá kênh sử dụng rộng rãi trên các đường truyền vô tuyến số: mã hoá khối tuyến tính và mã hoá xoắn được xét ở chương này, ngoài ra phương pháp mã hóa turbo mới cũng được xét trong chương này. Chương năm được dành cho thiết bị vô tuyến số, chương này xét sơ đồ tổng quát của thiết bị vô tuyến số, các phần tử của thiết bị vô tuyến số. Chương 6 xét phân bố tần số và cấu hình của hệ thống truyền dẫn vô tuyến số. Chương 7 phân tích đường truyền vô tuyến số và xét các phương pháp tính toán đường truyền vô tuyến số, đây là cơ sở để thiết kế các đường truyền dẫn vô tuyến số. 11 Chương 2. Dạng tín hiệu trong vi ba số CHƯƠNG 2: DẠNG TÍN HIỆU TRONG TRUYỀN DẪN VÔ TUYẾN SỐ 2.1. GIỚI THIỆU CHUNG Các dạng hàm tín hiệu • Hàm tương quan và mật độ phổ công suất • Các kiểu tín hiệu ngẫu nhiên • Các tín hiệu nhị phân băng gốc và băng thông • Ảnh hưởng của hạn chế băng thông và định lý Nyquist • Ảnh hưởng của đặc tính đường truyền .v • n 2.1.1. Các chủ đề được trình bầy trong chương • Học kỹ các tư liệu đựơc trình bầy trong chương • Tham khảo thêm [1],[2], [7] 2.1.3. Mục đích chương du 2.1.2. Hướng dẫn Hiểu được cách sử dụng các hàm để biểu diễn tín hiệu trong truyền dẫn vô tuyến số • Hiểu được ảnh hưởng của kênh truyền lên chất lượng truyền dẫn vô tuyến số tit 2.2. CÁC DẠNG HÀM TÍN HIỆU .e • Các hàm tín hiệu có thể chia thành các lọai hàm trên cơ sở sau: .p 1) thay đổi các giá trị theo thời gian 2) mức độ có thể mô tả hoặc dự đoán tính cách của hàm en 3) thời gian tồn tại hàm 4) các hàm có kiểu năng lượng hay kiểu công suất Loại một được chia thành các hàm sau: Tương tự: là môt hàm liên tục nhận các giá trị dương, không hoặc âm. Thay đổi xẩy ra từ từ và tốc độ thay đổi hữu hạn. op • • 12 Số: là môt hàm nhận một tập hữu hạn các giá trị dương, không hay âm. Thay đổi giá trị tức thì và tốc độ thay đổi vô hạn ở thời điểm thay đổi, còn ở các thời điểm khác bằng không. Hàm số thường được sử dụng trong viễn thông là hàm nhị phận: chỉ có hai trạng thái: 1 và 0. Chương 2. Dạng tín hiệu trong vi ba số Loại hai được chia theo mức độ rõ ràng thể hiện tính cách của hàm: Tất định: ở mọi thời điểm hàm xác định thể hiện giá trị (gồm cả không) liên quan đến các thời điểm lân cận ở mức độ rõ ràng để có thể biểu diễn giá trị này một cách chính xác. • Xác suất: hàm có giá trị tương lai được mô tả ở các thuật ngữ thống kê. Đối với hàm này, khi ta biết trước một tập gía trị của nó trong quá khứ, ta vẫn không thể biết chắc chắn giá trị của nó ở một thời điểm nhất định trong tương lai cũng như cho trước môt giá trị nào đó ta không thể nói chắc chắn thời điểm tương lai sẽ xẩy ra giá trị này. Các giá trị tương lai chỉ được ước tính bằng thống kê liên quan đến các giá trị quá khứ và với giả thiết rằng tính cách tương lai của nó có liên hệ với quá khứ. Một nhóm quan trọng của các hàm xác suất là các hàm ngẫu nhiên. • Ngẫu nhiên: là hàm xác suất có các giá trị giới hạn ở một giải cho trước. Trong một khoảng thời gian dài mỗi giá trị trong giải này sẽ xẩy ra nhiều hơn các giá trị khác. n • Loại ba được phân chia theo thời gian tồn tại của hàm: Quá độ: hàm chỉ tồn tại trong một khoảng thời gian hữu hạn • Vô tận: hàm tồn tại ở mọi thời điểm. Để mô tả hoạt động của một hệ thống thông tin trong trạng thái ổn định. Một nhóm của hàm này là hàm tuần hoàn. • Tuần hoàn: hàm vô tận có các giá trị được lặp ở các khoảng quy định. du .v • Loại bốn được phân chia thành hàm kiểu năng lượng và kiểu công suất: Hàm kiểu năng lượng: Hàm tín hiệu xác định s(t) được coi là một hàm tín hiệu kiểu năng lượng nếu năng lượng của nó hữu hạn, nghĩa là: ∞ E[∞]= ∫ s 2 (t )dt <∞ −∞ (2.1) Hàm kiểu công suất: hàm tín hiệu s(t) được gọi là hàm tín hiệu công suất nếu năng lượng của nó vô hạn nhưng công suất trung bình hữu hạn, nghĩa là: 1 t0 →∞ t0 t0 /2 ∫ 2 x(t ) dt < ∞ en Ptb = lim .p • tit • .e Để tiện xét các hàm này ta sẽ coi rằng hàm s(t) được đo bằng các đơn vị tín hiệu (dòng điện hoặc điện áp) ở điện trở 1 Ω, công suất được đo bằng Watt còn năng lượng bằng Joule. (2.2) − t0 /2 Như vậy hàm tín hiệu kiểu năng lượng sẽ có công suất P[∞] bằng không. op Đối với tín hiệu tuần hoàn sp(t), việc lấy trung bình trên một chu kỳ (T1) cũng giống như lấy trung bình trên toàn bộ thời gian nên: Ptb = lim t0 →∞ 1 t0 t0 / 2 ∫ 2 x(t ) dt < ∞ (2.3) − t0 / 2 13 Chương 2. Dạng tín hiệu trong vi ba số Lưu ý rằng mọi tín hiệu tuần hoàn đều là tín hiệu công suất. Chẳng hạn tín hiệu U(t)-U(t10) trong đó U(t)=0 khi t<0 và U(t)=1 khi t≥0 và e-2tU(t) là tín hiệu năng lượng. Các sóng hàm sin, chữ nhật và các tín hiệu không đổi là các tín hiệu công suất. Một số tín hiệu như etU(t) và tU(t) không phải là tín hiệu năng lượng cũng như tín hiệu công suất. Formatted: Font: 11.5 pt, Portuguese (Brazil) 2.3. HÀM TỰ TƯƠNG QUAN VÀ MẬT ĐỘ PHỔ CÔNG SUẤT Formatted: Font: 11.5 pt, Portuguese (Brazil) Đối với một tín hiệu tất định kiểu công suất s(t), hàm tự tương quan (ACF: Autocorrelation Function) chuẩn hóa được xác định như sau: Formatted: Font: 14 pt, Vietnamese 1 φ (τ ) = lim T →∞ T α +T ∫ α s (t ) s *(t + τ )dt (2.4) Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 14 pt, Vietnamese Formatted: Font: 14 pt, Vietnamese Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) trong đó s*(t) ký hiệu cho phiên bản phức liên hợp của s(t) Field Code Changed Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) n Về ý nghĩa hàm tự tương quan đánh giá mức độ giống nhau giữa tín hiệu và phiên bản dịch thời gian của chính nó: t+τ. Nếu s(t) là một hàm phức thì biểu thức dưới tích phân trong phương trình (2.4) đựơc thay bằng s(t)s*(t+τ), trong đó s(t) biểu thị phức liên hợp của s(t). Mục đích của ta là xét tín hiệu thực tế vì thế tín hiệu giá trị thực được sử dụng. Nếu s(t) là một hàm tuần hoàn có chu kỳ là T thì ta có thể thực hiện lấy trung bình phương trình (2.4) trên một chu kỳ, ta được: ∫ .v α +T s (t + τ ) s *(t )dt (2.5) α du 1 φ (τ ) = T trong đó α là một hằng số bất kỳ. Lưu ý rằng hàm φ(t) trong phương trình trên cũng là một hàm tuần hoàn. ∞ (2.6) Vì thế hàm tự tương quan của biến đổi Fourier ngược của PSD sẽ là: .p ∞ φ (τ ) = F −1[Φ ( f )]= ∫ Φ ( f )e j2π fτ df (2.7) en Cặp phương trình (2.6) và (2.7) được gọi là tương quan Wiener-Khichine. PSD cho ta biết công suất trung bình của tín hiệu ở vùng tần số. Công suất của một băng tần được xác định bởi diện tích của PSD ở băng tần này. Chẳng hạn công suất trung bình trong băng tần từ f1 đến f2 là: f1 op ∫ Φ( f )df + f1 ∫ Φ( f )df − f2 (trong vùng tần số được trình bầy cho cả giá trị dương lẫn âm). 14 Deleted: ( Formatted: Font: 11.5 pt, Portuguese (Brazil) Field Code Changed Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) -∞ f2 Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) tit Φ ( f ) = F [φ (τ )]= ∫ φ (τ )e-j2π fτ dτ .e Mật đổ phổ công suất (PSD:Power spectral Density) của s(t) được định nghĩa như biến đôi Fourier của hàm tự tương quan như sau: -∞ Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Field Code Changed Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Field Code Changed Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted: Font: 11.5 pt, Portuguese (Brazil) Formatted ... [1] Chương 2. Dạng tín hiệu trong vi ba số Nếu s(t) là một hàm tuần hoàn có chu kỳ T, thì Φ(f) chỉ chứa các hàm xung kim (Dirac) ở 1 2 các tần số 0, ± , ± , …, nghĩa là công suất trung bình chỉ xuất hiện tại các thành phần một T T chiều và các thành phần hài. Công suất trung bình của một tín hiệu bằng giá trị trung bình hàm tự tương quan của tín hiệu này tại τ=0. Cũng có thể nhận được công suất này bằng cách lấy tích phân PSD: Đối với các tín hiệu năng lượng tất định ta có thể định nghĩa hàm tự tương quan như sau: ψ (τ ) = ∞ ∫ s(t )s(t + τ )dt (2.9) −∞ Bình phương biến đổi Fourier của tín hiệu s(t) được gọi là mật độ phổ năng lượng (ESD: Energy spectral density) và được ký hiệu là |S(f)|2, trong đó S(f) là biến đổi Fourier của s(t). Biến đổi Fourier của hàm tự tương quan Ψ (τ ) ⇔ Φ ( f ) cũng là mật độ phổ năng lượng của tín hiệu ⎡ ⎤ E[∞]=ψ (0)= ⎢ ∫ |S(f)|2 df ⎥ = ∫ Ψ ( f )df ⎣-∞ ⎦τ = 0 - ∞ ∞ (2.10) du 2.4. CÁC TÍN HIỆU NGẪU NHIÊN .v ∞ tit .e Một tín hiệu ngẫu nhiên (quá trình ngẫu nhiên) X(t) là tập hợp các biến ngẫu nhiên được đánh chỉ số theo t. Nếu ta cố định t, chẳng hạn t=t1, thì X(t1) chính là một biến ngẫu nhiên. Sự thể hiện thông kê của các biến ngẫu nhiên có thể được trình bầy bằng hàm mật độ xác suất (pdf: Probability density function) liên hợp của chúng và sự thể hiện của một quá trình ngẫu nhiên có thể được trình bầy bằng các hàm mật độ xác suất (pdf) liên hợp tại các thời điểm khác nhau. Tuy nhiên trong thực tế ta không cần biết pdf liên hợp mà chỉ cần biết thông kê bậc 1 (trung bình) và thống kê bậc 2 (hàm tự tương quan là đủ. Trung bình của một quá trình ngẫu nhiên X(t) là kỳ vọng (trung bình tập hợp) của X(t): .p ∞ μ X (t ) = E [ X (t ) ] = ∫p X (t ) Deleted: ( Deleted: ằ n s(t). Mật độ phổ năng lượng cho ta biết năng lượng của một tín hiệu được phân bố ở vùng tần số như thế nào. Năng lượng của một tín hiệu bằng tích phân của mật độ phổ năng lượng: ( x)dx Deleted: ad Deleted: f Deleted: ô Field Code Changed Formatted: Font: 11.5 pt, French (France) Formatted: Font: Times New Roman, 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) Deleted: ư Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) (2.11) Formatted: Font: (Default) Times New Roman, 11.5 pt, French (France) −∞ Formatted: Font: (Default) Times New Roman, 11.5 pt, French (France) Có thể định nghĩa hàm tự tương quan của một tín hiệu ngẫu nhiên giống như trường hợp của một tín hiệu được xác định ở phần trước nếu thay thế lấy trung bình bằng kỳ vọng. Khi này hàm tự tương quan cuả một quá trình ngẫu nhiên sẽ là: Field Code Changed en trong đó pX(t)(x) là pdf của X(t) tại thời điểm t. op φX(t,t+τ)=E[X(t)X(t+τ)] ∫∫p X ( t ) X ( t +τ ) Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) ∞ ∞ = Formatted: Font: (Default) Times New Roman, 11.5 pt, French (France) ( x1 , x2 )dx1dx2 (2.12) Formatted: Font: 11.5 pt, French (France) −∞ −∞ Formatted: Font: (Default) Times New Roman, 11.5 pt, French (France) trong đó E[.] biểu thị kỳ vọng và pX(t)X(t+τ)(x1,x2) là pdf liên hợp của X(t) và X(t+τ). 15 Chương 2. Dạng tín hiệu trong vi ba số Nếu trung bình μX(t) và hàm tự tương quan φX(t,t+τ) không phụ thuộc thời gian thì ta nói rằng X(t) là một quá trình dừng nghiã rộng (WSS: Wide sense stationary). Trong trường hợp này ta có thể bỏ qua biến ngẫu nhiên t và sử dụng φX(τ) cho hàm ngẫu nhiên. Đối với quá trình WSS, PSD (ký hiệu là ΦX(f)) được xác định như là biến đổi Fourier cuả φX(τ) theo Winner-Khichine, nghĩa là: Formatted ... [2] Deleted: g Deleted: Ư…so ... [3] Formatted: Font: 11.5 pt, French (France) Formatted ... [4] Deleted: ô ∞ Φ X ( f ) = F [φ X (τ )]= ∫ φ X (τ )e-j2π fτ dτ Formatted (2.13) ... [5] Field Code Changed -∞ Formatted ∞ φ X (τ ) = F −1[Φ X ( f )]= ∫ Φ X ( f )e j2π fτ df (2.14) ... [6] Field Code Changed Formatted -∞ ... [7] và công suất trung bình là: Field Code Changed ∞ ⎡∞ ⎤ P[∞]=E[X (t )]=φ (0)= ⎢ ∫ Φ X ( f )e j2π fτ df ⎥ = ∫ Φ X ( f )df ⎣ -∞ ⎦τ = 0 - ∞ 2 Formatted Formatted a (2.16) du δ(t-t0)=0, nếu t≠t0 và ∫ δ (t − t0 )dt = 1 nếu aT, vì tại mọi thời điểm giá trị của X(t) độc lập với X(t+τ) do chúng ở các đoạn bit khác nhau. Thực hiện biến đổi Fourier phương trình (2.20) ta được PSD: Φ X ( f ) = A2TSinc 2 ( fT ) Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) (2.21) Formatted: Font: 11.5 pt, French (France) Hàm tự tương quan và PSD của X(t) được cho trên hình 2.2. Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) a) Hàm tương quan φ X (τ ) A Formatted: Font: 11.5 pt, French (France) 2 Formatted: Font: 11.5 pt, French (France) Field Code Changed ΦX ( f ) -2 -3 tit .e A2T .v b) Mật độ phổ công suất Formatted: Font: 11.5 pt, French (France) τ -T 0 du -T n Formatted: Font: 11.5 pt, French (France) -1 0 1 2 3 fT .p Hình 2.2. Hàm tự tương quan và PSD của tín hiệu ngẫu nhiên nhị phân X(t) Lưu ý rằng các giá trị bằng không đầu tiên xẩy ra tại f=±1/T và cực đại là A2T tại f=0. ∞ ∫Φ en Không phụ thuộc vào T, φ X (0) = X ( f )df = A2 là công suất trung bình của X(t). PSD nhận −∞ op được cho thấy rằng công suất trung bình trải rộng trên băng tần nếu T nhỏ (tương ứng với tốc độ bit cao của tín hiệu X(t)); nó tập trung trên một băng tần hẹp nếu T lớn (tương ứng với tốc độ bit thấp của tín hiệu X(t)). 2.6. TÍN HIỆU BĂNG THÔNG Bây giờ ta đi xét phiên bản điều chế của tín hiệu ngẫu nhiên nhị phân X(t) nói trên, để vậy ta nhân X(t) với một hàm sin như sau: 18 Deleted: ẻ Chương 2. Dạng tín hiệu trong vi ba số Y(t)=X(t)cos(2πfct+θ) Formatted: Font: 11.5 pt, French (France) (2.22) trong đó fc được gọi là tần số sóng mang và θ là góc pha ngẫu nhiên có phân bố đều trong dải [0,2π] và không phụ thuộc vào X(t). Pha ngẫu nhiên θ cần thiết để biến Y(t) thành WSS. Ta có thể biểu diễn hàm tự tương quan và PSD của Y(t) như sau: 1 φY (τ ) = φ X (τ )cos(2π f cτ ) 2 ΦY ( f ) = Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) (2.24) Formatted: Font: 11.5 pt, French (France) Khi X(t) là biễn nhị phân ngẫu nhiên được cho bởi phương trình (2.18), ta được: Field Code Changed A φY (τ ) = ΛT (τ )cos(2π f cτ ) 2 Formatted: Font: 11.5 pt, French (France) (2.25) A2T ΦY ( f ) = {Sinc 2 [( f − fc )T ] + Sinc 2 [( f + fc )T ]} 4 Formatted: Font: 11.5 pt, French (France) (2.26) n Field Code Changed Formatted: Font: 11.5 pt, French (France) du .v Dạng của các hàm trên được vẽ trên hình 2.3. φY (τ ) 2 A /T Formatted: Font: 11.5 pt, French (France) Field Code Changed Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) Field Code Changed Formatted: Font: 11.5 pt, French (France) .e T -T Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) (2.23) 1 {Φ X ( f − fc ) + Φ X ( f + fc )} 4 Formatted: Font: 11.5 pt, French (France) Formatted: Font: 11.5 pt, French (France) fc = 4 / T tit − A2 / T ΦY ( f ) en .p A2T / 4 op 1 − fc 2 2 1 3 3 −fc + −fc + −fc + −fc − −fc −T −fc − T T T T T fc − 2 3 fc − T T fc − 1 T fc f + 1 c T fc + 2 3 fc + T T f Hình 2.3. Hàm tự tương quan và PSD của tín hiệu nhi phân X(t) được điều chế Như thấy trên hình vẽ, Phổ được tập trung tại các tần số ± f c . Nếu sử dụng độ rộng băng tần là độ rộng giới hạn tại hai giá trị không đầu tiên của PSD thì độ rộng phổ của Y(t) bằng 2/T (lưu ý 19 Deleted: ô Chương 2. Dạng tín hiệu trong vi ba số độ rộng băng tần trong vi ba số thường được sử dụng là độ rộng băng Nyquist, trong trường hợp này độ rộng băng Nyquist bằng 1/T). Công suất trung bình của Y(t) là φY (0) = A2 / 2 và bằng một nửa công suất trung bình của X(T). Trên hình 2.3 ta sử dụng fc=4/T. 2.7. ẢNH HƯƠNG CỦA HẠN CHẾ BĂNG THÔNG VÀ ĐỊNH LÝ NYQUIST Như ta đã xét ở 2.4, Các dẫy xung nhị phân ngẫu nhiên với độ rộng T và biên độ ±A (lưỡng cực) có vô hạn các thành phần tần số. Tuy nhiên trong các đường truyền dẫn thực tế băng tần bị hạn chế, vì thế xung thu được có dạng mở rộng ở đáy. Phần mở rộng này chồng lấn lên các xung phía trước và phía sau gây ảnh hưởng cho việc phân biệt các xung. Ảnh hưởng này được gọi là nhiễu giữa các ký hiệu (ISI: Intersymbol Interference). ⎛ f ⎞ H(f) = ∏ ⎜ ⎟ ⎝ 2f ⎠ trong đó f0 là tần số cắt. du Biến đổi Fourier ngược cho biểu thức trên ta được đáp ứng đầu ra: .v (2.27) 0 n Có thể trình bầy sự hạn chễ băng tần bằng hàm truyền đạt của bộ lọc thông thấp lý tưởng như ở hình 2.4. Nếu ta đưa một xung kim δ(t) vào bộ lọc này thì phổ của tín hiệu nhận được ở đầu ra sẽ có dạng hàm chữ nhật sau: h(t) = 2f0Sinc(2f0t) (2.28) Hình 2.4 b cho ta thấy dạng của đáp ứng này. Ngọai trừ giá trị đỉnh tại trung tâm, các điểm 1 2 f0 , trong đó k là số nguyên dương khác không. Khoảng cách T0 được gọi là khoảng Nyquist. .e không xuất hiện ở mọi thời điểm kT0 =k tit Nếu ta phát đi một dẫy xung kim cách nhau δT(t) cách nhau một khoảng Nyquist, thì có thể tránh được nhiễu giao thoa giữa các ký hiệu (nếu tiến hành phân biệt các xung này tại các thời điểm kT0 của các xung thu) (hình 2.4c). en .p Nếu khoảng cách giữa các xung kim T nhỏ hơn khoảng cách Nyquist T0, thì sự chồng lấn của các xung này làm ta không thể phân biệt được chúng. Nói một cách khác độ rộng băng tần cần 1 thiết để phân biệt các xung (các ký hiệu) có tốc độ ký hiệu Rs bằng 1/T phải bằng 2f0= , nghĩa T0 là: f0= 1/2T=Rs/2 (giới hạn độ rộng băng tần Nyquist) (2.29) op Định lý Nyquist thứ nhất Trong thực tế rất khó thực hiện được bộ lọc thông thấp lý tưởng như nói ở trên. Vì vậy để đạt được điều kiện cần thiết của bộ lọc trong đường truyền dẫn thực tế, ta áp dụng định lý Nyquist thứ nhất sau đây: 20
- Xem thêm -

Tài liệu liên quan