Đăng ký Đăng nhập
Trang chủ Chuyên đề PHƯƠNG PHÁP QUY HOẠCH ĐỘNG.DOC...

Tài liệu Chuyên đề PHƯƠNG PHÁP QUY HOẠCH ĐỘNG.DOC

.DOC
28
708
112

Mô tả:

Trường THPT Chuyên Thái Nguyên ----Chuyên đề PHƯƠNG PHÁP QUY HOẠCH ĐỘNG 1. Nguyên lý tối ưu của Bellman Phương pháp quy hoạch động cùng nguyên lý tối ưu được nhà toán học Mỹ R.Bellman đề xuất vào những năm 50 của thế kỷ 20. Phương pháp này đã được áp dụng để giải hàng loạt bài toán thực tế trong các quá trình kỹ thuật cộng nghệ, tổ chức sản xuất, kế hoạch hoá kinh tế… Trong thực tế, ta thường gặp một số bài toán tối ưu loại sau: Có một đại lượng f hình thành trong một quá trình gồm nhiều giai đoạn và ta chỉ quan tâm đến kết quả cuối cùng là giá trị của f phải lớn nhất hoặc nhỏ nhất, ta gọi chung là giá trị tối ưu của f. Giá trị của f phụ thuộc vào những đại lượng xuất hiện trong bài toán mà mỗi bộ giá trị của chúng được gọi là một trạng thái của hệ thống và phụ thuộc vào cách thức đạt được giá trị f trong từng giai đoạn mà mỗi cách tổ chức được gọi là một điều khiển. Đại lượng f thường được gọi là hàm mục tiêu và quá trình đạt được giá trị tối ưu của f được gọi là quá trình điều khiển tối ưu. Bellman phát biểu nguyên lý tối ưu (cũng gọi là nguyên lý Bellman) mà ý tưởng cơ bản là như sau: “Với mỗi quá trình điều khiển tối ưu, đối với trạng thái bắt đầu A0, với trạng thái A trong quá trình đó, phần quá trình kể từ trạng thái A xem như trạng thái bắt đầu cũng là tối ưu”. Chú ý rằng nguyên lý này được thừa nhận mà không chứng minh. Phương pháp tìm điều khiển tối ưu theo nguyên lý Bellman thường được gọi là quy hoạch động. Thuật ngữ này nói lên thực chất của quá trình điều khiển là động: có thể trong một số bước đầu tiên lựa chọn điều khiển tối ưu dường như không tốt nhưng tựu chung cả quá trình lại là tốt nhất. Hiểu một cách đơn giản hơn quy hoạch động là phương pháp giải bài toán từ nhỏ đến lớn, việc giải – tìm phương án tối ưu của các bài toán nhỏ và lưu trữ các kết 1 quả này lại sẽ giúp ta có thể giải các bài toán với kích thước lớn dần đến khi đạt được kết quả mong muốn. 2. Ý tưởng và nội dung của phương pháp quy hoạch động Xét bài toán sau: Cho một dãy N số nguyên A1, A2,…,AN. Hãy tìm cách xoá đi một số ít nhất số hạng để dãy còn lại là đơn điệu hay nói cách khác hãy chọn một số nhiều nhất các số hạng sao cho dãy B gồm các số hạng đó theo trình tự xuất hiện trong dãy A là đơn điệu. Quá trình chọn B được điều khiển qua N giai đoạn để đạt được mục tiêu là số lượng số hạng của dãy B là nhiều nhất, điều khiển ở giai đoạn i thể hiện việc chọn hay không chọn Ai vào dãy B. Giả sử dãy đã cho là 1 8 10 2 4 6 7. Nếu ta chọn lần lượt 1, 8, 10 thì chỉ chọn được 3 số hạng nhưng nếu bỏ qua 8 và 10 thì ta chọn được 5 số hạng 1, 2, 4, 6, 7. Khi giải một bài toán bằng cách “chia để trị” chuyển việc giải bài toán kích thước lớn về việc giải nhiều bài toán cùng kiểu có kích thước nhỏ hơn thì thuật toán này thường được thể hiện bằng các chương trình con đệ quy. Khi đó, trên thực tế, nhiều kết quả trung gian phải tính nhiều lần. Vậy ý tưởng cơ bản của quy hoạch động là : Tránh tính toán lại mọi thứ hai lần, mà lưu giữ kết quả đã tìm kiếm được vào một bảng làm giả thiết cho việc tìm kiếm những kết quả của trường hợp sau. Chúng ta sẽ làm đầy dần giá trị của bảng này bởi các kết quả của những trường hợp trước đã được giải. Kết quả cuối cùng chính là kết quả của bài toán cần giải. Nói cách khác phương pháp quy hoạch động đã thể hiện sức mạnh của nguyên lý chia để trị đến cao độ. Quy hoạch động là kỹ thuật thiết kế bottom-up (từ dưới lên). Nó được bắt đầu với những trường hợp con nhỏ nhất (thường là đơn giải nhất và giải được ngay). Bằng cách tổ hợp các kết quả đã có (không phải tính lại) của các trường hợp con, sẽ đạt đạt tới kết quả của trường hợp có kích thước lớn dần lên và tổng quát hơn, cho đến khi cuối cùng đạt tới lời giải của trường hợp tổng quát nhất. 2 Trong một số trường hợp, khi giải một bài toán A, trước hết ta tìm họ bài toán A(p) phụ thuộc tham số p (có thể p là một véc tơ) mà A(p0)=A với p0 là trạng thái ban đầu của bài toán A. Sau đó tìm cách giải họ bài toán A(p) với tham số p bằng cách áp dụng nguyên lý tối ưu của Bellman. Cuối cùng cho p=p0 sẽ nhận được kết quả của bài toán A ban đầu. 3. Các bước thực hiện Bước 1: Lập hệ thức Dựa vào nguyên lý tối ưu tìm cách chia quá trình giải bài toán thành từng giai đoạn, sau đó tìm hệ thức biểu diễn tương quan quyết định của bước đang xử lý với các bước đã xử lý trước đó. Hoặc tìm cách phân rã bài toán thành các “bài toán con” tương tự có kích thước nhỏ hơn, tìm hệ thức nêu quan hệ giữa kết quả bài toán kích thước đã cho với kết quả của các “bài toán con” cùng kiểu có kích thước nhỏ hơn của nó nhằm xây dựng phương trình truy toán (dạng hàm hoặc thủ tục đệ quy). Về một cách xây dựng phương trình truy toán: Ta chia việc giải bài toán thành n giai đoạn. Mỗi giai đoạn i có trạng thái ban đầu là t(i) và chịu tác động điều khiển d(i) sẽ biến thành trạng thái tiếp theo t(i+1) của giai đoạn i+1 (i=1,2,…,n-1). Theo nguyên lý tối ưu của Bellman thì việc tối ưu giai đoạn cuối cùng không làm ảnh hưởng đến kết quả toàn bài toán. Với trạng thái ban đầu là t(n) sau khi làm giai đoạn n tốt nhất ta có trạng thái ban đầu của giai đoạn n-1 là t(n-1) và tác động điều khiển của giai đoạn n-1 là d(n-1), có thể tiếp tục xét đến giai đoạn n-1. Sau khi tối ưu giai đoạn n-1 ta lại có t(n-2) và d(n-2) và lại có thể tối ưu giai đoạn n-2 … cho đến khi các giai đoạn từ n giảm đến 1 được tối ưu thì coi như hoàn thành bài toán. Gọi giá trị tối ưu của bài toán tính đến giai đoạn k là Fk, giá trị tối ưu của bài toán tính riêng ở giai đoạn k là Gk thì Fk = Fk-1 + Gk Hay là: F1 (t ( k )) m ax {G k (t ( k ), d ( k ))  Fk  1 (t ( k  1))} (*) d ( k ) Bước 2: Tổ chức dữ liệu và chương trình Tổ chức dữ liệu sao cho đạt các yêu cầu sau:  Dữ liệu được tính toán dần theo các bước. 3  Dữ liệu được lưu trữ để giảm lượng tính toán lặp lại.  Kích thước miền nhớ dành cho lưu trữ dữ liệu càng nhỏ càng tốt, kiểu dữ liệu được chọn phù hợp, nên chọn đơn giản dễ truy cập. Cụ thể  Các giá trị của Fk thường được lưu trữ trong một bảng (mảng một chiều hoặc hai, ba, v.v… chiều).  Cần lưu ý khởi trị các giá trị ban đầu của bảng cho thích hợp, đó là các kết quả của các bài toán con có kích cỡ nhỏ nhất của bài toán đang giải: F1 (t (1)) m ax {G 1 (t (1), d (1))  F0 (t (0))} d (1)  Dựa vào công thức, phương trình truy toán (*) và các giá trị đã có trong bảng để tìm dần các giá trị còn lại của bảng.  Ngoài ra còn cần mảng lưu trữ nghiệm tương ứng với các giá trị tối ưu trong từng gian đoạn.  Dựa vào bảng lưu trữ nghiệm và bảng giá trị tối ưu trong từng giai đoạn đã xây dựng, tìm ra kết quả bài toán. Bước 3: Làm tốt Làm tốt thuật toán bằng cách thu gọn hệ thức (*) và giảm kích thước miền nhớ. Thường tìm cách dùng mảng một chiều thay cho mảng hai chiều nếu giá trị một dòng (hoặc cột) của mảng hai chiều chỉ phụ thuộc một dòng (hoặc cột) kề trước. Trong một số trường hợp có thể thay mảng hai chiều với các giá trị phần tử chỉ nhận giá trị 0, 1 bởi mảng hai chiều mới bằng cách dùng kỹ thuật quản lý bit. 4. Ví dụ minh họa Cho số tự nhiên n ≤ 100. Hãy cho biết có bao nhiêu cách phân tích số n thành tổng của dãy các số nguyên dương, các cách phân tích là hoán vị của nhau chỉ tính là một cách. n = 5 có 7 cách phân tích: 1. 5 = 1 + 1 + 1 + 1 + 1 2. 5 = 1 + 1 + 1 + 2 3. 5 = 1 + 1 + 3 4 4. 5 = 1 + 2 + 2 5. 5 = 1 + 4 6. 5 = 2 + 3 7. 5 = 5 (Lưu ý: n = 0 vẫn coi là có 1 cách phân tích thành tổng các số nguyên dương (0 là tổng của dãy rỗng) 5 Bước 1: Lập hệ thức Nhận xét: Nếu gọi F[m, v] là số cách phân tích số v thành tổng các số nguyên dương ≤ m. Khi đó: Các cách phân tích số v thành tổng các số nguyên dương ≤ m có thể chia làm hai loại: - Loại 1: Không chứa số m trong phép phân tích, khi đó số cách phân tích loại này chính là số cách phân tích số v thành tổng các số nguyên dương < m, tức là số cách phân tích số v thành tổng các số nguyên dương ≤ m - 1 và bằng F[m - 1, v]. - Loại 2: Có chứa ít nhất một số m trong phép phân tích. Khi đó nếu trong các cách phân tích loại này ta bỏ đi số m đó thì ta sẽ được các cách phân tích số v - m thành tổng các số nguyên dương ≤ m (Lưu ý: điều này chỉ đúng khi không tính lặp lại các hoán vị của một cách). Có nghĩa là về mặt số lượng, số các cách phân tích loại này bằng F[m, v - m] Trong trường hợp m > v thì rõ ràng chỉ có các cách phân tích loại 1, còn trong trường hợp m ≤ v thì sẽ có cả các cách phân tích loại 1 và loại 2. Vì thế: F[m 1, v]; if m > v � F[m, v]= � F[m-1,v]+F[m,v-m]; if m �v � Bước 2: Tổ chức dữ liệu và chương trình Ta có công thức xây dựng F[m, v] từ F[m - 1, v] và F[m, v - m]. Công thức này có tên gọi là công thức truy hồi đưa việc tính F[m, v] về việc tính các F[m', v'] với dữ liệu nhỏ hơn. Tất nhiên cuối cùng ta sẽ quan tâm đến F[n, n]: Số các cách phân tích n thành tổng các số nguyên dương ≤ n. Ví dụ với n = 5, bảng F sẽ là: F 0 1 2 3 4 5 0 1 1 1 1 1 1 1 0 1 1 1 1 2 2 0 1 2 2 2 3 3 0 1 2 3 3 5 4 0 1 3 4 5 7 5 V 0 1 3 5 6 1 m 6 Nhìn vào bảng F, ta thấy rằng F[m, v] được tính bằng tổng của: Một phần tử ở hàng trên: F[m - 1, v] và một phần tử ở cùng hàng, bên trái: F[m, v m]. Cài đặt: program Analysis_Counting; const max = 100; var F: array[0..max, 0..max] of Integer; n, m, v: Integer; begin Write('n = '); ReadLn(n); FillChar(F[0], SizeOf(F[0]), 0); F[0, 0] := 1; for m := 1 to n do for v := 0 to n do if v < m then F[m, v] := F[m - 1, v] else F[m, v] := F[m - 1, v] + F[m, v - m]; WriteLn(F[n, n], ' Analyses'); end. Bước 3: Làm tốt Cải tiến dùng 2 mảng 1 chiều Cách làm trên có thể tóm tắt lại như sau: Khởi tạo dòng 0 của bảng, sau đó dùng dòng 0 tính dòng 1, dùng dòng 1 tính dòng 2 v.v… tới khi tính được hết dòng n. Có thể nhận thấy rằng khi đã tính xong dòng thứ k thì việc lưu trữ các dòng từ dòng 0 tới dòng k - 1 là không cần thiết bởi vì việc tính dòng k + 1 chỉ phụ thuộc các giá trị l ưu trữ trên dòng k. Vậy ta có thể dùng hai mảng một chiều: Mảng Current lưu dòng hiện thời đang xét của bảng và mảng Next lưu dòng kế tiếp, đầu tiên mảng Current được gán các giá trị tương ứng trên dòng 0. Sau đó dùng mảng Current tính mảng Next, mảng Next sau khi tính sẽ mang các giá trị tương ứng trên dòng 1. Rồi lại gán mảng Current := Next và tiếp tục dùng mảng Current tính mảng Next, mảng Next sẽ gồm các giá trị tương ứng trên dòng 2 v.v… Vậy ta có cài đặt cải tiến sau: program Analysis_Counting_2; const max = 100; var Current, Next: array[0..max] of Integer; n, m, v: Integer; begin Write('n = '); ReadLn(n); FillChar(Current, SizeOf(Current), 0); Current[0] := 1; 7 for m := 1 to n do begin for v := 0 to n do if v < m then Next[v] := Current[v] else Next[v] := Current[v] + Next[v - m]; Current := Next; end; WriteLn(Current[n], ' Analyses'); end. 5. Một số bài toán tối ưu giải bằng phương pháp quy hoạch động Bài toán 1: Bài toán cái túi Trong siêu thị có n gói hàng (n ≤ 100), gói hàng thứ i có trọng lượng là W[i] ≤ 100 và trị giá V[i] ≤ 100. Một tên trộm đột nhập vào siêu thị, tên trộm mang theo một cái túi có thể mang được tối đa trọng lượng M (M ≤ 100). Hỏi tên trộm sẽ lấy đi những gói hàng nào để được tổng giá trị lớn nhất. Input: file văn bản BAG.INP - Dòng 1: Chứa hai số n, M cách nhau ít nhất một dấu cách - n dòng tiếp theo, dòng thứ i chứa hai số nguyên dương W[i], V[i] cách nhau ít nhất một dấu cách Output: file văn bản BAG.OUT - Dòng 1: Ghi giá trị lớn nhất tên trộm có thể lấy - Dòng 2: Ghi chỉ số những gói bị lấy BAG.INP BAG.OUT 5 11 11 33 521 44 54 9 10 44 Bài giải: Nếu gọi F[i, j] là giá trị lớn nhất có thể có bằng cách chọn trong các gói {1, 2, …, i} với giới hạn trọng lượng j. Thì giá trị lớn nhất khi được chọn trong số n gói với giới hạn trọng lượng M chính là F[n, M]. Công thức truy hồi tính F[i, j]. 8 Với giới hạn trọng lượng j, việc chọn tối ưu trong số các gói {1, 2, …, i - 1, i} để có giá trị lớn nhất sẽ có hai khả năng: o Nếu không chọn gói thứ i thì F[i, j] là giá trị lớn nhất có thể bằng cách chọn trong số các gói {1, 2, …, i - 1} với giới hạn trọng lượng là j. Tức là F[i, j] = F[i - 1, j] o Nếu có chọn gói thứ i (tất nhiên chỉ xét tới trường hợp này khi mà W[i] ≤ j) thì F[i, j] bằng giá trị gói thứ i là V[i] cộng với giá trị lớn nhất có thể có được bằng cách chọn trong số các gói {1, 2, …, i - 1} với giới hạn trọng lượng j - W[i]. Tức là về mặt giá trị thu được: F[i, j] = V[i] + F[i - 1, j - W[i]] Vì theo cách xây dựng F[i, j] là giá trị lớn nhất có thể, nên F[i, j] sẽ là Max trong 2 giá trị thu được ở trên. Cơ sở quy hoạch động: Dễ thấy F[0, j] = giá trị lớn nhất có thể bằng cách chọn trong số 0 gói = 0. Tính bảng phương án: Bảng phương án F gồm n + 1 dòng, M + 1 cột, trước tiên được điền cơ sở quy hoạch động: Dòng 0 gồm toàn số 0. Sử dụng công thức truy hồi, dùng dòng 0 tính dòng 1, dùng dòng 1 tính dòng 2, v.v… đến khi tính hết dòng n. Truy vết Tính xong bảng phương án thì ta quan tâm đến F[n, M] đó chính là giá trị lớn nhất thu được khi chọn trong cả n gói với giới hạn trọng lượng M. Nếu F[n, M] = F[n - 1, M] thì tức là không chọn gói thứ n, ta truy tiếp F[n - 1, M]. Còn nếu F[n, M] ≠ F[n - 1, M] thì ta thông báo rằng phép chọn tối ưu có chọn gói thứ n và truy tiếp F[n 1, M - W[n]]. Cứ tiếp tục cho tới khi truy lên tới hàng 0 của bảng phương án. program Bag; const InputFile = 'BAG.INP'; OutputFile = 'BAG.OUT'; max = 100; var W, V: Array[1..max] of Integer; F: array[0..max, 0..max] of Integer; n, M: Integer; procedure Enter; var i: Integer; fi: Text; begin 9 Assign(fi, InputFile); Reset(fi); ReadLn(fi, n, M); for i := 1 to n do ReadLn(fi, W[i], V[i]); Close(fi); end; procedure Optimize; var i, j: Integer; begin FillChar(F[0], SizeOf(F[0]), 0); for i := 1 to n do for j := 0 to M do begin {Tính F[i, j]} F[i, j] := F[i - 1, j]; if (j >= W[i]) and (F[i, j] < F[i - 1, j - W[i]] + V[i]) then F[i, j] := F[i - 1, j - W[i]] + V[i]; end; end; procedure Trace; var fo: Text; begin Assign(fo, OutputFile); Rewrite(fo); WriteLn(fo, F[n, M]); while n <> 0 do begin if F[n, M] <> F[n - 1, M] then begin Write(fo, n, ' '); M := M - W[n]; end; Dec(n); end; Close(fo); end; begin Enter; Optimize; Trace; end. Bài toán 2: Chia thưởng Cần chia hết m phần thưởng cho n học sinh sắp theo thứ tự từ giỏi trở xuống sao cho mỗi bạn không nhận ít phần thưởng hơn bạn xếp sau mình. 1  m, n  70. Hãy tính số cách chia. 10 Thí dụ, với số phần thưởng m = 7, và số học sinh n = 4 sẽ có 11 cách chia 7 phần thưởng cho 4 học sinh theo yêu cầu của đầu bài. Đó là: Phương án     1 2 3 4 5 6 7 8 9 10 11 7 6 5 5 4 4 3 3 4 3 2 0 1 2 1 3 2 3 2 1 2 2 0 0 0 1 0 1 1 2 1 1 2 0 0 0 0 0 0 0 0 1 1 1 Bài giải Lập hệ thức Gọi Chia(i, j) là số cách chia i phần thưởng cho j học sinh, ta thấy: - Nếu không có học sinh nào (j = 0) thì không có cách chia nào (Chia = 0). - Nếu không có phần thưởng nào (i = 0) thì chỉ có một cách chia (Chia(0,j) = 1 - mỗi học sinh nhận 0 phần thưởng). Ta cũng quy ước Chia(0, 0) = 1. - Nếu số phần thưởng ít hơn số học sinh (i < j) thì trong mọi phương án chia, từ học sinh thứ i + 1 trở đi sẽ không được nhận phần thưởng nào: Chia(i, j) = Chia(i, i) nếu i < j. Ta xét tất cả các phương án chia trong trường hợp i  j. Ta tách các phương án chia thành hai nhóm không giao nhau dựa trên số phần thưởng mà học sinh đứng cuối bảng thành tích, học sinh thứ j, được nhận: - Nhóm thứ nhất gồm các phương án trong đó học sinh thứ j không được nhận thưởng, tức là i phần thưởng chỉ chia cho j - 1 học sinh và do đó, số cách chia, tức là số phần tử của nhóm này sẽ là: Chia(i, j - 1). - Nhóm thứ hai gồm các phương án trong đó học sinh thứ j cũng được nhận thưởng. Khi đó, do học sinh đứng cuối bảng thành tích được nhận thưởng thì mọi học sinh khác cũng sẽ có thưởng. Do ai cũng được thưởng nên ta bớt 11 của mỗi người một phần thưởng (để họ lĩnh sau), số phần thưởng còn lại (i j) sẽ được chia cho j học sinh. Số cách chia khi đó sẽ là Chia(i - j, j). Tổng số cách chia cho trường hợp i  j sẽ là tổng số phần tử của hai nhóm, ta có: Chia(i, j) = Chia(i, j - 1) + Chia(i - j, j). Tổng hợp lại ta có: Điều kiện i: số phần thưởng j: số học sinh j=0 Chia(i, j) i = 0 and j  0 Chia(i, j) = 0 Chia(i, j) = 1 i 0 } if i = 0 then {i = 0; j > 0 } Chia := 1 else {i,j > 0 } if i < j then {0 < i < j } Chia := Chia(i,i) else {i >= j > 0 } Chia := Chia(i,j-1)+Chia(i-j,j); end; Phương án này chạy chậm vì phát sinh ra quá nhiều lần gọi hàm trùng lặp. Bảng dưới đây liệt kê số lần gọi hàm Chia khi giải bài toán chia thưởng với bảy phần 12 thưởng (m = 7) và 4 học sinh (n = 4). Thí dụ, hàm Chia(1,1) sẽ được gọi 9 lần,… Tổng số lần gọi hàm Chia là 79. 79 lần gọi hàm để sinh ra kết quả 11 là quá tốn kém.       0 9 1 1 0  9 9 2 1 0  6 6 1 0 0  5 5 2 1 1  3 3 1 1 0  2 2 1 0 0  1 1 0 0 0  1 1 1 1 1 Số lần gọi hàm Chia cục bộ khi tính hàm Chia(7,4) Làm tốt Phương án 1 khá dễ triển khai nhưng chương trình sẽ chạy rất lâu. Diễn tả đệ quy thường trong sáng, nhàn tản, nhưng khi thực hiện sẽ sinh ra hiện tượng gọi lặp lại những hàm đệ quy. Cải tiến là tránh những lần gọi lặp như vậy. Muốn thế chúng ta tính sẵn các giá trị của hàm theo các trị của đầu vào khác nhau và điền vào một mảng hai chiều cc. Mảng cc được mô tả như sau: const MN = 70;{ gioi han tren cua m va n } j-1 var cc: array[0..MN,0..MN] of longint; Ta quy ước cc[i, j] chứa số cách chia i phần thưởng cho j học sinh. Theo phân tích của phương án 1, ta có: i-j ... i [i,j1] j [i-j,j] ... [i,j]  cc[0, 0] = 1; cc[i, 0] = 0, với i:=1..m.  cc[i, j] = cc[i, i], nếu i < j  cc[i, j] = cc[i, j-1]+cc[i-j, j], nếu i  j. Từ đó ta suy ra quy trình điền trị vào bảng cc như sau:  Khởi trị  cc[0,0 ]:= 1; 13  với i := 1..m: cc[i,0] := 0;  Điền bảng: Lần lượt điền theo từng cột j:= 1..n. Tại mỗi cột j ta đặt:  với i := 0..j-1: cc[i,j] := cc[i,i];  với i := j..m: cc[i,j] := cc[i,j-1]+cc[i-j,j]; Nhận kết quả: Sau khi điền bảng, giá trị cc[m, n] chính là kết quả cần tìm. Phương án dùng mảng 2 chiều: function Chia2(m,n: integer):longint; var i,j: integer; begin cc[0,0] := 1; for i := 1 to m do cc[i,0] := 0; for j := 1 to n do begin for i := 0 to j-1 do cc[i,j] := cc[i,i]; for i := j to m do cc[i,j] := cc[i,j-1]+cc[i-j,j]; end; Chia2 := cc[m,n]; end; Bài toán 3: Phép nhân tổ hợp dãy ma trận Với ma trận A={a[i, j]} kích thước p×q và ma trận B={b[i, j]} kích thước q×r. Người ta có phép nhân hai ma trận đó để được ma trận C={c[i, j]} kích thước p×r. Mỗi phần tử của ma trận C được tính theo công thức: q C  i, j   k 1 a[i, j ].b[ k , j ],1 i  p,1  j r Ví dụ: A là ma trận kích thước 3 4, B là ma trận kích thước 4 5 thì C sẽ là ma trận kích thước 3 5 1 3 4  1 2   0 7 8   5 6  9 10 11 12   3   1  0 1 2 0 4 5 0 1 1 1 6 1 0   14 1   34 1   54 1   6 14 9 36 25 100 22 41 164 9  21 33  Để thực hiện phép nhân hai ma trận A(p×q) và B(q×r) ta có thể làm như đoạn chương trình sau: for i := 1 to p do for j := 1 to r do begin c[i, j] := 0; 14 for k := 1 to q do c[i, j] := c[i, j] + a[i, k] * b[k, j]; end; Phí tổn để thực hiện phép nhân ma trận có thể đánh giá qua số lần thực hiện phép nhân số học, với giải thuật nhân hai ma trận kể trên, để nhân ma trận A cấp pxq với ma trận B cấp qxr ta cần thực hiện p.q.r phép nhân số học. Phép nhân ma trận không có tính chất giao hoán nhưng có tính chất kết hợp (A.B).C = A.(B.C) Vậy nếu A là ma trận cấp 3x4, B là ma trận cấp 4x10 và C là ma trận cấp 10x15 thì: - Để tính (A.B).C, phép tính (A.B) cho ma trận kích thước 3x10 sau 3.4.10=120 phép nhân số, sau đó nhân tiếp với C được ma trận kết quả kích thước 3x15 sau 3.10.15=450 phép nhân số. Vậy tổng số phép nhân số học phải thực hiện sẽ là 570. - Để tính A.(B.C), phép tính (B.C) cho ma trận kích thước 4x15 sau 4.10.15=600 phép nhân số, lấy A nhân với ma trận này được ma trận kết quả kích thước 3x15 sau 3.4.15=180 phép nhân số. Vậy tổng số phép nhân số học phải thực hiện sẽ là 780. Vậy thì trình tự thực hiện có ảnh hưởng lớn tới chi phí. Vấn đề đặt ra là tính số phí tổn ít nhất khi thực hiện phép nhân một dãy các ma trận: n  m[i] m[1].m[2]......m[n] i 1 Với : m[1] là ma trận kích thước a[1] x a[2] m[2] là ma trận kích thước a[2] x a[3] … m[n] là ma trận kích thước a[n] x a[n+1] Dữ liệu: file văn bản MULTMAT.INP - Dòng 1: Chứa số nguyên dương n ≤ 100 - Dòng 2: Chứa n + 1 số nguyên dương a[1], a[2], …, a[n+1] (∀i: 1 ≤ a[i] ≤ 100) cách nhau ít nhất một dấu cách Kết quả: file văn bản MULTMAT.OUT - Dòng 1: Ghi số phép nhân số học tối thiểu cần thực hiện - Dòng 2: Ghi biểu thức kết hợp tối ưu của phép nhân dãy ma trận 15 MULTMAT.INP MULTMAT.OUT 6 Number of numerical multiplications: 3231223 31 ((m[1].(m[2].m[3])).((m[4].m[5]).m[6])) Bài giải: Trước hết, nếu dãy chỉ có một ma trận thì chi phí bằng 0, tiếp theo ta nhận thấy chi phí để nhân một cặp ma trận có thể tính được ngay. Vậy có thể ghi nhận được chi phí cho phép nhân hai ma trận liên tiếp bất kỳ trong dãy. Sử dụng những thông tin đã ghi nhận để tối ưu hoá phí tổn nhân những bộ ba ma trận liên tiếp … Cứ tiếp tục như vậy cho tới khi ta tính được phí tổn nhân n ma trận liên tiếp. Công thức truy hồi Gọi f[i, j] là số phép nhân số học tối thiểu cần thực hiện để nhân đoạn ma trận liên tiếp: j  m[t ] m[i].m[i  1].m[i  2]......m[ j ] t i Thì khi đó f[i, i] = 0 với  i. j Để tính m[t ] có thể có nhiều cách kết hợp: t i j   k   j m[t ]  m[u ]   m[v ]  k : i k j, tức là chỉ số đầu trái lớn hơn chỉ số đầu phải, ta quy ước đặt p(i, j) = 0. - Nếu i = j thì p(i, i) = 1 vì dãy khảo sát chỉ chứa đúng 1 kí tự nên nó là đối xứng. - Nếu i < j và s[i] = s[j] thì p(i, j) = p(i + 1, j – 1) + 2. Vì hai kí tự đầu và cuối dãy s[i,j] giống nhau nên chỉ cần xác định chiều dài của dãy con đối xứng dài nhất trong đoạn giữa là s[i + 1, j – 1] rồi cộng thêm 2 đơn vị ứng với hai kí tự đầu và cuối dãy là được. - Nếu i < j và s[i]  s[j], tức là hai kí tự đầu và cuối của dãy con s[i..j] là khác nhau thì ta khảo sát hai dãy con là s[i..(j – 1)] và s[(i + 1)..j] để lấy chiều dài của dãy con đối xứng dài nhất trong hai dãy này làm kết quả: p(i,j) = max(p(i,j-1),p(i+1,j)) Vấn đề đặt ra là cần tính p(1, n). Mà muốn tính được p(1, n) ta phải tính được các p(i, j) với mọi i, j = 1..n. Phương án đệ quy Phương án đệ quy dưới đây như mô tả trong hàm nguyên rec(i, j) tính trực tiếp giá trị p(i, j) theo các tính chất đã liệt kê. Đáp số cho bài toán khi đó sẽ là n-rec(1,n) function rec(i,j: integer): integer; begin if i > j then rec := 0 else if i = j then rec := 1 else {i < j} if s[i] = s[j] then rec := rec(i+1,j-1)+2 else {i < j & s[i]  s[j]} rec := max(rec(i,j-1),rec(i+1,j)); end; Dùng một mảng hai chiều Gọi đệ quy sẽ phát sinh các lời gọi hàm trùng lặp. Khắc phục điều này bằng cách sử dụng một mảng hai chiều để tính trước các giá trị của hàm p(i, j), mỗi giá trị được tính tối đa một lần. Nếu dùng một mảng hai chiều, thí dụ mảng p[0..n, 0..n] thì giá trị của p[i, j] sẽ được điền lần lượt theo từng cột, từ cột thứ 1 đến cột thứ n. Tại mỗi cột ta điền từ dưới lên trên. Ta lưu ý: - Phần tử tại cột i, dòng j là giá trị p[i, j] chính là chiều dài của dãy con đối xứng dài nhất khi khảo sát dãy con s[i..j]. 20
- Xem thêm -

Tài liệu liên quan