Các siêu mặt hyperbolic brody trong không gian xạ ảnh phức

  • Số trang: 63 |
  • Loại file: PDF |
  • Lượt xem: 21 |
  • Lượt tải: 0
minhtuan

Đã đăng 15929 tài liệu

Mô tả:

TRANG P BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH -----o0o----- NGUYỄN HOÀNG YẾN CÁC SIÊU MẶT HYPERBOLIC BRODY TRONG KHÔNG GIAN XẠ ẢNH PHỨC LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2011 HỤ BÌA BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH -----o0o----- NGUYỄN HOÀNG YẾN CÁC SIÊU MẶT HYPERBOLIC BRODY TRONG KHÔNG GIAN XẠ ẢNH PHỨC CHUYÊN NGÀNH: HÌNH HỌC VÀ TÔPÔ MÃ SỐ: 60.46.10 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS. NGUYỄN TRỌNG HÒA Thành phố Hồ Chí Minh - 2011 LỜI CAM ĐOAN Tôi cam đoan đây là công trình nghiên cứu của riêng tôi trên cơ sở các công trình của H.Fujimoto. Các số liệu, kết quả nêu trong luận văn là trung thực và chính xác. Thành phố Hồ Chí Minh, tháng 08 năm 2011 Nguyễn Hoàng Yến LỜI CẢM ƠN Tôi vô cùng biết ơn Tiến sĩ NGUYỄN TRỌNG HÒA đã định hướng tôi nghiên cứu các siêu mặt hyperbolic, một vấn đề đang được quan tâm do những ứng dụng của nó trong nhiều lĩnh vực của Toán học; thầy là người trực tiếp hướng dẫn tôi thực hiện luận văn này. Tôi gửi lời cảm ơn BÙI QUANG THỊNH, bạn đồng môn, đã chia sẻ tài liệu và chỉ dẫn tôi trong việc soạn thảo luận văn này bằng Latex. Tôi gửi lời tri ân đến các thầy cô giáo trong khoa Toán-Tin đã hướng dẫn tôi nghiên cứu Toán học trong những năm học tại trường Đại học Sư Phạm TP.HCM. gia đình và bạn bè đã hiểu, chia sẻ và động viên tôi trong quá trình tôi thực hiện đề tài. Nguyễn Hoàng Yến MỤC LỤC LỜI CAM ĐOAN ........................................................................................................ ii LỜI CẢM ƠN ............................................................................................................. iii MỤC LỤC ................................................................................................................... iv MỞ ĐẦU....................................................................................................................... 1 1. Lí do chọn đề tài. ............................................................................................................1 2. Mục đích nghiên cứu........................................................................................................3 3. Đối tượng và phạm vi nghiên cứu ...................................................................................4 4. Phương pháp nghiên cứu .................................................................................................4 5. Cấu trúc luận văn .............................................................................................................4 Chương 1: MỘT SỐ KIẾN THỨC BỔ TRỢ ........................................................... 5 1.1 Không gian xạ ảnh phức ................................................................................................5 1.2 Đa tạp, siêu mặt, đường cong đại số, mặt Riemann ......................................................8 1.3 Không gian hyperbolic .................................................................................................19 Chương 2: MỘT SỐ LỚP SIÊU MẶT HYPERBOLIC TRONG KHÔNG GIAN XẠ ẢNH PHỨC ......................................................................................................... 22 2.1 Siêu mặt hyperbolic bậc thấp .......................................................................................23 2.2 Siêu mặt hyperbolic bậc cao ........................................................................................43 KẾT LUẬN VÀ KIẾN NGHỊ................................................................................... 54 TÀI LIỆU THAM KHẢO ........................................................................................ 56 MỞ ĐẦU 1. Lí do chọn đề tài. Lí thuyết về không gian Hyperbolic, xuất hiện vào đầu những năm 60 của thế kỉ XX, ngày càng được quan tâm vì người ta tìm thấy nhiều ứng dụng quan trọng của nó trong các lĩnh vực của Toán học như: Hình học, Hình học Đại số, Số học, Giải tích,... đặc biệt là mối liên hệ giữa tính hyperbolic Brody của các đa tạp xạ ảnh với nghiệm của phương trình Diophant thuần nhất. S.Lang, trong [13], đã chỉ ra rằng: Nếu X là không gian compắc thì X là hyperbolic Brody khi và chỉ khi nó là hyperbolic Kobayashi. Không gian phức là compắc, do đó từ nay về sau, chúng ta chỉ dùng khái niệm hyperbolic theo nghĩa Brody (vì đối với tập compắc, hai khái niệm này trùng nhau). Một trong những giả thuyết nổi tiếng của Số học nói rằng: Phương trình Diophant bậc cao với số biến đủ tổng quát chỉ có hữu hạn nghiệm nguyên. Trên cơ sở đó, năm 1970, S.Kobayashi đưa ra giả thuyết: Giả sử D là siêu mặt tổng quát bậc d trong n , với d đủ lớn so với n. Khi đó, hoặc D là hyperbolic, hoặc phần bù của nó n \ D là hyperbolic. Ngoài ra, điều này có đúng cho mọi d ≥ 2n + 1? Giả thuyết của Kobayashi đã nhận được sự quan tâm của nhiều nhà Toán học trên thế giới. Một mặt, họ cố gắng xây dựng lớp các siêu mặt hyperbolic Brody cụ thể khác nhau trong các không gian n , và nhiều công trình lớn theo hướng này đã được công bố, tiêu biểu là các công trình của R.Brody, M.Green, A.Nadel, Y.T.Siu, J.P.Demailly, B.Shiffman, F.A. Bogomolov, M.Ru, Noguchi, Hà Huy Khoái, P.Kiernan, E.I.Nochka, K.Masuda, H.Fujimoto… Hướng thứ hai, người ta cũng đang cố gắng xây dựng các lớp tổng quát siêu mặt hyperbolic Brody trong n và cố gắng tìm phương pháp chung để mô tả các lớp tổng quát siêu mặt hyperbolic Brody trong. Hướng thứ ba là họ nghiên cứu giả thuyết này trong không gian xạ ảnh n-chiều trên trường cơ sở không Acsimet: các nhà toán học tiên phong nghiên cứu theo hướng này và đã công bố các công trình là Borel, Bloch, Cartan, M. Ru, Noguchi, Hà Huy Khoái, … Theo hướng thứ nhất, năm 1977, R.Brody và M.Green đã chứng minh: siêu mặt bậc chẵn ≥ 50 trong 3 là hyperbolic ([3]). Về sau, cũng trong 3 , A.Nadel đưa ra một loại siêu mặt hyperbolic bậc d = 6 p + 3 ≥ 21 ([18]), J.El Goul cũng chỉ ra lớp siêu mặt hyperbolic với bậc d ≥ 14 ([11]), J.P.Demailly ([4]) và Y.T.Siu-S.K.Yeung ([23]) chứng minh lớp siêu mặt hyperbolic bậc d ≥ 11. Trong [6], J.P.Demailly và J.El Goul đã chứng minh rằng một siêu mặt tổng quát bậc ≥ 21 trong 3 là hyperbolic, và trong [21], M.Shirosaki đã xây dựng siêu mặt hyperbolic bậc 10. Trường hợp n ≥ 4, trong [16], K.Masuda và J.Noguchi đã chứng minh rằng tồn tại một siêu mặt hyperbolic bậc d với mỗi d ≥ d (n) , trong đó d (n) là số nguyên đương chỉ phụ thuộc vào n và đưa ra một số ví dụ cụ thể của siêu mặt hyperbolic trong n với n ≤ 5. Ngoài ra, Siu-Yeung đã đưa ra ví dụ những siêu mặt bậc 16(n − 1)2 trong n (]23]). Năm 1992, A.Emerenko và M.Sodin, trong [6], đã mở rộng định lý Cartan về sự phân bố giá trị của đường cong chỉnh hình đến trường hợp các siêu mặt, đã chứng minh được rằng: Mọi ánh xạ chỉnh hình f :  → n không cắt 2n + 1 siêu mặt ở vị trí tổng quát đều là ánh xạ hằng, tức là phần bù của 2n + 1 siêu mặt ở vị trí tổng quát đều là siêu mặt hyperbolic Brody trong không gian xạ ảnh phức n-chiều. Mở rộng các kết quả của Shirosaki [12], H.Fujimoto đã thành công trong việc xây dựng những lớp cụ thể các siêu mặt hyperbolic bậc 8 trong 3 , là một trong những bậc thấp nhất của những siêu mặt hyperbolic đã được biết đến trong 3 . Tổng quát hơn, H.Fujimoto đã chỉ ra kết quả sau: Định lí 0.1. Tồn tại một họ siêu mặt hyperbolic bậc 2n trong không gian xạ ảnh phức n-chiều.. Masuda-Noguchi cũng đã chỉ ra rằng: Định lí 0.2: Với mỗi d ≥ 2 × 6n (n ≥ 3), tồn tại một họ siêu mặt hyperbolic bậc d trong không gian xạ ảnh phức n-chiều. Gần đây, B.Shiffman và M.Zaidengerg đã đưa ra cải thiện của những kết quả đã được đề cập của Siu-Yeung, bằng cách chỉ ra sự tồn tại của siêu mặt hyperbolic sau đây nhưng không xây dựng ví dụ cụ thể: Định lí 0.3. Cho m ≥ 2n − 1. Với mỗi d ≥ (m − 1)2 và h1 ,..., hm là những hàm tuyến tính tổng quát trên  n+1 , siêu mặt m   d X n−1 := 0  z ∈ Pn : ∑ h j ( z) = j =1   là hyperbolic. Như vậy những kết quả trên, cụ thể là định lí 0.1 và định lí 0.2 có thể được cải thiện hơn không? Liệu có phương pháp chung để xây dựng siêu mặt hyperbolic với bậc tùy ý trong không gian xạ ảnh phức n-chiều hay không? Và dựa trên kết quả của định lí 0.2 thì có phương pháp nào xây dựng cụ thể những siêu mặt hyperbolic bậc d với mỗi d ≥ 2 × 6n trong không gian xạ ảnh phức n-chiều hay không? Đó vẫn là vấn đề mở đặt ra hiện nay. Việc nghiên cứu Giả thuyết Kobayashi theo cả 3 hướng trên hiện nay đang là vấn đề thời sự được các nhà Toán học quan tâm. Vì vậy, chúng tôi chọn việc nghiên cứu CÁC SIÊU MẶT HYPERBOLIC BRODY TRONG KHÔNG GIAN XẠ ẢNH PHỨC làm đề tài của mình. Trong đề tài này, chúng tôi chỉ giới hạn tìm hiểu và tìm cách mở rộng các kết quả của B.Shiffman, M.Zaidengerg, R.Brody, M.Green, Masuda, Noguchi và đặc biệt là của H.Fujimoto trong không gian xạ ảnh phức nchiều. 2. Mục đích nghiên cứu Trên cơ sở hiểu rõ các khái niệm và làm rõ các kết quả của H. Fujimoto trong công trình của ông công bố năm 2003 và các tác giả có liên quan, xây dựng siêu mặt hyperbolic Brody bậc và bậc d với d ≥ 2 × 6n trong không gian xạ ảnh phức n-chiều. Trên cơ sở hiểu rõ các khái niệm và làm rõ những kết quả của H.Fujimoto trong công trình của ông công bố năm 2003 và các tác giả có liên quan, xây dựng siêu mặt hyperbolic Brody bậc d với mỗi d ≥ 2 × 6n trong không gian xạ ảnh phức n-chiều. 3. Đối tượng và phạm vi nghiên cứu Luận văn nghiên cứu những siêu mặt hyperbolic Brody bậc thấp và bậc cao trong không gian xạ ảnh phức n-chiều. Luận văn xây dựng một số lớp siêu mặt hyperbolic bậc thấp và bậc cao trong không gian xạ ảnh phức n-chiều theo hướng nghiên cứu của H.Fujimoto và một vài tác giả khác, đồng thời cụ thể hóa nó trong một số trường hợp đặc biệt. 4. Phương pháp nghiên cứu Tổng hợp và hoàn thiện những kết quả đã có từ những bài báo, tài liệu khoa học có liên quan đến vấn đề cần nghiên cứu. Đưa ra các ví dụ minh họa cho các kết quả đã trình bày. Sử dụng các phương pháp của Hình học Đại số, đánh giá tính hyperbolic của các siêu mặt thông qua việc xác định giống của nó. 5. Cấu trúc luận văn Chương 1: MỘT SỐ KIẾN THỨC BỔ TRỢ. 1. Không gian xạ ảnh phức. 2. Đa tạp, siêu mặt, đường cong đại số, mặt Riemann. 3. Không gian hyperbolic. Chương 2: MỘT SỐ LỚP SIÊU MẶT HYPERBOLIC TRONG KHÔNG GIAN XẠ ẢNH PHỨC. 1. Siêu mặt hyperbolic bậc thấp. 2. Siêu mặt hyperbolic bậc cao Chương 1: MỘT SỐ KIẾN THỨC BỔ TRỢ Chương này trình bày các vấn đề liên quan đến nội dung ở chương 2. Đó là các khái niệm về không gian xạ ảnh phức; đa tạp, siêu mặt, đường cong đại số, mặt Riemann; không gian hyperbolic ... 1.1 Không gian xạ ảnh phức Chi tiết về không gian xạ ảnh phức có thể xem trong [14](tr.34), [22](tr.65), [10](tr.43). Khái niệm không gian xạ ảnh đến từ ý tưởng đồng nhất mỗi điểm ( x, y ) ∈ 2 với một không gian con tuyến tính phức một chiều của 3 sinh bởi ( x, y,1) . Mỗi không gian 0} , con tuyến tính một chiều của 3 không nằm trong mặt phẳng {( x, y, z ) ∈ 3 | z = đều chứa duy nhất một điểm có dạng ( x, y,1) . Còn các không gian con một chiều của {( x, y, z ) ∈ 3 | z = 0} có thể xem như là ``các điểm tại vô cùng''. Định nghĩa 1.1. Tập hợp các không gian con một chiều phức của không gian vectơ  n+1 được gọi là không gian xạ ảnh phức n-chiều n . Khi n = 1 , ta có đường thẳng xạ ảnh phức 1 và khi n = 2 , ta có mặt phẳng xạ ảnh phức 2 . Nhận xét 1.2. Nếu V là một không gian vectơ trên trường K bất kì thì không gian xạ ảnh tương ứng (V ) là tập hợp tất cả các không gian con một chiều của V. Ở đây, ta chỉ làm việc với K =  và V =  n+1 và cho đơn giản, ta viết n thay cho ( n+1 ) . Mỗi không gian con một chiều U của  n+1 được sinh bởi một vectơ khác không u ∈U . Do đó ta có thể đồng nhất n với tập tất cả các lớp tương đương của  n+1 \ {0} , trong đó quan hệ tương đương a ~ b khi và chỉ khi tồn tại một giá trị λ ∈ \ {0} sao cho a = λb . Định nghĩa 1.3. Một vectơ bất kì ( x0 ,…, xn ) trong  n+1 đại diện cho một phần tử x của n ; ta gọi ( x0 ,…, xn ) là tọa độ thuần nhất của x và viết= x [ x0 : … : xn ] . Khi đó n = {[ x0 : … : xn ] | ( x0 ,…, xn ) ∈ n+1  {0}} và [ x0 : … : xn ] = [ y0 : … : yn ] khi và chỉ khi tồn tại λ ∈ \ {0} sao cho x j = λ y j với mọi j. Bây giờ ta trang bị tôpô cho n để nó trở thành một không gian tôpô (ta thấy rằng, không như  n , không gian n là compắc). Xét ánh xạ Π :  n+1 \ {0} → n với Π ( x0 ,…, xn ) = [ x0 : … : xn ] , đồng thời trang bị cho n tôpô thương cảm sinh từ tôpô thông thường trên  n+1  {0}. Cụ thể là, một tập con A của n là tập mở khi và chỉ khi Π −1 ( A) là tập con mở của  n+1  {0}. Nhận xét 1.4. (i) Tập con A của n là tập đóng khi và chỉ khi Π −1 ( A) là tập con đóng của  n+1  {0}. . (ii) Π :  n+1 \ {0} → n là ánh xạ liên tục. (iii) Nếu X là một không gian tôpô bất kì thì ánh xạ f : n → X liên tục khi và chỉ khi f  Π :  n+1 \ {0} → X liên tục; tổng quát hơn nếu A là một tập con bất kì của n thì ánh xạ f : A → X liên tục khi và chỉ khi f  Π : Π −1 ( A) → X liên tục. Kí hiệu U 0 ,…,U n là các tập con của n và được định nghĩa như sau U j = {[ x0 : … : xn ] ∈ n | x j ≠ 0}. Chú ý rằng điều kiện x j ≠ 0 độc lập với việc chọn các tọa độ thuần nhất, và Π −1 (U j ) = {( x0 ,…, xn ) ∈  n+1 | x j ≠ 0} là một tập con mở của  n+1 \ {0} , do đó U j là một tập con mở của Pn . Định nghĩa ánh xạ φ0 : U 0 →  n bởi  x1 x2 x  , ,…, n  . x0   x0 x0 φ0 ([ x0 : … : xn ]) =( y1 ,…, yn ) = Theo định nghĩa 1.3, ánh xạ này có ánh xạ ngược: ( y1 ,…, yn )  [1: y1 : … : yn ]. Tọa độ ( y1 ,…, yn ) được gọi là tọa độ xạ ảnh không thuần nhất trên U 0 . Từ nhận xét 1.4, ta nhận thấy: φ0 : U 0 →  n là ánh xạ liên tục (vì φ0  Π liên tục với Π : Π −1 (U 0 ) → U 0 ). Ánh xạ ngược của φ0 là hợp thành của Π và ánh xạ liên tục từ  n đến  n \ {0} xác định bởi ( y1 ,…, yn )  (1, y1 ,…, yn ) . Do đó φ0 là một đồng phôi. Tương tự, ta có các đồng phôi φ j : U j →  n với mọi 1 ≤ j ≤ n , xác định bởi  x0 x x x  ,…, j −1 , j +1 ,…, n  . x xj xj x j   j φ j ([ x0 : … : xn ]) = Nhận xét 1.5. Phần bù của U n trong n là siêu phẳng {[ x0 : … : xn ] ∈ Pn | xn = 0}. Siêu phẳng này có thể đồng nhất với n−1 . Do vậy, ta có thể xây dựng không gian xạ ảnh n bằng quy nạp. 0 là một điểm. 1 có thể xem là  cùng với một điểm ∞ (tức là một bản sao của 0 ), và vì vậy 1 cũng có thể được đồng nhất với mặt cầu Riemann  ∪ ∞. 2 là  2 cùng với một “đường thẳng ở vô cùng” (tức là một bản sao của 1 ). Trong trường hợp tổng quát, n là  n cùng với một bản sao của n−1 tại vô cùng. Gọi X là không gian tôpô. Do {U j | 0 ≤ j ≤ n} là một phủ mở của n và φ j : U j →  n là một đồng phôi với mỗi j, một ánh xạ f : n → X là liên tục khi và chỉ khi f  φ j−1 :  n → X liên tục với mỗi j. Tương tự một ánh xạ f : X → n liên tục khi và chỉ khi f −1 (U j ) là tập mở trong X và φ j  f : f −1 (U j ) →  n liên tục với mỗi j. Sau đây, chúng ta nhắc lại một số tính chất của tập compắc: Tính chất 1.6. (i) Một tập con của  n hay  n là compắc khi và chỉ khi nó đóng và bị chặn (định lý Heine-Borel). (ii) Nếu f : X → Y là một ánh xạ liên tục giữa các không gian tôpô và X là compắc thì f ( X ) là compắc. (iii) Từ (i) và (ii) suy ra nếu X là không gian tôpô compắc và f : X →  là một hàm liên tục thì f bị chặn và đạt giá trị biên. (iv) Một tập con đóng của một không gian compắc là compắc. (v) Một tập con compắc của một không gian Hausdorff là đóng. (vi) Một hợp hữu hạn của các không gian compắc là compắc. Mệnh đề 1.7. n là tập compắc. Chứng minh. Gọi 2 n +1 S= {( x ,…, x ) ∈  0 n +1 n 2 || x0 |2 +…+ | x= 1} n | Khi đó S 2 n+1 là một mặt cầu 2n + 1 chiều. Nó là tập con đóng và bị chặn của  n+1 nên theo định lý Heine-Borel (tính chất 1.6(i)), S 2 n+1 là tập compắc. Ánh xạ thu hẹp Π |S 2 n+1 : S 2 n+1 → n là ánh xạ liên tục, vì vậy theo tính chất 1.6(ii), ảnh của nó là tập compắc. Như vậy để chứng minh n là tập compắc, ta chỉ cần chứng minh ánh xạ Π |S 2 n+1 là toàn ánh. λ | x0 |2 +…+ | xn |2 > 0. Nếu [ x0 : … : xn ] ∈ n thì= 1  12  Khi đó [ x0 : … : xn= ] λ x0 : … : λ 2 xn  .   1 2 1 2 Nhưng do | λ x0 | +…+ | λ xn |2 = 1 nên [ x0 : … : xn ] ∈Π ( S 2 n+1 ) . 2 Do đó Π |S 2 n+1 là toàn ánh, dẫn đến điều phải chứng minh.  1.2 Đa tạp, siêu mặt, đường cong đại số, mặt Riemann Chi tiết về đa tạp afin và đa tạp xạ ảnh có thể xem trong [19](tr.89), [12](tr.31), [10](tr.45), [22](tr.66). Trước hết, chúng ta nhắc lại khái niệm đa thức thuần nhất và cách thuần nhất hóa một đa thức. Định nghĩa 1.8. Gọi P( x1 , x2 ,…, xn ) là đa thức khác không, n biến với hệ số phức. Đa thức P( x1 , x2 ,…, xn ) được gọi là đa thức thuần nhất bậc d nếu P(λ x1 , λ x2 ,…, λ= xn ) λ d P( x1 , x2 ,…, xn ), với mọi λ ∈ \ {0}. Nghĩa là P có dạng ∑ P= ( x1 , x2 ,…, xn ) r1 + r2 +…+ rn = d ar1r2…rn x1r1 x2r2 … xnrn với ar1r2…rn ∈. Chú ý rằng mọi đa thức nhân tử Q( x1 , x2 ,…, xn ) của một đa thức thuần nhất P ( x1 , x2 ,…, xn ) cũng là đa thức thuần nhất. Bổ đề 1.9. Gọi P( x, y ) là đa thức thuần nhất bậc d hai biến. Khi đó P( x, y ) có thể phân tích thành tích của các đa thức tuyến tính: P= ( x, y ) d ∏ (α x + β i i =1 j y ). Chứng minh. Ta có thể biểu diễn r x P ( x, y ) ∑ ar x y y ∑ ar   , \ = = =r 0=r 0  y d r d −r d d trong đó a0 ,…, ad ∈  và không đồng thời bằng không. Gọi e là số lớn nhất trong {0,…, d } sao cho ae ≠ 0 . Khi đó x ar   ∑ r =0  y d r là đa thức bậc e theo một biến x nên có thể phân tích y r e x x  a a = − γ i  với γ 1 ,…, γ e ∈  . ∑ r e∏  r =0 i =1  y  y  d Khi đó e x  d −e P= ( x, y ) ae y ∏  = − γ i  ae y ∏ ( x − γ i y ). i 1 =i 1 = y  e d Vì vậy, ta có điều phải chứng minh.  Giả sử f ∈ [ x1 , x2 ,…, xn ] là đa thức bậc d . Ta gọi x x x  = F x0d · f  1 , 2 ,…, n  x0   x0 x0 là thuần nhất hóa của f. Đa thức F ∈ [ x0 , x1 ,…, xn ] được xác định như trên là đa thức thuần nhất bậc d. Định nghĩa 1.10 ([22] Định nghĩa 4.1.5). Giả sử F1 , F2 ,…, Fr ∈ [ x0 , x1 ,…, xn ] là các đa thức thuần nhất. Tập hợp V ( F1 , F2 ,…, Fr ) ={[a0 : a1 : … : an ] ∈ n | Fi ( a0 , a1 ,…, an ) =0, i =1,2,…, r} gọi là đa tạp xạ ảnh xác định bởi F1 , F2 ,…, Fr . Siêu mặt là đa tạp xạ ảnh xác định bởi một đa thức thuần nhất F: V (= F ) {[a0 : a1 : … : an ] ∈ n | F (a0 , a1 ,…, a= 0}. n) Bậc của siêu mặt chính là bậc của đa thức F. Sau đây, chúng ta nhắc lại khái niệm chiều của đa tạp xạ ảnh: Giả sử V là không gian vectơ và W là không gian vectơ con của V. Trên V định nghĩa quan hệ v ~ v′ nếu v − v′ ∈W . Dễ dàng chứng minh ~ là quan hệ tương đương. Kí hiệu [v] là lớp tương đương của v ∈V và V / W là tập hợp các lớp tương đương, nghĩa là V= / W {[v] | v ∈V }. Trên V / W , ta xét các phép toán cộng [v] + [v′] =[v + v′] và phép nhân vô hướng a[v] = [av] với a ∈  và v, v′ ∈V . Dễ dàng kiểm tra tính đúng đắn của phép toán này. Vậy V / W là một không gian vectơ trên trường số phức. Ta cũng có kết quả sau đây: Bổ đề 1.11. Giả sử W là không gian vectơ con của một không gian vectơ hữu hạn chiều V . Khi đó W và V / W cũng là các không gian vectơ hữu hạn chiều và = dim V dim W + dim V / W. Với mỗi số nguyên s , ta kí hiệu [ x0 , x1 ,…, xn ]s = { f ∈ [ x0 , x1 ,…, xn ] | deg ( f ) ≤ s} \ {0}. n + s Ta có [ x0 , x1 ,…, xn ]s là không gian vectơ với số chiều là  .  s  Định nghĩa 1.12. Cho I ⊂ [ x0 , x1 ,…, xn ] , I gọi là idean khi I thỏa mãn những điều kiện sau: (i] 0 ∈ I . (ii) Nếu f , g ∈ I thì f + g ∈ I . (iii) Nếu f ∈ I và g ∈ [ x0 , x1 ,…, xn ] thì fg ∈ I . Giả sử f1 , f 2 ,…, f r ∈ [ x1 , x2 ,…, xn ] . Kí hiệu:  r  = 〈 f1 , f 2 ,…, f r 〉 ∑ fi gi | g1 , g 2 ,…, g r ∈ [ x1 , x2 ,…, xn ]  i =1  là idean sinh bởi f1 , f 2 ,…, f r . Định nghĩa 1.13. Idean I ⊂ [ x0 , x1 ,…, xn ] gọi là thuần nhất nếu mọi f ∈ I có các thành phần thuần nhất fi của f thuộc I . Định lí 1.14. Giả sử I là idean trong [ x0 , x1 ,…, xn ] . Khi đó I là idean thuần nhất trong [ x0 , x1 ,…, xn ] nếu và chỉ nếu I = 〈 f1 , f 2 ,…, f r 〉 với fi là các đa thức thuần nhất. Giả sử I ⊂ [ x0 , x1 ,…, xn ] là idean thuần nhất. Kí hiệu Is = I ∩ [ x0 , x1 ,…, xn ]s Ta có I s là không gian vectơ hữu hạn chiều của không gian [ x0 , x1 ,…, xn ]s . Ta gọi = HFI ( s ) dim [ x0 , x1 ,…, xn ]s / I s là hàm Hilbert (xạ ảnh) của idean I. Mệnh đề 1.15. Cho idean thuần nhất I ⊂ [ x0 , x1.…, xn ] . Khi đó với mọi s đủ lớn, hàm Hilbert của I có dạng d  s  HFI ( s ) = ∑ bi   i =0 d −i trong đó bi là các số nguyên và b0 > 0 . Định nghĩa 1.16. Đa thức bằng HFI ( s ) với s đủ lớn được gọi là đa thức Hilbert của I và kí hiệu là HPI ( s ) . Số nguyên deg HPI (V ) được gọi là chiều của đa tạp xạ ảnh V ⊂ n và kí hiệu là dimV . . Đường cong đại số là trường hợp riêng của đa tạp. Chi tiết về đường cong đại số có thể xem trong [14](tr.29), [10](tr.97), [12](tr.1). Chúng ta nhắc lại khái niệm đường cong đại số phức trong  2 : Gọi p ( x, y ) là đa thức khác hằng số, hai biến, với các hệ số phức. Ta nói p ( x, y ) không có thành phần bội nếu không tồn tại khai triển p ( x, y ) = q 2 ( x, y )r ( x, y ), , trong đó q ( x, y ), r ( x, y ) là các đa thức và q ( x, y ) khác hằng số. Định nghĩa 1.17. Giả sử p ( x, y ) là một đa thức khác hằng số, hai biến với các hệ số phức và không có thành phần bội. Khi đó đường cong đại số trong  2 được định nghĩa như sau: C= {( x, y ) ∈  2 | p( x, y ) = 0}. Lí do trong định nghĩa 1.17 có giả thiết p ( x, y ) không có thành phần bội là do định lí không điểm của Hilbert. Định lí 1.18. (Định lí Hilbert về không điểm). Giả sử p(x,y) và q(x,y) là các đa thức với hệ số phức. Khi đó, các đường cong {( x, y ) ∈  2 | p( x, y ) = 0} và {( x, y ) ∈  2 | q( x, y ) = 0} là trùng nhau khi và chỉ khi tồn tại các số nguyên dương n và m sao cho q n ( x, y ) chia hết cho p(x,y) và p m ( x, y ) chia hết choq(x,y). Điều này tương đương với p(x,y) và q(x,y) có cùng các thành phần bất khả qui (có thể với bội khác nhau). Hệ quả 1.19. Nếu p(x,y) và q(x,y) không có thành phần bội thì chúng định nghĩa cùng một đường cong đại số phức trong  2 khi và chỉ khi đa thức này bằng tích của đa thức kia với một vô hướng, nghĩa là p ( x, y ) = λ q ( x, y ) với λ ∈ \ {0} . Định nghĩa 1.20. Giả sử C là đường cong đại số phức trong  2 và C được định nghĩa bởi đa thức p ( x, y ) với p ( x, y ) = ∑a x y i i , j ≥0 j ij (aij ∈) . Khi đó, bậc d của đường cong chính là bậc của đa thức p ( x, y ) , nghĩa là d = max{i + j | aij ≠ 0} . Một điểm (a, b) ∈ C được gọi là điểm kì dị (hoặc kì dị) của C nếu ∂p ∂p = ( a, b) = (a, b) 0. ∂x ∂y Tập hợp các điểm kì dị của C được kí hiệu là Sing (C ) . Đường cong C được gọi là không kì dị nếu Sing (C ) = ∅ . 1 là đường cong không kì dị. Còn Ví dụ 1.21. Đường cong định nghĩa bởi x 2 + y 2 = đường cong định nghĩa bởi y 2 = x3 có một điểm kì dị (0,0) . Chú ý rằng p ( x, y ) là đa thức nên tại mỗi điểm (a, b) bất kì, đều có khai triển Taylor hữu hạn ( x − a )i ( y − b) j ∂i+ j p . p ( x, y ) = ∑ i j ( a , b ) ! ! x y i j ∂ ∂ i , j ≥0 (1.1) Định nghĩa 1.22. Giả sử C là đường cong định nghĩa bởi p ( x, y ) . Ta gọi số bội của điểm (a, b) ∈ là số nguyên dương bé nhất m sao cho ∂m p (a, b) ≠ 0 với i ≥ 0, j ≥ 0, và i + j = m. ∂xi ∂y j Khi đó đa thức ∂m p ( x − a )i ( y − b) j ( a, b) ∑ i j ∂ ∂ x y i! j ! i+ j= m (1.2) là đa thức thuần nhất bậc m theo hai biến x − a, y − b . Vì vậy, theo bổ đề 1.9, đa thức thuần nhất này có thể phân tích thành tích của m đa thức tuyến tính có dạng α ( x − a) + β ( y − b) với (α , β ) ∈ 2  {(0,0)} . Những đường thẳng được định nghĩa bởi các đa thức tuyến tính này được gọi là các tiếp tuyến của C tại (a, b). Điểm (a, b) không phải là điểm kì dị khi và chỉ khi số bội m của nó là 1; trong trường hợp này, C chỉ có một tiếp tuyến tại điểm (a,b) được xác định bởi ∂p ∂p (a, b)( x − a ) + (a, b)( y − b) = 0. ∂x ∂y Điểm (a, b) ∈ C được gọi là điểm bội hai (tương ứng, bội ba, v.v…) nếu số bội của nó là 2 (tương ứng 3, v.v…). Một điểm kì dị (a,b) được gọi là thông thường nếu đa thức (1.1) không có thành phần bội, tức là C có m tiếp tuyến phân biệt tại (a,b). Nhận xét 1.23. Giả sử C là đường cong đại số phức trong  2 được định nghĩa bởi đa thức p(x,y) và (a,b) là điểm kì dị của C. Khi đó, (a,b) là điểm bội hai thông thường khi và chỉ khi 2  ∂ 2 p   ∂ 2 p  ∂ 2 p    ≠  2  2   ∂x∂y   ∂x  ∂y  2 x3 + x 2 và y 2 = x3 đều có Ví dụ 1.24. Hai đường cong bậc 3 định nghĩa bởi y= điểm bội hai tại gốc tọa độ; đường thứ nhất có điểm bội hai thông thường, nhưng x 2 y 2 có một điểm đường thứ hai thì không. Đường cong định nghĩa bởi ( x 4 + y 4 ) 2 = kì dị bội bốn không tầm thường tại gốc tọa độ; còn đường cong định nghĩa bởi ( x 4 + y 4 − x 2 − y 2 )2 = 9 x 2 y 2 có một điểm kì dị bội bốn thông thường. Định nghĩa 1.25. Giả sử C là đường cong định nghĩa bởi đa thức p(x, y). Đường cong C được gọi là bất khả qui nếu đa thức p(x,y) là bất khả qui, nghĩa là p(x,y) chỉ có các nhân tử là hằng số và vô hướng nhân với chính nó. Nếu các nhân tử bất khả qui của p(x,y) là p1 ( x, y ),…, pk ( x, y ) thì các đường cong định nghĩa bởi p1 ( x, y ),…, pk ( x, y ) được gọi là các thành phần (bất khả qui) của C. Định nghĩa 1.26. Gọi P(x,y,z) là đa thức thuần nhất khác hằng, theo ba biến x, y, z với hệ số phức. Giả sử P(x,y,z) không có thành phần bội. Khi đó đường cong xạ ảnh C trong 2 được định nghĩa như sau: C= {[ x : y : z ] ∈ 2 | P( x, y, z ) = 0}. Bậc của đường cong C chính là bậc d của đa thức P(x,y,z). Nhận xét 1.27. (i) Đường cong xạ ảnh là siêu mặt trong 2 . (ii) Tương tự như với đường cong trong  2 , hai đa thức thuần nhất không có thành phần bội P(x,y,z) và Q(x,y,z) định nghĩa cùng một đường cong xạ ảnh trong 2 khi và chỉ khi mỗi đa thức bằng tích của đa thức kia với một vô hướng, và một đa thức thuần nhất với các thành phần bội có thể xem như một đường cong có những thành phần bội. Định nghĩa 1.28. Đường cong C được gọi là bất khả qui nếu P(x,y,z) là bất khả qui, nghĩa là P(x,y,z) chỉ có các nhân tử là hằng số và vô hướng nhân với chính nó. Gọi D là đường cong xạ ảnh bất khả qui được định nghĩa bởi đa thức thuần nhất Q(x,y,z). D được gọi là một thành phần của C nếu P(x,y,z) chia hết cho Q(x,y,z). Một điểm [a : b : c] ∈ C được gọi là kì dị nếu ∂P ∂P ∂P = (a, b, c) = (a, b, c) = (a, b, c) 0. ∂x ∂y ∂z Tập hợp các điểm kì dị của C được kí hiệu là Sing (C ) . Đường cong C được gọi là không kì dị nếu Sing (C ) = ∅ . z 2 là đường cong Ví dụ 1.29. Đường cong xạ ảnh trong 2 định nghĩa bởi x 2 + y 2 = không kì dị. Còn đường cong định nghĩa bởi y 2 z = x 3 có một điểm kì dị [0:0:1]. Định nghĩa 1.30. Giả sử C là đường cong định nghĩa bởi P(x,y,z). Ta gọi số bội của điểm [a : b : c] ∈ 2 là số nguyên dương bé nhất m sao cho ∂mP (a, b, c) ≠ 0 với i, j , k ≥ 0, và i + j + k =m . ∂xi y j z k Bổ đề 1.31. Đường cong xạ ảnh C = {[ x : y : z ] ∈ P2 | P( x, y, z ) = 0} trong 2 là compắc. Chứng minh. Theo tính chất 1.6(iv) và mệnh đề 1.7, ta chỉ cần chứng minh C là tập con đóng trong 2 . Nhưng do nhận xét 1.4(i) nên C là tập con đóng trong 2 khi và chỉ khi Π −1 (C= ) {( x, y, z ) ∈ 3 \ {0}| P( x, y, z= ) 0} là tập con đóng trong 3 \ {0} . Điều này hiển nhiên đúng vì các đa thức là hàm liên tục.  Để phân biệt với đường cong xạ ảnh trong 2 , đường cong đại số phức trong  2 thường được gọi là đường cong afin. Đường cong afin và đường cong xạ ảnh có liên hệ mật thiết với nhau. Ta có thể đồng nhất  2 với tập con mở của 2 : = U {[ x : y : z ] ∈ 2 | x ≠ 0} thông qua phép đồng phôi φ :U →  2 xác định bởi: y z   φ[ x : y : z ] =  ,  x x với ánh xạ ngược (v, w)  [1: v : w].
- Xem thêm -