Đăng ký Đăng nhập
Trang chủ Giáo dục - Đào tạo Toán học đề thi đại học môn toán có đáp án qua các năm...

Tài liệu đề thi đại học môn toán có đáp án qua các năm

.PDF
75
465
59

Mô tả:

bé gi¸o dôc vµ ®µo t¹o Kú thi tuyÓn sinh ®¹i häc, cao §¼nG n¨m 2002 -----------------------------M«n thi : to¸n §Ò chÝnh thøc (Thêi gian lµm bµi: 180 phót) _____________________________________________ C©u I (§H : 2,5 ®iÓm; C§ : 3,0 ®iÓm) Cho hµm sè : y = − x 3 + 3mx 2 + 3(1 − m 2 ) x + m 3 − m 2 (1) ( m lµ tham sè). 1. Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ hµm sè (1) khi m = 1. 2. T×m k ®Ó ph−¬ng tr×nh: − x 3 + 3 x 2 + k 3 − 3k 2 = 0 cã ba nghiÖm ph©n biÖt. 3. ViÕt ph−¬ng tr×nh ®−êng th¼ng ®i qua hai ®iÓm cùc trÞ cña ®å thÞ hµm sè (1). C©u II.(§H : 1,5 ®iÓm; C§: 2,0 ®iÓm) log 32 x + log 32 x + 1 − 2m − 1 = 0 Cho ph−¬ng tr×nh : 1 (2) ( m lµ tham sè). m = 2. Gi¶i ph−¬ng tr×nh (2) khi 2. T×m m ®Ó ph−¬ng tr×nh (2) cã Ýt nhÊt mét nghiÖm thuéc ®o¹n [ 1 ; 3 3 ]. C©u III. (§H : 2,0 ®iÓm; C§ : 2,0 ®iÓm ) cos 3x + sin 3x   1. T×m nghiÖm thuéc kho¶ng (0 ; 2π ) cña ph−¬ng tr×nh: 5 sin x +  = cos 2 x + 3. 1 + 2 sin 2 x   2. TÝnh diÖn tÝch h×nh ph¼ng giíi h¹n bëi c¸c ®−êng: y =| x 2 − 4 x + 3 | , y = x + 3. C©u IV.( §H : 2,0 ®iÓm; C§ : 3,0 ®iÓm) 1. Cho h×nh chãp tam gi¸c ®Òu S . ABC ®Ønh S , cã ®é dµi c¹nh ®¸y b»ng a. Gäi M vµ N lÇn l−ît lµ c¸c trung ®iÓm cña c¸c c¹nh SB vµ SC. TÝnh theo a diÖn tÝch tam gi¸c AMN , biÕt r»ng mÆt ph¼ng ( AMN ) vu«ng gãc víi mÆt ph¼ng ( SBC ) . 2. Trong kh«ng gian víi hÖ to¹ ®é §ªcac vu«ng gãc Oxyz cho hai ®−êng th¼ng:  x = 1+ t  x − 2y + z − 4 = 0  vµ ∆ 2 :  y = 2 + t . ∆1 :  x + 2 y − 2z + 4 = 0  z = 1 + 2t  a) ViÕt ph−¬ng tr×nh mÆt ph¼ng ( P) chøa ®−êng th¼ng ∆ 1 vµ song song víi ®−êng th¼ng ∆ 2 . b) Cho ®iÓm M (2;1;4) . T×m to¹ ®é ®iÓm H thuéc ®−êng th¼ng ∆ 2 sao cho ®o¹n th¼ng MH cã ®é dµi nhá nhÊt. C©u V.( §H : 2,0 ®iÓm) 1. Trong mÆt ph¼ng víi hÖ to¹ ®é §ªcac vu«ng gãc Oxy , xÐt tam gi¸c ABC vu«ng t¹i A , ph−¬ng tr×nh ®−êng th¼ng BC lµ 3 x − y − 3 = 0, c¸c ®Ønh A vµ B thuéc trôc hoµnh vµ b¸n kÝnh ®−êng trßn néi tiÕp b»ng 2. T×m täa ®é träng t©m G cña tam gi¸c ABC . 2. Cho khai triÓn nhÞ thøc: n n n −1 n −1 −x  x2−1   −x   x −1   x −1   − x   x −1  − x   2 + 2 3  = C n0  2 2  + C n1  2 2   2 3  + L + C nn −1  2 2  2 3  + C nn  2 3                            3 1 ( n lµ sè nguyªn d−¬ng). BiÕt r»ng trong khai triÓn ®ã C n = 5C n vµ sè h¹ng thø t− b»ng 20n , t×m n vµ x . ----------------------------------------HÕt--------------------------------------------Ghi chó: 1) ThÝ sinh chØ thi cao ®¼ng kh«ng lµm C©u V. n 2) C¸n bé coi thi kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh:.................................................... Sè b¸o danh:..................... bé gi¸o dôc vµ ®µo t¹o ------------------------------------- C©u ý I 1 Kú thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2002 §¸p ¸n vµ thang ®iÓm m«n to¸n khèi A Néi dung §H m = 1 ⇒ y = − x 3 + 3x 2 x = 0 y' = 0 ⇔  1  x2 = 2 TËp x¸c ®Þnh ∀x ∈ R . y ' = −3 x 2 + 6 x = −3x( x − 2) , y" = −6 x + 6 = 0, C§ ∑1,0 ® ∑1,5 ® 0,25 ® 0,5® 0,5 ® 0,5 ® 0,25 ® 0,5 ® y" = 0 ⇔ x = 1 B¶ng biÕn thiªn −∞ x 0 − y' +∞ 0 + 0 − lâm U 4 CT 0 2 C§ låi x = 0 y=0⇔ , x = 3 §å thÞ: +∞ 2 + 0 y" y 1 − −∞ y (−1) = 4 y 4 2 -1 0 1 2 3 x ( ThÝ sinh cã thÓ lËp 2 b¶ng biÕn thiªn) 1 I 2 C¸ch I. Ta cã − x 3 + 3 x 2 + k 3 − 3k 2 = 0 ⇔ − x 3 + 3 x = −k 3 + 3k 2 . §Æt a = − k 3 + 3k 2 Dùa vµo ®å thÞ ta thÊy ph−¬ng tr×nh − x 3 + 3 x 2 = a cã 3 nghiÖm ph©n biÖt ⇔ 0 < a < 4 ⇔ 0 < − k 3 + 3k 2 < 4  −1 < k < 3 0≠k <3 0≠k <3   ⇔ ⇔ ⇔   2 2 k ≠ 0 ∧ k ≠ 2 (k + 1)(k − 4k + 4) > 0 (k + 1)(k − 2 ) > 0 C¸ch II. Ta cã − x 3 + 3 x 2 + k 3 − 3k 2 = 0 ⇔ ( x − k ) x 2 + (k − 3) x + k 2 − 3k ] = 0 cã 3 nghiÖm ph©n biÖt ⇔ f ( x) = x 2 + (k − 3) x + k 2 − 3k = 0 cã 2 nghiÖm ph©n biÖt kh¸c k  ∆ = −3k 2 + 6k + 9 > 0  −1 < k < 3 ⇔ 2 ⇔  2 2 k ≠ 0 ∧ k ≠ 2 k + k − 3k + k − 3k ≠ 0 [ 0,25 ® 0,25 ® 0,25 ® 0,25 ® ----------- ----------- 0,25® 0,25 ® 0,25 ® 0,25 ® ∑1,0 ® ∑1,0 ® 3 C¸ch I.  x = m −1 y' = 0 ⇔  1  x2 = m + 1 Ta thÊy x1 ≠ x 2 vµ y ' ®æi dÊu khi qua x1 vµ x 2 ⇒ hµm sè ®¹t cùc trÞ t¹i x1 vµ x 2 . y1 = y ( x1 ) = − m 2 + 3m − 2 vµ y 2 = y ( x 2 ) = − m 2 + 3m + 2 Ph−¬ng tr×nh ®−êng th¼ng ®i qua 2 ®iÓm cùc trÞ M 1 m − 1;− m 2 + 3m − 2 vµ M 2 m + 1;− m 2 + 3m + 2 lµ: y ' = −3x 2 + 6mx + 3(1 − m 2 ) = −3( x − m) 2 + 3 , ( ) ( ) x − m + 1 y + m 2 − 3m + 2 = ⇔ y = 2x − m2 + m 2 4 ' 2 C¸ch II. y = −3x + 6mx + 3(1 − m 2 ) = −3( x − m) 2 + 3 , Ta thÊy 2 2 ∆' = 9m + 9(1 − m ) = 9 > 0 ⇒ y ' = 0 cã 2 nghiÖm x1 ≠ x 2 vµ y ' ®æi dÊu khi qua x1 vµ x 2 ⇒ hµm sè ®¹t cùc trÞ t¹i x1 vµ x 2 . Ta cã y = − x 3 + 3mx 2 + 3(1 − m 2 ) x + m 3 − m 2 m 1 =  x −  − 3 x 2 + 6mx + 3 − 3m 2 + 2 x − m 2 + m. 3 3 Tõ ®©y ta cã y1 = 2 x1 − m 2 + m vµ y 2 = 2 x 2 − m 2 + m . VËy ph−¬ng tr×nh ®−êng th¼ng ®i qua 2 ®iÓm cùc trÞ lµ y = 2 x − m 2 + m . ( II ∑ 0,5 ® ∑ 0,5 ® ) 1. Víi m = 2 ta cã log x + log x + 1 − 5 = 0 2 3 2 3 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® ---------- ----------- 0,25 ® 0,25 ® 0,25 ® 0,25® 0,25 ® 0,25 ® 0,25 ® 0,25 ® ∑ 0,5 ® ∑1,0 ® 0,25 ® 0,5 ® §iÒu kiÖn x > 0 . §Æt t = log 32 x + 1 ≥ 1 ta cã t 2 −1+ t − 5 = 0 ⇔ t 2 + t − 6 = 0 t = −3 . ⇔1  t2 = 2 2 t1 = −3 (lo¹i) , t 2 = 2 ⇔ log 32 x = 3 ⇔ log 3 x = ± 3 ⇔ x = 3 ± 3 0,25 ® 0,5 ® x = 3 ± 3 tháa m·n ®iÒu kiÖn x > 0 . (ThÝ sinh cã thÓ gi¶i trùc tiÕp hoÆc ®Æt Èn phô kiÓu kh¸c) ∑1,0 ® ∑1,0 ® 2. log x + log x + 1 − 2m − 1 = 0 (2) 2 3 2 3 §iÒu kiÖn x > 0 . §Æt t = log 32 x + 1 ≥ 1 ta cã t 2 − 1 + t − 2 m − 1 = 0 ⇔ t 2 + t − 2m − 2 = 0 (3) 0,25 ® 0,25 ® 0,25 ® 0,25 ® ----------- ---------- 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® x ∈ [1,3 3 ] ⇔ 0 ≤ log 3 x ≤ 3 ⇔ 1 ≤ t = log 32 x + 1 ≤ 2. VËy (2) cã nghiÖm ∈ [1,3 3 ] khi vµ chØ khi (3) cã nghiÖm ∈ [ 1,2 ]. §Æt f (t ) = t 2 + t C¸ch 1. Hµm sè f (t ) lµ hµm t¨ng trªn ®o¹n [1; 2] . Ta cã f (1) = 2 vµ f (2) = 6 . Ph−¬ng tr×nh t 2 + t = 2m + 2 ⇔ f (t ) = 2m + 2 cã nghiÖm ∈ [1;2]  f (1) ≤ 2m + 2 2 ≤ 2 m + 2 ⇔ ⇔ ⇔ 0 ≤ m ≤ 2.  f (2) ≥ 2m + 2 2 m + 2 ≤ 6 C¸ch 2. TH1. Ph−¬ng tr×nh (3) cã 2 nghiÖm t1 ,t 2 tháa m·n 1 < t1 ≤ t 2 < 2 . t +t 1 Do 1 2 = − < 1 nªn kh«ng tån t¹i m . 2 2 TH2. Ph−¬ng tr×nh (3) cã 2 nghiÖm t1 ,t 2 tháa m·n t1 ≤ 1 ≤ t 2 ≤ 2 hoÆc 1 ≤ t1 ≤ 2 ≤ t 2 ⇔ −2m(4 − 2m ) ≤ 0 ⇔ 0 ≤ m ≤ 2 . (ThÝ sinh cã thÓ dïng ®å thÞ, ®¹o hµm hoÆc ®Æt Èn phô kiÓu kh¸c ) III 1. cos 3 x + sin 3 x  1  5  sin x +  = cos 2 x + 3 . §iÒu kiÖn sin 2 x ≠ − 1 + 2 sin 2 x  2  cos 3x + sin 3x   sin x + 2 sin x sin 2 x + cos 3 x + sin 3 x   Ta cã 5  sin x +   = 5 1 + 2 sin 2 x  1 + 2 sin 2 x     sin x + cos x − cos 3 x + cos 3 x + sin 3 x   (2 sin 2 x + 1) cos x  =5   =5  = 5 cos x 1 + 2 sin 2 x    1 + 2 sin 2 x  2 VËy ta cã: 5 cos x = cos 2 x + 3 ⇔ 2 cos x − 5 cos x + 2 = 0 1 π cos x = 2 (lo¹i) hoÆc cos x = ⇒ x = ± + 2kπ (k ∈ Z ). 2 3 3 ∑1,0 ® ∑1,0 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 5π π vµ x 2 = . Ta thÊy x1 , x 2 tháa m·n ®iÒu 3 3 1 5π π kiÖn sin 2 x ≠ − . VËy c¸c nghiÖm cÇn t×m lµ: x1 = vµ x 2 = . 2 3 3 (ThÝ sinh cã thÓ sö dông c¸c phÐp biÕn ®æi kh¸c) V× x ∈ (0 ; 2π ) nªn lÊy x1 = 2. y 0,25 ® 0,25 ® ∑1,0 ® ∑1,0 ® 8 3 1 0 -1 -1 1 2 5 3 x Ta thÊy ph−¬ng tr×nh | x 2 − 4 x + 3 |= x + 3 cã 2 nghiÖm x1 = 0 vµ x 2 = 5. MÆt kh¸c | x 2 − 4 x + 3 |≤ x + 3 ∀ x ∈ [0;5] . VËy 5 ( 1 ) ( 3 ) ( 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25® 0,25® ∑1® ∑1® ) S = ∫ x + 3− | x 2 − 4 x + 3 | dx = ∫ x + 3 − x 2 + 4 x − 3 dx + ∫ x + 3 + x 2 − 4 x + 3 dx 0 0 5 1 ( ) + ∫ x + 3 − x 2 + 4 x − 3 dx 3 1 ( 3 ) ( ) 5 ( ) S = ∫ − x + 5 x dx + ∫ x − 3 x + 6 dx + ∫ − x 2 + 5 x dx 2 0 1 1 2 3 3 5 5  3 5   1 1   1 S =  − x3 + x 2  +  x3 − x 2 + 6x  +  − x3 + x 2  2 0 3 2 2 3  3 1  3 13 26 22 109 S= + + = (®.v.d.t) 6 3 3 6 (NÕu thÝ sinh vÏ h×nh th× kh«ng nhÊt thiÕt ph¶i nªu bÊt ®¼ng thøc | x 2 − 4 x + 3 |≤ x + 3 ∀ x ∈ [0;5] ) IV 1. 4 S N I M A C 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® 0,25 ® K B Gäi K lµ trung ®iÓm cña BC vµ I = SK ∩ MN . Tõ gi¶ thiÕt 1 a ⇒ MN = BC = , MN // BC ⇒ I lµ trung ®iÓm cña SK vµ MN . 2 2 Ta cã ∆SAB = ∆SAC ⇒ hai trung tuyÕn t−¬ng øng AM = AN ⇒ ∆AMN c©n t¹i A ⇒ AI⊥MN . (SBC )⊥( AMN )  (SBC ) ∩ ( AMN ) = MN  MÆt kh¸c  ⇒ AI⊥(SBC ) ⇒ AI⊥SK . AI ⊂ ( AMN )   AI⊥MN Suy ra ∆SAK c©n t¹i A ⇒ SA = AK = a 3 . 2 3a 2 a 2 a 2 SK = SB − BK = − = 4 4 2 2 2 2 2  SK  ⇒ AI = SA − SI = SA −   =  2  2 Ta cã 2 S ∆AMN 2 3a 2 a 2 a 10 . − = 4 8 4 a 2 10 1 = MN . AI = (®vdt) 2 16 chó ý 1) Cã thÓ chøng minh AI⊥MN nh− sau: BC⊥(SAK ) ⇒ MN⊥(SAK ) ⇒ MN⊥AI . 2) Cã thÓ lµm theo ph−¬ng ph¸p täa ®é: Ch¼ng h¹n chän hÖ täa ®é §ªcac vu«ng gãc Oxyz sao cho a   a   − a 3   − a 3  K (0;0;0), B ;0;0 , C  − ;0;0 , A 0; ;0 , S  0; ;h 2 6 2   2      trong ®ã h lµ ®é dµi ®−êng cao SH cña h×nh chãp S. ABC . 5 2a) C¸ch I. Ph−¬ng tr×nh mÆt ph¼ng (P) chøa ®−êng th¼ng ∆ 1 cã d¹ng: α (x − 2 y + z − 4) + β (x + 2 y − 2 z + 4) = 0 ( α 2 + β 2 ≠ 0 ) ⇔ (α + β )x − (2α − 2 β ) y + (α − 2 β )z − 4α + 4 β = 0 r r VËy n P = (α + β ;−2α + 2 β ;α − 2 β ) .Ta cã u 2 = (1;1;2 ) // ∆ 2 vµ M 2 (1;2;1) ∈ ∆ 2 r r  n P .u 2 = 0 α − β = 0 (P ) // ∆ 2 ⇔  VËy (P ) : 2 x − z = 0 ⇔ M 2 (1;2;1) ∉ (P )  M 2 ∉ (P ) ∑ 0,5 ® ∑1,0 ® 0,25 ® 0,5 ® 0,25 ® ----------- 0,5 ® ----------- 0,25 ® 0,5 ® 0,25 ® 0,5 ® ∑ 0,5 ® ∑1,0 ® 0,25 ® 0,5 ® 0,25 ® ----------0,25 ® 0,25 ® 0,5 ® ----------0,5 ® 0,5 ® Ta cã thÓ chuyÓn ph−¬ng tr×nh ∆ 1 sang d¹ng tham sè nh− sau:  x = 2t '  Tõ ph−¬ng tr×nh ∆ 1 suy ra 2 x − z = 0. §Æt x = 2t ' ⇒ ∆ 1 :  y = 3t '−2  z = 4t '  r ⇒ M 1 (0;−2;0) ∈ ∆ 1 , u1 = (2;3;4) // ∆ 1 . (Ta cã thÓ t×m täa ®é ®iÓm M 1 ∈ ∆ 1 b»ng c¸ch cho x = 0 ⇒ y = −2 z = 0 C¸ch II r −2 1 1 1 1 −2  = (2;3;4) ). vµ tÝnh u1 =  ; ;  2 2 2 1 1 2 − −   r Ta cã u 2 = (1;1;2 ) // ∆ 2 . Tõ ®ã ta cã vÐc t¬ ph¸p cña mÆt ph¼ng (P) lµ : r r r n P = [u1 , u 2 ] = (2;0;−1) . VËy ph−¬ng tr×nh mÆt ph¼ng (P) ®i qua M 1 (0;−2;0 ) r vµ ⊥ n P = (2;0;−1) lµ: 2 x − z = 0 . MÆt kh¸c M 2 (1;2;1) ∉ (P ) ⇒ ph−¬ng tr×nh mÆt ph¼ng cÇn t×m lµ: 2 x − z = 0 2b) b)C¸ch I. H ∈ ∆ 2 ⇒ H (1 + t ,2 + t ,1 + 2t ) ⇒ MH = (t − 1; t + 1;2t − 3) ⇒ MH = (t − 1) + (t + 1) + (2t − 3) = 6t − 12t + 11 = 6(t − 1) + 5 ®¹t gi¸ trÞ nhá nhÊt khi vµ chØ khi t = 1 ⇒ H (2;3;3) C¸ch II. H ∈ ∆ 2 ⇒ H (1 + t ;2 + t ;1 + 2t ) . r MH nhá nhÊt ⇔ MH⊥∆ 2 ⇔ MH .u 2 = 0 ⇔ t = 1 ⇒ H (2;3;4) 2 V 1. 2 2 2 2 Ta cã BC I Ox = B(1;0 ) . §Æt x A = a ta cã A(a; o) vµ ( ∑1® ) xC = a ⇒ y C = 3a − 3. VËy C a; 3a − 3 . 1   2a + 1 3 (a − 1)   xG = 3 ( x A + x B + x C ) . ; Tõ c«ng thøc  ta cã G  1 3  3   yG = ( y A + y B + yC ) 3  C¸ch I. Ta cã : AB =| a − 1 |, AC = 3 | a − 1 |, BC = 2 | a − 1 | . Do ®ã 6 0,25 ® S ∆ABC = Ta cã VËy 1 3 (a − 1)2 . AB. AC = 2 2 2 2S 3 (a − 1) | a −1| r= = = = 2. AB + AC + BC 3 | a − 1 | + 3 | a − 1 | 3 +1 | a − 1 |= 2 3 + 2. 0,25 ® 0,25 ® 7+4 3 6+2 3  ; TH1. a1 = 2 3 + 3 ⇒ G1  3 3    − 4 3 −1 − 6 − 2 3  . ; TH2 a 2 = −2 3 − 1 ⇒ G2   3 3   C¸ch II. y C 0,25 ® ----------- I O B A x Gäi I lµ t©m ®−êng trßn néi tiÕp ∆ABC . V× r = 2 ⇒ y I = ±2 . x −1 Ph−¬ng tr×nh BI : y = tg 30 0.( x − 1) = ⇒ xI = 1 ± 2 3 . 3 TH1 NÕu A vµ O kh¸c phÝa ®èi víi B ⇒ x I = 1 + 2 3. Tõ d ( I , AC ) = 2 7+4 3 6+2 3  ⇒ a = x I + 2 = 3 + 2 3. ⇒ G1  ; 3 3   TH 2. NÕu A vµ O cïng phÝa ®èi víi B ⇒ x I = 1 − 2 3. T−¬ng tù  − 4 3 −1 − 6 − 2 3   ; ta cã a = x I − 2 = −1 − 2 3. ⇒ G2   3 3   0,25 ® 0,25 ® ∑1 ® 2. Tõ 0,25 ® C n3 = 5C n1 ta cã n ≥ 3 vµ 7 n! n! n(n − 1)(n − 2) =5 ⇔ = 5n ⇔ n 2 − 3n − 28 = 0 (n − 1)! 3!(n − 3)! 6 ⇒ n1 = −4 (lo¹i) hoÆc n 2 = 7. Víi n = 7 ta cã  x2−1  C  2    3 7 4 0,25 ® 0,25 ® 3  −3x   2  = 140 ⇔ 35.2 2 x −2.2 − x = 140 ⇔ 2 x − 2 = 4 ⇔ x = 4.     8 0,5 ® Bé gi¸o dôc vµ ®µo t¹o kú thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2003 ---------------------- M«n thi: to¸n Khèi D Thêi gian lµm bµi: 180 phót _______________________________________________ §Ò chÝnh thøc C©u 1 (2 ®iÓm). x2 − 2 x + 4 (1) . x−2 2) T×m m ®Ó ®−êng th¼ng d m : y = mx + 2 − 2m c¾t ®å thÞ cña hµm sè (1) t¹i hai ®iÓm ph©n biÖt. C©u 2 (2 ®iÓm). x x π sin 2  −  tg 2 x − cos 2 = 0 . 1) Gi¶i ph−¬ng tr×nh 2 2 4 y= 1) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè 2 2 2) Gi¶i ph−¬ng tr×nh 2 x − x − 22 + x − x = 3 . C©u 3 (3 ®iÓm). 1) Trong mÆt ph¼ng víi hÖ täa ®é §ªcac vu«ng gãc Oxy cho ®−êng trßn 2) 3) (C ) : ( x − 1) 2 + ( y − 2) 2 = 4 vµ ®−êng th¼ng d : x − y − 1 = 0 . ViÕt ph−¬ng tr×nh ®−êng trßn (C ') ®èi xøng víi ®−êng trßn (C ) qua ®−êng th¼ng d . T×m täa ®é c¸c giao ®iÓm cña (C ) vµ (C ') . Trong kh«ng gian víi hÖ täa ®é §ªcac vu«ng gãc Oxyz cho ®−êng th¼ng  x + 3ky − z + 2 = 0 dk :   kx − y + z + 1 = 0. T×m k ®Ó ®−êng th¼ng d k vu«ng gãc víi mÆt ph¼ng ( P) : x − y − 2 z + 5 = 0 . Cho hai mÆt ph¼ng ( P) vµ (Q) vu«ng gãc víi nhau, cã giao tuyÕn lµ ®−êng th¼ng ∆ . Trªn ∆ lÊy hai ®iÓm A, B víi AB = a . Trong mÆt ph¼ng ( P) lÊy ®iÓm C , trong mÆt ph¼ng (Q) lÊy ®iÓm D sao cho AC , BD cïng vu«ng gãc víi ∆ vµ AC = BD = AB . TÝnh b¸n kÝnh mÆt cÇu ngo¹i tiÕp tø diÖn ABCD vµ tÝnh kho¶ng c¸ch tõ A ®Õn mÆt ph¼ng ( BCD) theo a . C©u 4 ( 2 ®iÓm). 1) T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cña hµm sè y= x +1 2 x +1 trªn ®o¹n [ −1; 2] . 2 2) TÝnh tÝch ph©n I = ∫ x 2 − x dx . 0 C©u 5 (1 ®iÓm). Víi n lµ sè nguyªn d−¬ng, gäi a3n −3 lµ hÖ sè cña x3n −3 trong khai triÓn thµnh ®a thøc cña ( x 2 + 1) n ( x + 2) n . T×m n ®Ó a3n −3 = 26n . ------------------------------------------------ HÕt -----------------------------------------------Ghi chó: C¸n bé coi thi kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh:…………………………….. ……. Sè b¸o danh:………………… Bé gi¸o dôc vµ ®µo t¹o kú thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2003 −−−−−−−−−−−−− ®¸p ¸n −thang ®iÓm ®Ò thi chÝnh thøc M«n thi : to¸n Khèi D Néi dung ®iÓm 2®iÓm C©u 1. 1) Kh¶o s¸t sù biÕn thiªn vµ vÏ ®å thÞ cña hµm sè y = x2 − 2 x + 4 . x−2 1 ®iÓm TËp x¸c ®Þnh : R \{ 2 }. Ta cã y = y ' = 1− 4 x2 − 2 x + 4 . = x+ x−2 x−2 4 ( x − 2) 2 = x2 − 4 x 2 . x=0 y'= 0 ⇔   x = 4. ( x − 2) 4 lim [ y − x ] = lim = 0 ⇒ tiÖm cËn xiªn cña ®å thÞ lµ: y = x , x →∞ x →∞ x − 2 lim y = ∞ ⇒ tiÖm cËn ®øng cña ®å thÞ lµ: x = 2 . 0,25® x→2 B¶ng biÕn thiªn: x y’ y −∞ −∞ 0 + 0 −2 C§ 2 − − 4 0 +∞ + +∞ +∞ CT 6 −∞ §å thÞ kh«ng c¾t trôc hoµnh. §å thÞ c¾t trôc tung t¹i ®iÓm (0; −2). 0,5® y 6 2 O 2 −2 4 x 2) 0,25® 1 ®iÓm §−êng th¼ng d m c¾t ®å thÞ hµm sè (1) t¹i 2 ®iÓm ph©n biÖt 4 ⇔ ph−¬ng tr×nh x + = mx + 2 − 2m cã hai nghiÖm ph©n biÖt kh¸c 2 x−2 ⇔ (m − 1)( x − 2)2 = 4 cã hai nghiÖm ph©n biÖt kh¸c 2 ⇔ m − 1 > 0 ⇔ m > 1. VËy gi¸ trÞ m cÇn t×m lµ m > 1. 1 0,5® 0,5® C©u 2. 2®iÓm x x π 1) Gi¶i ph−¬ng tr×nh sin 2  −  tg 2 x − cos 2 = 0 (1) 2 2 4 §iÒu kiÖn: cos x ≠ 0 (*). Khi ®ã (1) ⇔ 1 ®iÓm 1 π   sin 2 x 1  1 − cos − = (1 + cos x ) ⇔ (1 − sin x ) sin 2 x = (1 + cos x ) cos 2 x x    2 2 2   cos x 2  ⇔ (1 − sin x ) (1 − cos x)(1 + cos x) = (1 + cos x ) (1 − sin x)(1 + sin x) ⇔ (1 − sin x ) (1 + cos x)(sin x + cos x) = 0 0,5® π  x = + k 2π   sin x = 1 2   ⇔ cos x = −1 ⇔  x = π + k 2π   tgx = −1 π  x = − + kπ 4  0,25® ( k ∈ Z) .  x = π + k 2π KÕt hîp ®iÒu kiÖn (*) ta ®−îc nghiÖm cña ph−¬ng tr×nh lµ:   x = − π + kπ  4 2) Gi¶i ph−¬ng tr×nh 2 2 2 x − x − 22 + x − x = 3 ( k ∈ Z) . (1). 0,25® 1 ®iÓm 2 §Æt t = 2 x − x ⇒ t > 0 . 4 = 3 ⇔ t 2 − 3t − 4 = 0 ⇔ (t + 1)(t − 4) = 0 ⇔ t = 4 (v× t > 0 ) t 2  x = −1 VËy 2 x − x = 4 ⇔ x 2 − x = 2 ⇔   x = 2.  x = −1 Do ®ã nghiÖm cña ph−¬ng tr×nh lµ   x = 2. C©u 3. 1) Khi ®ã (1) trë thµnh t − 0,5® 0,5® 3®iÓm 1 ®iÓm Tõ (C ) : ( x − 1) 2 + ( y − 2)2 = 4 suy ra (C ) cã t©m I (1; 2) vµ b¸n kÝnh R = 2. uur §−êng th¼ng d cã vÐct¬ ph¸p tuyÕn lµ n = (1; −1). Do ®ã ®−êng th¼ng ∆ ®i qua x −1 y − 2 I (1; 2) vµ vu«ng gãc víi d cã ph−¬ng tr×nh: = ⇔ x+ y −3 = 0. 1 −1 Täa ®é giao ®iÓm H cña d vµ ∆ lµ nghiÖm cña hÖ ph−¬ng tr×nh:  x − y −1 = 0 x = 2 ⇔  ⇒ H (2;1).  x + y − 3 = 0  y =1 Gäi J lµ ®iÓm ®èi xøng víi I (1; 2) qua d . Khi ®ã  x J = 2 xH − xI = 3 0,5 ⇒ J (3;0) .  y = 2 x − x = 0 H I  J V× (C ') ®èi xøng víi (C ) qua d nªn (C ') cã t©m lµ J (3;0) vµ b¸n kÝnh R = 2. 0,25® Do ®ã (C ') cã ph−¬ng tr×nh lµ: ( x − 3)2 + y 2 = 4 . Täa ®é c¸c giao ®iÓm cña (C ) vµ (C ') lµ nghiÖm cña hÖ ph−¬ng tr×nh: ( x − 1)2 + ( y − 2) 2 = 4 y = x −1  x = 1, y = 0  x − y − 1 = 0  ⇔ ⇔ ⇔    2 2 2  x = 3, y = 2.  ( x − 3)2 + y 2 = 4 ( x − 3) + y = 4 2 x − 8 x + 6 = 0 VËy täa ®é giao ®iÓm cña (C ) vµ (C ') lµ A(1;0) vµ B (3; 2). 2 0,25® 2) uur Ta cã cÆp vect¬ ph¸p tuyÕn cña hai mÆt ph¼ng x¸c ®Þnh d k lµ n1 = (1;3k ; −1) r uur vµ n2 = (k ; −1;1) . Vect¬ ph¸p tuyÕn cña ( P) lµ n = (1; −1; −2) . §−êng th¼ng d k cã vect¬ chØ ph−¬ng lµ: r uur uur r u =  n1, n2  = (3k − 1; − k − 1; −1 − 3k 2 ) ≠ 0 ∀ k . r r 3k − 1 − k − 1 −1 − 3k 2 Nªn d k ⊥ ( P) ⇔ u || n ⇔ = = ⇔ k = 1. 1 −1 −2 VËy gi¸ trÞ k cÇn t×m lµ k = 1. 1 ®iÓm 3) 1 ®iÓm C P Ta cã (P) ⊥ (Q) vµ ∆ = (P) ∩ (Q), mµ AC ⊥ ∆ ⇒ AC ⊥(Q) ⇒AC ⊥ AD, hay 0,5® 0,5 ® CAD = 900 . T−¬ng tù, ta cã BD ⊥ ∆ nªn H BD ⊥(P), do ®ã CBD = 900 . VËy A vµ B 0,25® A, B n»m trªn mÆt cÇu ®−êng kÝnh CD. Vµ b¸n kÝnh cña mÆt cÇu lµ: CD 1 R= = BC 2 + BD 2 D 2 2 Q 1 a 3 0,25® = AB 2 + AC 2 + BD 2 = . 2 2 Gäi H lµ trung ®iÓm cña BC⇒ AH ⊥ BC. Do BD ⊥(P) nªn BD ⊥ AH ⇒AH ⊥ (BCD). 1 a 2 0,5® VËy AH lµ kho¶ng c¸ch tõ A ®Õn mÆt ph¼ng (BCD) vµ AH = BC = . 2 2 ∆ B A C©u 4. 2®iÓm 1) T×m gi¸ trÞ lín nhÊt vµ gi¸ trÞ nhá nhÊt cña hµm sè y = y'= 1− x 2 3 ( x + 1) y ' = 0 ⇔ x = 1. x +1 x2 + 1 trªn ®o¹n [ −1; 2] . 1 ®iÓm . 0,5® Ta cã y (−1) = 0, y(1) = 2, y (2) = VËy max y = y (1) = 2 [ −1;2] vµ 3 . 5 min y = y (−1) = 0. [ −1;2] 0,5® 2 2) TÝnh tÝch ph©n I = ∫ x 2 − x dx . 1 ®iÓm 0 2 Ta cã x − x ≤ 0 ⇔ 0 ≤ x ≤ 1 , suy ra 1 2 0 1 I = ∫ ( x − x 2 ) dx + ∫ ( x 2 − x) dx 1 0,5® 2  x 2 x3   x3 x 2  = −  +  −  = 1.  2  3 3  2   0  1 3 0,5® C©u 5. 1®iÓm C¸ch 1: Ta cã ( x + 1) = Cn0 x 2n + C1n x 2n − 2 + Cn2 x 2n − 4 + ... + Cnn , ( x + 2) n = Cn0 x n + 2C1n x n −1 + 22 Cn2 x n − 2 + 23 Cn3 x n −3 + ... + 2n Cnn . 2 n DÔ dµng kiÓm tra n = 1, n = 2 kh«ng tháa m·n ®iÒu kiÖn bµi to¸n. Víi n ≥ 3 th× x3n −3 = x 2n x n −3 = x 2n − 2 x n −1. Do ®ã hÖ sè cña x3n −3 trong khai triÓn thµnh ®a thøc cña ( x 2 + 1) n ( x + 2) n lµ a3n −3 = 23.Cn0 .Cn3 + 2.C1n .C1n .  n=5 2n(2n2 − 3n + 4) = 26n ⇔  VËy a3n −3 = 26n ⇔ n = − 7 3  2 VËy n = 5 lµ gi¸ trÞ cÇn t×m (v× n nguyªn d−¬ng). C¸ch 2: Ta cã n 0,25® hoÆc n 1   2 ( x + 1) ( x + 2) = x  1 +  1 +   x2   x  i n k  n  n i −2i n k k − k  3n  3n i 1  k 2  C C x =x =  ∑ Cn x ∑ Cn 2 x  . ∑ n  ∑ n   i = 0  x 2  k = 0  x   i = 0  k =0   2 n n 3n  0,75® Trong khai triÓn trªn, luü thõa cña x lµ 3n − 3 khi −2i − k = −3 , hay 2i + k = 3. Ta chØ cã hai tr−êng hîp tháa ®iÒu kiÖn nµy lµ i = 0, k = 3 hoÆc i = 1, k = 1 . Nªn hÖ sè cña x3n −3 lµ a3n −3 = Cn0 .Cn3.23 + C1n .C1n .2 .  n=5 2n(2n2 − 3n + 4) Do ®ã a3n −3 = 26n ⇔ = 26n ⇔  n = − 7 3  2 VËy n = 5 lµ gi¸ trÞ cÇn t×m (v× n nguyªn d−¬ng). 4 0,75® 0,25® Bé gi¸o dôc vµ ®µo t¹o -----------------------------§Ò chÝnh thøc ®Ò thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2004 M«n thi : To¸n , Khèi A Thêi gian lµm bµi : 180 phót, kh«ng kÓ thêi gian ph¸t ®Ò -------------------------------------------------------------- C©u I (2 ®iÓm) − x 2 + 3x − 3 (1). 2(x − 1) 1) Kh¶o s¸t hµm sè (1). 2) T×m m ®Ó ®−êng th¼ng y = m c¾t ®å thÞ hµm sè (1) t¹i hai ®iÓm A, B sao cho AB = 1. Cho hµm sè y = C©u II (2 ®iÓm) 2(x 2 − 16) 1) Gi¶i bÊt ph−¬ng tr×nh x −3 + x −3 > 7−x . x −3 1 ⎧ ⎪ log 1 (y − x) − log 4 y = 1 ⎨ 4 ⎪ x 2 + y 2 = 25. ⎩ 2) Gi¶i hÖ ph−¬ng tr×nh C©u III (3 ®iÓm) ( ) 1) Trong mÆt ph¼ng víi hÖ täa ®é Oxy cho hai ®iÓm A ( 0; 2 ) vµ B − 3; − 1 . T×m täa ®é trùc t©m vµ täa ®é t©m ®−êng trßn ngo¹i tiÕp cña tam gi¸c OAB. 2) Trong kh«ng gian víi hÖ täa ®é Oxyz cho h×nh chãp S.ABCD cã ®¸y ABCD lµ h×nh thoi, AC c¾t BD t¹i gèc täa ®é O. BiÕt A(2; 0; 0), B(0; 1; 0), S(0; 0; 2 2 ). Gäi M lµ trung ®iÓm cña c¹nh SC. a) TÝnh gãc vµ kho¶ng c¸ch gi÷a hai ®−êng th¼ng SA, BM. b) Gi¶ sö mÆt ph¼ng (ABM) c¾t ®−êng th¼ng SD t¹i ®iÓm N. TÝnh thÓ tÝch khèi chãp S.ABMN. C©u IV (2 ®iÓm) 2 1) TÝnh tÝch ph©n I = ∫ 1+ 1 x dx . x −1 8 2) T×m hÖ sè cña x8 trong khai triÓn thµnh ®a thøc cña ⎡⎣1 + x 2 (1 − x) ⎤⎦ . C©u V (1 ®iÓm) Cho tam gi¸c ABC kh«ng tï, tháa m·n ®iÒu kiÖn cos2A + 2 2 cosB + 2 2 cosC = 3. TÝnh ba gãc cña tam gi¸c ABC. -----------------------------------------------------------------------------------------------------------------------C¸n bé coi thi kh«ng gi¶i thÝch g× thªm. Hä vµ tªn thÝ sinh............................................................................Sè b¸o danh................................................. Bé gi¸o dôc vµ ®µo t¹o ..................... §¸p ¸n - Thang ®iÓm ®Ò thi tuyÓn sinh ®¹i häc, cao ®¼ng n¨m 2004 ........................................... §Ò chÝnh thøc C©u I M«n: To¸n, Khèi A (§¸p ¸n - thang ®iÓm cã 4 trang) Néi dung ý I.1 §iÓm 2,0 (1,0 ®iÓm) y= − x 2 + 3x − 3 1 1 = − x +1− . 2 2 ( x − 1) 2(x − 1) a) TËp x¸c ®Þnh: R \ {1} . b) Sù biÕn thiªn: x(2 − x) y' = ; y ' = 0 ⇔ x = 0, x = 2 . 2(x − 1) 2 1 3 yC§ = y(2) = − , yCT = y(0) = . 2 2 §−êng th¼ng x = 1 lµ tiÖm cËn ®øng. 1 §−êng th¼ng y = − x + 1 lµ tiÖm cËn xiªn. 2 B¶ng biÕn thiªn: x −∞ 0 1 − y' y 0 +∞ 0,25 0,25 + + −∞ − 0 − +∞ 3 2 +∞ 2 1 2 −∞ 0,25 c) §å thÞ: 0,25 1 I.2 (1,0 ®iÓm) Ph−¬ng tr×nh hoµnh ®é giao ®iÓm cña ®å thÞ hµm sè víi ®−êng th¼ng y = m lµ : − x 2 + 3x − 3 = m ⇔ x 2 + (2 m − 3)x + 3 − 2 m = 0 (*). 2(x − 1) 0,25 Ph−¬ng tr×nh (*) cã hai nghiÖm ph©n biÖt khi vµ chØ khi: 3 1 ∆ > 0 ⇔ 4m 2 − 4m − 3 > 0 ⇔ m > hoÆc m < − (**) . 2 2 Víi ®iÒu kiÖn (**), ®−êng th¼ng y = m c¾t ®å thÞ hµm sè t¹i hai ®iÓm A, B cã hoµnh ®é x1 , x2 lµ nghiÖm cña ph−¬ng tr×nh (*). 0,25 AB = 1 ⇔ x 1 − x 2 = 1 ⇔ x1 − x 2 ⇔ (2 m − 3)2 − 4(3 − 2 m ) = 1 ⇔ 2 =1 ⇔ m= (x + x 2 ) − 4x1x 2 = 1 2 1 1± 5 (tho¶ m·n (**)) 2 0,25 0,25 2,0 II II.1 (1,0 ®iÓm) §iÒu kiÖn : x ≥ 4 . BÊt ph−¬ng tr×nh ®· cho t−¬ng ®−¬ng víi bÊt ph−¬ng tr×nh: 0,25 2(x 2 − 16) + x − 3 > 7 − x ⇔ 2(x 2 − 16) > 10 − 2x 0,25 + NÕu x > 5 th× bÊt ph−¬ng tr×nh ®−îc tho¶ m·n, v× vÕ tr¸i d−¬ng, vÕ ph¶i ©m. 0,25 + NÕu 4 ≤ x ≤ 5 th× hai vÕ cña bÊt ph−¬ng tr×nh kh«ng ©m. B×nh ph−¬ng hai vÕ ta 2 ®−îc: 2 x 2 − 16 > (10 − 2x ) ⇔ x 2 − 20x + 66 < 0 ⇔ 10 − 34 < x < 10 + 34 . ( II.2 ) KÕt hîp víi ®iÒu kiÖn 4 ≤ x ≤ 5 ta cã: 10 − 34 < x ≤ 5 . §¸p sè: x > 10 − 34 (1,0 ®iÓm) §iÒu kiÖn: y > x vµ y > 0. log 1 (y − x ) − log 4 4 ⇔ − log 4 1 =1 ⇔ y − log 4 (y − x ) − log 4 1 =1 y 3y y−x =1 ⇔ x = . y 4 0,25 0,25 0,25 2 ⎛ 3y ⎞ 2 ThÕ vµo ph−¬ng tr×nh x + y = 25 ta cã: ⎜ ⎟ + y = 25 ⇔ y = ±4. ⎝ 4 ⎠ 2 2 So s¸nh víi ®iÒu kiÖn , ta ®−îc y = 4, suy ra x= 3 (tháa m·n y > x). VËy nghiÖm cña hÖ ph−¬ng tr×nh lµ (3; 4). III III.1 0,25 0,25 3,0 (1,0 ®iÓm) JJJG + §−êng th¼ng qua O, vu«ng gãc víi BA( 3 ; 3) cã ph−¬ng tr×nh 3x + 3y = 0 . JJJG §−êng th¼ng qua B, vu«ng gãc víi OA(0; 2) cã ph−¬ng tr×nh y = −1 JJJG ( §−êng th¼ng qua A, vu«ng gãc víi BO( 3 ; 1) cã ph−¬ng tr×nh 3x + y − 2 = 0 ) Gi¶i hÖ hai (trong ba) ph−¬ng tr×nh trªn ta ®−îc trùc t©m H( 3 ; − 1) + §−êng trung trùc c¹nh OA cã ph−¬ng tr×nh y = 1. §−êng trung trùc c¹nh OB cã ph−¬ng tr×nh 3x + y + 2 = 0 . ( §−êng trung trùc c¹nh AB cã ph−¬ng tr×nh 3x + 3y = 0 ). 0,25 0,25 0,25 2 Gi¶i hÖ hai (trong ba) ph−¬ng tr×nh trªn ta ®−îc t©m ®−êng trßn ngo¹i tiÕp tam gi¸c OAB lµ I − 3 ; 1 . ( III.2.a ) (1,0 ®iÓm) ( ) + Ta cã: C ( −2; 0; 0 ) , D ( 0; −1; 0 ) , M − 1; 0; 2 , JJJJG SA = 2; 0; − 2 2 , BM = −1; −1; 2 . ( ) Gäi α lµ gãc gi÷a SA vµ BM. ( ) 0,25 JJJG JJJJG SA.BM 3 Ta ®−îc: = JJJG JJJJG = ⇒ α = 30° . 2 SA . BM JJJG JJJJG JJJG + Ta cã: ⎡⎣SA, BM ⎤⎦ = −2 2; 0; − 2 , AB = ( −2; 1; 0 ) . VËy: JJJG JJJJG JJJG ⎡SA, BM ⎤ ⋅ AB 2 6 ⎣ ⎦ d ( SA, BM ) = = JJJG JJJJG 3 ⎡SA, BM ⎤ ⎣ ⎦ JJJG JJJJG cosα = cos SA, BM ( ( III.2.b 0,25 ) ) 0,25 0,25 0,25 (1,0 ®iÓm) ⎛ ⎝ ⎞ ⎠ 1 2 Ta cã MN // AB // CD ⇒ N lµ trung ®iÓm SD ⇒ N⎜ 0; − ; 2 ⎟ . ( ) ( ) JJJG ⎛ JJJG 1 ⎞ SA = 2; 0; −2 2 , SM = − 1; 0; − 2 , SB = 0; 1; − 2 2 , SN = ⎜ 0; − ; − 2 ⎟ 2 ⎝ ⎠ JJJG JJJG ⇒ ⎡⎣SA, SM ⎤⎦ = 0; 4 2; 0 . 1 JJJG JJJG JJG 2 2 VS.ABM = ⎡⎣SA,SM ⎤⎦ ⋅ SB = 6 3 ( ) ( VS.AMN = ) 1 ⎡ JJJG JJJG ⎤ JJJG 2 ⋅ = SA,SM SN ⇒ VS.ABMN = VS.ABM + VS.AMN = 2 ⎦ 6⎣ 3 0,25 0,25 0,25 0,25 2,0 IV IV.1 (1,0 ®iÓm) 2 x dx . §Æt: t = x − 1 ⇒ x = t 2 + 1 ⇒ dx = 2 tdt . x −1 1 x = 1⇒ t = 0 , x = 2 ⇒ t = 1. I= ∫ 1+ 0,25 3 1 Ta cã: I = ∫ 0 1 1 t2 +1 t3 + t 2 ⎞ ⎛ 2t dt = 2∫ dt = 2∫ ⎜ t 2 − t + 2 − ⎟ dt 1+ t 1 t t 1 + + ⎝ ⎠ 0 0 0,25 1 IV.2 1 ⎡1 ⎤ I = 2 ⎢ t 3 − t 2 + 2t − 2 ln t + 1 ⎥ 2 ⎣3 ⎦0 ⎡1 1 ⎤ 11 I = 2 ⎢ − + 2 − 2 ln 2 ⎥ = − 4 ln 2 . ⎣3 2 ⎦ 3 (1, 0 ®iÓm) 0,25 0,25 8 ⎡⎣1 + x 2 (1 − x ) ⎤⎦ = C80 + C18 x 2 (1 − x ) + C82 x 4 (1 − x ) + C83 x 6 (1 − x ) + C84 x 8 (1 − x ) 2 3 4 + C85 x10 (1 − x ) + C86 x12 (1 − x ) + C87 x14 (1 − x ) + C88 x16 (1 − x ) 5 6 7 8 BËc cña x trong 3 sè h¹ng ®Çu nhá h¬n 8, bËc cña x trong 4 sè h¹ng cuèi lín h¬n 8. 0,25 0,25 VËy x8 chØ cã trong c¸c sè h¹ng thø t−, thø n¨m, víi hÖ sè t−¬ng øng lµ: C83.C32 , C84 .C 04 Suy ra 0,25 a8 = 168 + 70 = 238 . 0,25 1,0 V Gäi M = cos 2 A + 2 2 cos B + 2 2 cos C − 3 = 2 cos 2 A − 1 + 2 2 ⋅ 2 cos B+C B−C ⋅ cos −3. 2 2 A B−C A > 0 , cos ≤ 1 nªn M ≤ 2 cos 2 A + 4 2 sin − 4 . 2 2 2 2 MÆt kh¸c tam gi¸c ABC kh«ng tï nªn cos A ≥ 0 , cos A ≤ cos A . Suy ra: A A⎞ A ⎛ M ≤ 2 cos A + 4 2 sin − 4 = 2⎜ 1 − 2 sin 2 ⎟ + 4 2 sin − 4 2 2⎠ 2 ⎝ Do sin 0,25 0,25 2 A A A ⎞ ⎛ = −4 sin + 4 2 sin − 2 = −2⎜ 2 sin − 1 ⎟ ≤ 0 . VËy M ≤ 0 . 2 2 2 ⎝ ⎠ 2 ⎧ ⎪cos 2 A = cos A ⎪ B−C ⎪ Theo gi¶ thiÕt: M = 0 ⇔ ⎨cos =1 2 ⎪ 1 ⎪ A ⎪sin 2 = 2 ⎩ 0,25 ⎧A = 90° ⎩B = C = 45°⋅ ⇔⎨ 0,25 4 Mang Giao duc Edunet - http://www.edu.net.vn BỘ GIÁO DỤC VÀ ĐÀO TẠO ----------------------ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2005 Môn: TOÁN, khối A Thời gian làm bài: 180 phút, không kể thời gian phát đề ---------------------------------------- C©u I (2 điểm) Gọi (Cm ) là đồ thị của hàm số y = m x + 1 x (*) ( m là tham số). 1 1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m = . 4 2) Tìm m để hàm số (*) có cực trị và khoảng cách từ điểm cực tiểu của (C m ) đến tiệm 1 cận xiên của (Cm ) bằng . 2 C©u II (2 điểm) 1) Giải bất phương trình 5x − 1 − x −1 > 2x − 4. cos 2 3x cos 2x − cos 2 x = 0. 2) Giải phương trình C©u III (3 ®iÓm) 1) Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng d1 : x − y = 0 và d 2 : 2x + y − 1 = 0. Tìm tọa độ các đỉnh hình vuông ABCD biết rằng đỉnh A thuộc d1 , đỉnh C thuộc d 2 và các đỉnh B, D thuộc trục hoành. x −1 y + 3 z − 3 2) Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : = = và mặt 2 1 −1 phẳng (P) : 2x + y − 2z + 9 = 0. a) Tìm tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2. b) Tìm tọa độ giao điểm A của đường thẳng d và mặt phẳng (P). Viết phương trình tham số của đường thẳng ∆ nằm trong mặt phẳng (P), biết ∆ đi qua A và vuông góc với d. C©u IV (2 điểm) π 2 sin 2x + sin x dx. 1 + 3cos x 0 2) Tìm số nguyên dương n sao cho +1 C12n +1 − 2.2C 22n +1 + 3.22 C32n +1 − 4.23 C 42n +1 + L + (2n + 1).2 2n C 2n 2n +1 = 2005 1) Tính tích phân I = ∫ ( Ckn là số tổ hợp chập k của n phần tử). C©u V (1 điểm) 1 1 1 + + = 4. Chứng minh rằng x y z 1 1 1 + + ≤ 1. 2x + y + z x + 2y + z x + y + 2z Cho x, y, z là các số dương thỏa mãn ------------------------------ Hết ----------------------------Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh .................................................…… số báo danh........................................
- Xem thêm -

Tài liệu liên quan