Đăng ký Đăng nhập
Trang chủ Biểu hiện β-galactosidase trong vi khuẩn bacillus subtilis...

Tài liệu Biểu hiện β-galactosidase trong vi khuẩn bacillus subtilis

.PDF
72
639
130

Mô tả:

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN -------------------------------- Nguyễn Thị Thúy BIỂU HIỆN β-GALACTOSIDASE TRONG VI KHUẨN Bacillus subtilis TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội – 2012 Nguyễn Thị Thúy Luận văn thạc sỹ MỤC LỤC MỞ ĐẦU .....................................................................................................................1 CHƢƠNG 1: TỔNG QUAN TÀI LIỆU .....................................................................2 1. Sơ lƣợc về vi khuẩn B. subtilis ............................................................................ 2 1.1. Lịch sử, đặc điểm phân loại theo hệ thống Bergey, đặc điểm hình thái và sự phân bố của vi khuẩn B. subtilis .......................................................................................................2 1.2. Bào tử và khả năng tạo bào tử của vi khuẩn B. subtilis ...............................................3 1.3. Cấu trúc genome ...............................................................................................................5 1.4. Tính an toàn và ứng dụng của B. subtilis........................................................................6 2. Cấu trúc operon lac, gen lacZ và β- galactosidase. ............................................. 9 2.1. Cấu trúc operon lac ..........................................................................................................9 2.2. Gen lacZ và β-galactosidase ......................................................................................... 12 3. Vector biểu hiện gen trong vi khuẩn ................................................................. 16 3.1. Đặc điểm của plasmid ................................................................................................... 16 3.2. Những vector tách dòng và vector biểu hiện trong E. coli......................................... 18 3.3. Vector biểu hiện trong B. subtilis.................................................................................. 21 3.3.1. Hệ thống vector biểu hiện pHT.............................................................21 3.3.2. Hệ thống vector biểu hiện pAL .............................................................22 3.4 Cài nhập vector biểu hiện vào B. subtilis ...................................................................... 22 3.4.1. Cơ chế của quá trình cài nhập vào B. subtilis......................................23 3.4.2. Các kiểu cài nhập vào B. subtilis .........................................................24 CHƢƠNG 2. VẬT LIỆU VÀ PHƢƠNG PHÁP ......................................................27 2.1 Nguyên liệu và thiết bị..................................................................................... 27 2.1.1. Tế bào và plasmid ....................................................................................................... 27 2.1.2. Hóa chất ....................................................................................................................... 28 2.1.3. Môi trường nuôi cấy ................................................................................................... 29 2.1.4. Thiết bị thí nghiệm....................................................................................................... 29 2.2 Phƣơng pháp nghiên cứu ................................................................................. 30 Nguyễn Thị Thúy Luận văn thạc sỹ 2.2.1. Sơ đồ nghiên cứu......................................................................................................... 30 2.2.2. Các phương pháp nuôi cấy vi sinh vật...................................................................... 30 2.2.3 Các phương pháp sinh học phân tử ........................................................................... 31 2.2.4. Các phương pháp hóa sinh ........................................................................................ 35 CHƢƠNG 3: KẾT QUẢ VÀ THẢO LUẬN ............................................................37 3.1 Thiết kế vector pUL1(PrrnO-RBS (spoVG)) dựa trên vector pET28b ........... 37 3.2 Nhân dòng gen lacZ mã hóa cho enzyme β-galactosidase trong vector pUL1 .......... 41 3.2.1. Khuếch đại gen lacZ từ vector pDG268 ................................................................... 41 3.2.2. Nhân dòng gen lacZ trong vector pUL1................................................................... 42 3.3 Nhân dòng đoạn PrrnO-RBS (spoVG)-lacZ trong vector pDG364 tạo pUL2 ........... 44 3.3.1. Khuếch đại đoạn DNA gồm promoter PrrnO-RBS (spoVG)-lacZ trong pUL1... 44 3.3.2. Nhân dòng đoạn PrrnO-RBS(spoVG)-lacZ trong vector pDG364....................... 46 3.4 Cài nhập đoạn PrrnO-RBS(spoVG)-lacZ trong vector pDG364 vào genome của B. subtilis PY79 và kiểm tra sự cài nhập này.................................................. 48 3.4.1. Cài nhập đoạn PrrnO-RBS (spoVG)-lacZ trong vector pDG364 vào genome vi khuẩn B. subtilis ..................................................................................................................... 48 3.4.2 Kiểm tra sự cài nhập.................................................................................................... 49 3.5. Xác định hoạt độ của enzyme β-galactosidase ............................................... 50 3.5.1. Xác định hoạt tính β-galactosidase bằng cơ chất X-gal ......................................... 51 3.5.2. Xác định hoạt độ β-galactosidase với cơ chất ONPG ............................................ 51 KẾT LUẬN VÀ KIẾN NGHỊ...................................................................................54 KẾT LUẬN: ..............................................................................................................54 KIẾN NGHỊ ..............................................................................................................54 TÀI LIỆU THAM KHẢO .........................................................................................55 Nguyễn Thị Thúy Luận văn thạc sỹ DANH MỤC HÌNH Hình 1.1. Hình ảnh B. subtilis [41, 68] ...................................................................... 3 Hình 1.2. Hình ảnh bào tử B. subtilis với các độ phóng đại khác nhau [69, 76, 77] ...... 4 Hình 1.3. Cơ chế thủy phân của enzyme β- galactosidase .......................................10 Hình 1.4. Cấu trúc operon lac [70] ...........................................................................10 Hình 1.5. Cơ chế điều hòa của operon lac ...............................................................12 Hình 1.6. Cấu trúc của β-galactosidase ở E. coli [66, 67] .......................................13 Hình 1.7. Cơ chế thủy phân X-gal của enzyme β-galactosidase [71] ......................14 Hình 1.8. Sơ đồ minh họa một tế bào vi khuẩn chứa plasmid ở bên trong ..............16 (1) DNA nhiễm sắc thể, (2) Plasmid ........................................................................16 Hình 1.9. Mô hình đoạn DNA của vector pHV32 đƣợc chèn vào nhiễm sắc thể của B. subtilis [35] ..........................................................................................................23 Hình 1.10. Mô hình trao đổi chéo đơn (single crossover) minh họa việc sử dụng một vector cài nhập cơ bản để xây dựng một đột biến knockout trong một khung đọc mở (orfA) [11] ................................................................................................................24 Hình 1.11. Mô hình trao đổi chéo kép (double crossover) minh họa việc sử dụng một vector cài nhập (ectopic integration vector) để chèn một khung đọc mở (orfA) vào trong vị trí đích trên nhiễm sắc thể của vi khuẩn B. subtilis [11] .....................25 Hình 3.1. Kết quả khuếch đại đoạn PrrnO từ genome của B. subtilis .....................38 Hình 3.2. Sơ đồ tạo vector pUL1 .............................................................................39 Hình 3.3. Kết quả PCR colony kiểm tra đoạn chèn PrrnO các khuẩn lạc thu đƣợc .....40 Hình 3.4. Kết quả khuếch đại đoạn lacZ từ vector pDG268 ....................................42 Hình 3.5. Kết quả điện di sản phẩm PCR colony kiểm tra đoạn lacZ chèn trong plasmid pUL1 của 5 khuẩn lạc .................................................................................43 Hình 3.6. Kết quả điện di trên gel agarose 1% kiểm tra sản phẩm chèn lacZ vào pUL1 .........................................................................................................................44 Hình 3.7. Kết quả PCR khuếch đại đoạn PrrnO-RBS (spoVG)-lacZ từ pUL1-lacZ ....45 Hình 3.8. Sơ đồ tạo vector pUL2 .............................................................................46 Nguyễn Thị Thúy Luận văn thạc sỹ Hình 3.9. Kết quả điện di sản phẩm cắt pUL2 .........................................................47 Hình 3.10. Sơ đồ cài nhập đoạn PrrnO- RBS (spoVG)-lacZ từ vector pUL2 vào genome của B. subtilis PY79 ...................................................................................49 Hình 3.11. Kết quả thử hoạt tính amylase trên môi trƣờng tinh bột (0,1%) của thể biến nạp ....................................................................................................................50 Hình 3.12. Kết quả thử hoạt tính β-galactosidasetrênđĩa có bổ sung X-gal ............51 Hình 3.13. Xác định hoạt độ β-galactosidase trong các chủng 2, 4 và 7 tại thời điểm 12h ...................................................................................................................52 Hình 3.14. Biểu đồ hoạt độ β-galactosidase của các thể tái tổ hợp tại các thời điểm khác nhau ..................................................................................................................52 Nguyễn Thị Thúy Luận văn thạc sỹ DANH MỤC BẢNG Bảng 1.1. Một số vi sinh vật có khả năng tổng hợp enzyme β-galactosidase [50] ............. 15 Bảng 1.2. Một số vector thƣơng mại dùng tách dòng và biểu hiện trong E. coli [75] ........ 20 Bảng 2.1. Các plasmid sử dụng .......................................................................................... 27 Bảng 2.3. Thành phần các loại đệm và dung dịch .............................................................. 28 Bảng 2.4. Các thiết bị thí nghiệm ....................................................................................... 29 Bảng 2.5. Thành phần phản ứng PCR ................................................................................ 32 Bảng 2.6. Các thành phần, điều kiện của phản ứng nối ghép gen ...................................... 33 Bảng 3.1.Thành phần, điều kiện phản ứng PCR PrrnO ..................................................... 38 Bảng 3.2. Thành phần và điều kiện phản ứng PCR lacZ .................................................... 41 Bảng 3.3. Thành phần phản ứng cắt lacZ và pUL1 ............................................................ 42 Bảng 3.4.Thành phần phản ứng nối lacZ và pUL1 ............................................................. 43 Bảng 3.5. Thành phần và điều kiện phản ứng PCR PrrnO-RBS (spoVG)-lacZ ................. 45 Bảng 3.6. Thành phần và điều kiện cắt pDG364 ................................................................ 48 Nguyễn Thị Thúy Luận văn thạc sỹ CÁC TỪ VIẾT TẮT amyEb Phần gen amyE phía sau amyEf Phần gen amyE phía trƣớc β-gal β-galactosidase BGSC Bacillus Genetic Stock Center BLAST Basic local alignment search tool bp base pair CFU Colony forming unit dNTP 2-Deoxynucleoside 5-triphosphate DSM Difco Sporulation Medium E. coli Escherichia coli EDTA Ethylenediamine tetraacetic acid EtBr Ethidium bromide IPTG Isopropyl β-D- thiogalactoside kbp Kilo base pair kDa Kilo Dalton LB Luria Bertani M Marker MCS Multiple cloning site NAD Nicotinamide adenine dinucleotide OD Optical density ONPG Ortho-netrophenol-β-galactosidase PCR Polymerase Chain Reaction RBS Ribosome binding site rRNA Ribosome Ribonucleic acid Sol Solution TAE Tris - Acetate - EDTA U Unit v/v volume/volume w/v Weight/volume X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactosidase Nguyễn Thị Thúy Luận văn thạc sỹ MỞ ĐẦU Hiện nay, phần lớn các hệ vector (cả hệ vector nhân dòng và vector biểu hiện) cho Escherichia coli đều đã đƣợc thƣơng mại hóa [75]. Tuy nhiên, E. coli đƣợc xem là sinh vật có khả năng gây bệnh và tiết độc tố. Chính vì vậy, việc sử dụng E. coli nhƣ tế bào vật chủ để biểu hiện gen còn nhiều hạn chế. Bên cạnh đó, Bacillus subtilis, đại diện tiêu biểu của nhóm vi sinh vật Gram dƣơng, với vai trò là tế bào vật chủ, đã thể hiện nhiều ƣu điểm hơn so với E. coli. Đó là khả năng không gây bệnh (B. subtilis đƣợc Hiệp hội Thuốc và Thực phẩm của Mỹ FDA coi là “genereally regarded as safe”- GRAS) và khả năng chịu đựng các điều kiện nuôi cấy, bảo quản khắc nghiệt hơn [18, 25]. Trong nghiên cứu cơ bản, B. subtilis đã đƣợc sử dụng nhƣ mô hình để nghiên cứu khả năng biệt hoá và cơ chế điều hoà hoạt động của gen trong tế bào [24]. Trong hƣớng phát triển các vacxin thế hệ mới, B. subtilis đã đƣợc phát hiện và nghiên cứu nhƣ một công cụ chuyển kháng nguyên an toàn và tiềm năng [19, 17, 59]. Mặc dù có nhiều ƣu điểm với vai trò là tế bào vật chủ so với E. coli nhƣng các vector thƣơng phẩm dùng cho việc tách dòng và biểu hiện gen sử dụng cho vi khuẩn B. subtilis vẫn chƣa xuất hiện rộng rãi trên thị trƣờng. Nguyên nhân là gen ngoại lai cần đƣợc cài nhập thẳng vào nhiễm sắc thể của vi sinh vật này, và gen ngoại lai cần phải có đầy đủ các yếu tố cần thiết cho việc biểu hiện gen. Ở Việt Nam, cho đến thời điểm này mới chỉ có rất ít các công trình nghiên cứu về biểu hiện gen trong B. subtilis nhƣ biểu hiện gen trên vỏ bào tử [14], hoặc biểu hiện gen trong tế bào sinh dƣỡng, có sử dụng chất cảm ứng IPTG [7] và vẫn chƣa có nghiên cứu nào công bố về việc biểu hiện gen trong tế bào sinh dƣỡng của B. subtilis mà không cần sử dụng chất cảm ứng. Do đó, chúng tôi thực hiện đề tài: “Biểu hiện β-galactosidase trong vi khuẩn B. subtilis” với mục đích biểu hiện gen trong tế bào sinh dƣỡngs, mà không cần sử dụng chất cảm ứng nhằm góp phần mở rộng khả năng ứng dụng vi sinh vật an toàn này trong lĩnh vực nghiên cứu cơ bản và nghiên cứu ứng dụng. 1 Nguyễn Thị Thúy Luận văn thạc sỹ CHƢƠNG 1: TỔNG QUAN TÀI LIỆU 1. Sơ lƣợc về vi khuẩn B. subtilis 1.1. Lịch sử, đặc điểm phân loại theo hệ thống Bergey, đặc điểm hình thái và sự phân bố của vi khuẩn B. subtilis Vào năm 1835, vi khuẩn B. subtilis (tên ban đầu là Vibrio subtilis) đƣợc phát hiện bởi Christian Gottfried Ehrenberg. Sau đó, (năm 1872) Ferdinand Cohn đã phân loại và đổi tên thành B. subtilis [69]. B. subtilis là một trong những vi khuẩn đầu tiên đƣợc nghiên cứu nhƣ mô hình của quá trình biệt hóa và phát triển tế bào. Theo hệ thống phân loại của Bergey (1994) thì B. subtilis thuộc: Giới (regnum): Bacteria Ngành (divisio): Firmicutes Lớp (class): Bacilli Bộ (ordo): Bacillales Họ (familia): Bacillaceae Chi (genus): Bacillus Loài: B. subtilis Năm 2011, Rooney và cộng sự đã phát hiện thêm một chủng nữa của loài B. subtilis là B. subtilis subsp. inaquosorum. Nhƣ vậy, hiện nay có ba phân loài (subspecies) là B. subtilis subsp. inaquosorum, B. subtilis subsp. spizizenii và B. subtilis subsp. subtilis [69, 10, 56]. B. subtilis là trực khuẩn nhỏ, hai đầu tròn, bắt màu tím Gram dƣơng, kích thƣớc 0,41-0,58 µm X 1,5–3 µm, đứng đơn lẻ hay tạo thành chuỗi ngắn. B. subtilis có khả năng di động (có từ 8 - 12 tiên mao) và có khả năng sinh nội bào tử (hình bầu dục nhỏ hơn tế bào vi khuẩn và nằm giữa tế bào). B. subtilis có khả năng thích nghi với môi trƣờng bằng cách hấp thu các DNA ngoại lai tạo DNA tái tổ hợp hoặc nội bào tử B. subtilis phát triển bằng cách nảy chồi [13, 72]. 2 Nguyễn Thị Thúy Luận văn thạc sỹ Hình 1.1. Hình ảnh B. subtilis [41, 68] B. subtilis là tế bào hình que, tiêu biểu cho nhóm vi khuẩn Gram dƣơng, đƣợc tìm thấy tự nhiên trong đất và thảm thực vật mục, trong thực phẩm hỏng, trong không khí và cả trong đƣờng tiêu hóa của ngƣời và động vật. Số lƣợng vi khuẩn B. subtilis trong đất khoảng 106 - 107 CFU/g [72]. Nhiệt độ tối ƣu để nó phát triển là 250C đến 350C [72]. Khi gặp điều kiện môi trƣờng khắc nghiệt, B. subtilis có khả năng hình thành bào tử. Thông thƣờng đến 60% B. subtilis tìm thấy trong đất tồn tại ở dạng bào tử [72]. Vi khuẩn B. subtilis là vi khuẩn hiếu khí. Tuy nhiên, các nghiên cứu gần đây cho thấy rằng B. subtilis thực sự có thể phát triển trong điều kiện yếm khí [44]. Các vi khuẩn có thể tạo ra ATP trong điều kiện yếm khí thông qua quá trình lên men butanediol hay sử dụng ammoni nitrate [44]. B. subtilis khác với các vi khuẩn yếm khí tùy ý khác ở chỗ nó trải qua quá trình lên men không có chất nhận điện tử ở bên ngoài [72]. Trong quá trình lên men, sự tái tạo NAD+ chủ yếu qua chất trung gian lactate dehydrogenase (đƣợc tìm thấy trong tế bào chất). Lactate dehydrogenase chuyển hóa pyruvate thành lactate [72]. 1.2. Bào tử và khả năng tạo bào tử của vi khuẩn B. subtilis Trong các điều kiện môi trƣờng không thuận lợi, vi khuẩn B. subtilis hình thành nội bào tử. Nội bào tử ở trung tâm có kích thƣớc 0,5-0,8 X 0,4 µm. Bào tử trƣởng thành có thể có hình tròn hay hình elip, với chiều dài khoảng 1,5-1,8 µm, có 3 Nguyễn Thị Thúy Luận văn thạc sỹ bề mặt tích điện âm và hơi kỵ nƣớc [73]. Bảo tử có cấu trúc đặc biệt bao gồm cấu trúc lõi và các lớp vỏ xung quanh. Cấu trúc lõi là nhiễm sắc thể ở trạng thái bị nén chặt và bất hoạt. Các lớp vỏ xung quanh lõi tính từ trong ra ngoài bao gồm lớp cortex chứa nhiều peptidoglycan, tiếp đến là các lớp vỏ có chứa các loại protein khác nhau. Vì vậy, nội bào tử có tính kháng acid, có khả năng chịu nhiệt, chịu ẩm, tia tử ngoại, phóng xạ,…[68, 31]. Hình 1.2. Hình ảnh bào tử B. subtilis với các độ phóng đại khác nhau [69, 76, 77] Sự hình thành bào tử xảy ra trong nhiều giai đoạn, tổng cộng gần 8 giờ để hoàn tất. Đầu tiên, nucleotid kéo dài trở thành một sợi trục. Sau đó, tế bào hình thành một vách ngăn và bắt đầu phân chia thành hai phần. Phần nhỏ hơn của tế bào đƣợc gọi là các tiền bào tử (forespore) và phần lớn hơn đƣợc gọi là tế bào mẹ [54]. Tế bào mẹ nuôi dƣỡng tiền bào tử. Khi hình thành vách ngăn, 30% số nhiễm sắc thể đã nằm bên trong tế bào mẹ, 70% nhiễm sắc thể còn lại chuyển vào tiền bào tử thông qua một loại protein vận chuyển đƣợc gọi là SpoIIIE [60]. Các tế bào mẹ chứa các bào tử bên trong bằng cách thực bào. Do đó, các tiền bào tử sẽ có hai lớp màng tế bào chất với một lớp murein dày bảo vệ giữa chúng và tế bào mẹ. Tại thời điểm này, tiền bào tử sẽ trải qua những thay đổi bên trong. Cuối cùng, tiền bào tử tách khỏi tế bào mẹ sau khi tế bào mẹ chết [54]. Bào tử trƣởng thành không có hoạt động trao đổi chất với môi trƣờng nhƣng nó vẫn đáp ứng các tín hiệu dinh dƣỡng đặc thù bằng cách nảy chồi khi môi trƣờng giàu chất dinh dƣỡng và thuận lợi cho sự phát triển [60, 61]. 4 Nguyễn Thị Thúy Luận văn thạc sỹ 1.3. Cấu trúc genome Toàn bộ bộ gen của B. subtilis đã đƣợc giải trình tự vào năm 1997 [39]. Tế bào vi khuẩn B. subtilis chỉ có một phân tử DNA nằm trong một nhiễm sắc thể tròn. Kích thƣớc tổng thể của DNA là 4.214.814 cặp bp (4,2 Mbp). Khoảng 87% bộ gen (bao gồm 4.100 gen) mã hóa cho protein. Trong 4.100 gen thì có 192 gen đƣợc cho là không thể thiếu và 79 gen đƣợc cho là cần thiết cho các quá trình sống của B. subtilis. Hầu hết các gen cần thiết tham gia vào quá trình trao đổi chất. Một nửa trong số các gen thiết yếu có trách nhiệm xử lý thông tin, một phần năm trong số chúng có trách nhiệm tổng hợp thành tế bào, phân chia tế bào và tạo chất nguyên sinh và một phần mƣời trong số chúng chịu trách nhiệm về năng lƣợng cho tế bào hoạt động [37, 39]. Bộ gen của B. subtilis có hơn 74% khung đọc mở và 94% gen ribosome đƣợc phiên mã cùng hƣớng và đƣợc sao chép lại. Chỉ có 53% các gen của B. subtilis là gen đơn bản, số còn lại thuộc họ đa gen (có 2-77 bản sao). Trong hệ gen này có khoảng 220 yếu tố điều hòa phiên mã đã đƣợc xác định. Tuy tất cả các gen của B. subtilis đã đƣợc giải trình tự nhƣng chỉ khoảng 58% các gen đƣợc biết chức năng, 42% các gen còn lại vẫn chƣa biết rõ chức năng và đang đƣợc nghiên cứu [68]. Ngoài ra, B. subtilis còn chứa nhiều gen liên quan đến các chất chuyển hóa trung gian và một trong số các chất trung gian đó là kháng sinh. Một vài gen mã hóa protein tiết có vai trò quan trọng đã đƣợc xác định và đó là các gen secA, secD, secE, secF, secY, FFh và ftsY [39]. B. subtilis có một nhiễm sắc thể duy nhất với chiều dài 2 mm đƣợc nén chặt vào một nucleoid đƣờng kính 1 µm [26]. Nhiễm sắc thể của B. subtilis có duy nhất 1 điểm mở đầu sao chép (oriC). Quá trình sao chép đƣợc tiến hành hai hƣớng theo chiều kim đồng hồ và ngƣợc chiều kim đồng dọc theo nửa nhiễm sắc thể. Sao chép nhiễm sắc thể đƣợc hoàn thành khi các nhánh đến điểm cuối cùng, đó là vị trí đối diện với điểm mở đầu sao chép trên bản đồ nhiễm sắc thể. Cơ chế của quá trình sao chép này cũng giống nhƣ quá trình sao chép nhiễm sắc thể của E. coli. Tuy nhiên có một số protein tham gia vào quá trình sao chép của B. subtilis là khác so với E. coli [26]. 5 Nguyễn Thị Thúy Luận văn thạc sỹ 1.4. Tính an toàn và ứng dụng của B. subtilis Tính an toàn của B. subtilis đối với ngƣời và động vật Ở châu Âu và ở Mỹ, B. subtilis đƣợc chỉ định là đủ điều kiện về an toàn và không hề có tác dụng phụ (QPS, Qualified Presumption of Safety) hay GRAS (Genrally Regarded As Safe) [21]. Một số chủng B. subtilis và họ hàng gần của nó là B. licheniformis, B. pumulis, B. megaterium có khả năng sản xuất lecithinase, một enzyme có khả năng phá vỡ màng động vật có vú. Tuy nhiên, vẫn chƣa có bằng chứng nào cho thấy lecithinase gây bệnh trên ngƣời [21]. Trong một số các trƣờng hợp ngƣời ta vẫn phát hiện ra B. subtilis ở những bệnh nhân bị ung thƣ phổi, hoại thƣ bạch cầu, áp xe khi lắp bộ phận giả…, nhƣng tỉ lệ các trƣờng hợp này là rất hiếm (chỉ có 2 trong 1034 ca phát hiện có B. subtilis) [21]. Bacillus anthracis là một loài của Bacillus gây bệnh than nguy hiểm cho ngƣời [61, 21]. Hầu hết những loài B. subtilis an toàn với động vật. Các nghiên cứu cho thấy khi bổ sung B. subtilis vào thức ăn của vật nuôi, B. subtilis tiết ra các enzyme phân hủy rất hiệu quả các chất trong thức ăn nhƣ carbonhydrate, chất béo và đạm thành những đơn vị nhỏ giúp vật nuôi hấp thụ tốt hơn. Ngoài ra, B. subtilis có khả năng sinh kháng sinh hạn chế vi khuẩn có hại trong đƣờng ruột và trong môi trƣờng, giúp vật nuôi chuyển hoá hiệu quả thức ăn và khống chế vi khuẩn gây bệnh. Do vậy, B. subtilis đƣợc áp dụng sản xuất probiotic để xử lý môi trƣờng nuôi thủy sản, xử lý đáy ao, xử lý mùi hôi, xử lý rác thải, phối trộn với thực phẩm tạo hệ men tiêu hóa, phòng ngừa các bệnh đƣờng ruột tăng cƣờng khả năng kích thích miễn dịch,…và đƣợc ứng dụng trong ngành nuôi thủy sản và chăn nuôi thú y [46]. Sử dụng chế phẩm có B. subtilis trong chăn nuôi là hƣớng đi có ý nghĩa thực tiễn về khía cạnh bảo vệ môi trƣờng và đảm bảo hiệu quả sản xuất [5, 46]. Ứng dụng của B. subtilis trong nghiên cứu cơ bản Qua nghiên cứu quá trình hình thành bào tử từ tế bào mẹ của B. subtilis, các nhà nghiên cứu đã xây dựng đƣợc mô hình biệt hóa tế bào. Dựa trên các kết quả thí nghiệm và mô hình toán học, các nhà nghiên cứu của trƣờng Đại học Oxford đã giải 6 Nguyễn Thị Thúy Luận văn thạc sỹ thích cách kích hoạt các yếu tố phiên mã chính. Nguyên nhân để xác định con đƣờng biệt hóa tế bào là do sự khác biệt về khối lƣợng giữa tiền bào tử và tế bào mẹ [12]. Quá trình hình thành bào tử ở B. subtilis cần tới sự biểu hiện của hơn 200 gen, các gen này chỉ cần thiết cho quá trình hình thành bào tử mà không cần cho sự sinh trƣởng và sống sót của tế bào sinh dƣỡng. Thêm nữa, thông qua tìm hiểu cơ chế điều hòa phiên mã, các nhà nghiên cứu còn giải thích đƣợc mô hình điều hòa hoạt động của gen trong tế bào [43]. Ban đầu các gen này đƣợc phiên mã theo trình tự thời gian. Các yếu tố sigma F, E, G, K xuất hiện theo trình tự sẽ quyết định trình tự phiên mã các gen bị chi phối bởi các yếu tố sigma này. Các yếu tố sigma đóng vai trò điều khiển quá trình phiên mã các gen đặc thù cho từng loại tế bào. Ví dụ, yếu tố sigma F và sigma G điều khiển quá trình phiên mã các gen của tiền bào tử, yếu tố sigma E và sigma K điều khiển quá trình phiên mã các gen của tế bào mẹ. Vì vậy, cơ chế biểu hiện gen có sự phối hợp giữa tiền bào tử và tế bào mẹ để điều hòa hoạt động của các gen [43]. Ứng dụng của B. subtilis trong y học Do những nhƣợc điểm của các vacxin thế hệ cũ (nhƣ yêu cầu nghiêm ngặt về nhiệt độ bảo quản, kỹ thuật sử dụng để đƣa vacxin vào cơ thể con ngƣời…) đã dẫn đến nhu cầu cấp thiết phải phát triển vacxin thế hệ mới nhƣ các vacxin thế hệ thứ hai và thế hệ thứ ba. Trong hƣớng phát triển này, B. subtilis đƣợc phát hiện và đƣợc nghiên cứu nhƣ công cụ chuyển kháng nguyên an toàn và tiềm năng [19]. Gần đây, các nghiên cứu đã thành công trong việc biểu hiện một số kháng nguyên trên bề mặt bào tử của B. subtilis để sản xuất các vacxin nhƣ vacxin kháng bệnh than, vacxin phòng virus Rota gây bệnh tiêu chảy, vacxin uốn ván, bạch hầu, ho gà,… [61]. Do đó, B. subtilis đƣợc xem nhƣ nhà máy sản xuất các loại vacxin dạng uống ổn định và an toàn [33, 40, 59]. Ở Nhật Bản, một chủng B. subtilis đã đƣợc sử dụng trong các món ăn cổ truyền từ hàng nghìn năm trƣớc để sản xuất nattokinase – một enzyme có nhiều tác dụng có lợi cho sức khỏe giúp chống đông máu, kích thích hệ miễn dịch, phòng tránh 7 Nguyễn Thị Thúy Luận văn thạc sỹ nhiễm khuẩn đƣờng tiết niệu ở ngƣời cao tuổi [61, 33]. B. subtilis có khả năng lây nhiễm và gây chết ấu trùng của muỗi Anophelis aulicifacies (côn trùng chính gây sốt rét ở Ấn Độ) [28]. Do đó, nó đƣợc sử dụng nhƣ tác nhân kiểm soát sinh học phòng chống bệnh sốt rét. Ứng dụng của B. subtilis trong công nghiệp Trong môi trƣờng dinh dƣỡng hạn chế, B. subtilis có khả năng sản xuất một số enzyme (bao gồm cả protease, amylase, cenlulase, lipase, β-galactosidase, nattokinase,….) và kháng sinh [72]. Các hãng sản xuất đã dựa vào khả năng tiết các enzyme của B. subtilis nhƣ nhà máy để sản xuất các enzyme này trên quy mô công nghiệp. Các enzyme đƣợc ứng dụng để sản xuất một số phụ gia trong chất tẩy rửa và các sản phẩm khác [74]. Chất tẩy rửa đầu tiên có chứa enzyme vi khuẩn đƣợc sản xuất vào năm 1956 với tên BIO-40. Đến nay, tất cả các protease bổ sung vào chất tẩy dùng trên thị trƣờng đều là serine protease, đƣợc sản xuất từ các chủng Bacillus và chủ yếu là từ B. subtilis. Trên thế giới, mỗi năm ngƣời ta đã sử dụng 89% các loại enzyme này cho ngành công nghiệp tẩy rửa. Trong đó có hai công ty lớn là Novo Nordisk và công ty đa quốc gia Genencor mỗi năm đã cung cấp cho toàn cầu hơn 95% lƣợng enzyme protease [74]. Dựa vào khả năng tiết kháng sinh mà B. subtilis đã đƣợc sử dụng để sản xuất thuốc kháng sinh (bao gồm cả subtilin, surfactin, bacillomycin, bacilysin, và fengycin) trên quy mô công nghiệp. Các chất này đƣợc sử dụng nhƣ thuốc kháng khuẩn và kháng nấm [74]. Ngoài ra, B. subtilis đã đƣợc sử dụng để chuyển đổi vật liệu nổ thành các hợp chất vô hại vì nó loại bỏ các chất thải phóng xạ hạt nhân [74]. Do khả năng hình thành màng sinh học, B. subtilis còn đƣợc ứng dụng rộng rãi trong việc chống ô nhiễm và xử lý bằng biện pháp sinh học trong ngành chế biến thực phẩm. Vi khuẩn này cũng giúp làm giảm ăn mòn thép ở mức độ nhẹ [46]. Ứng dụng của B. subtilis trong nông nghiệp B. subtilis đƣợc ứng dụng trong nông nghiệp vì chúng tham gia tích cực vào chu trình cacbon và nitơ, phân hủy vật chất hữu cơ nhờ vào khả năng sinh nhiều loại 8 Nguyễn Thị Thúy Luận văn thạc sỹ enzyme ngoại bào [72]. B. subtilis có khả năng hình thành các màng sinh học (biofilm) -lớp màng sinh học này giúp hỗ trợ cho hệ thống thân rễ cạnh tranh với nấm gây bệnh và các loại vi khuẩn có hại cho cây trồng [22, 46]. Do vậy, ngƣời ta dùng B. subtilis nhƣ tác nhân kiểm soát sinh học phòng trừ vi sinh vật (nấm Rhizoctonia solani, Fusarium sp., Pylicularia oryzae,…) gây bệnh cho cây trồng nhƣ bằng cách ngâm với hạt giống trƣớc khi gieo trồng [61]. Một số chủng có họ gần với vi khuẩn B. subtilis nhƣ Bacillus thuringiensis có khả năng sản xuất độc tố đối với côn trùng nên đƣợc sử dụng nhƣ thuốc diệt ấu trùng chống lại nhiều loại sâu bƣớm để bảo vệ mùa màng [22]. Xu hƣớng hiện nay trên thế giới là sử dụng thuốc trừ sâu có chứa các chủng Bacillus thuringiensis vì nó an toàn với động vật và thân thiện với môi trƣờng hơn các loại thuốc trừ sâu tổng hợp [63]. 2. Cấu trúc operon lac, gen lacZ và β- galactosidase 2.1. Cấu trúc operon lac Operon lac ở E. coli là operon đầu tiên đƣợc phát hiện và nghiên cứu khá chi tiết từ năm 1961 bởi Jacob và Monod [2]. Operon lac gồm ba gen cấu trúc là lacZ, lacY và lacA nằm kề nhau đƣợc điều khiển chung bởi một promoter [70]. Hoạt động của operon này đƣợc kiểm soát theo hai cơ chế là tích cực và tiêu cực. Gen lacZ mã hóa cho enzyme β-galactosidase. Enzyme này xúc tác phản ứng thủy phân lactose thành glucose và galactose để cung cấp năng lƣợng cho tế bào. Ngoài ra, β- galactosidase còn chuyển hóa một phần lactose (liên kết β-1,4-Dglycoside của glucose và galactose) thành một đồng phân là allolactose (liên kết β1,6-D-glycoside của glucose và galactose). Chính allolactose mới là phân tử kích ứng cho sự biểu hiện operon lac [2, 4]. 9 Nguyễn Thị Thúy Luận văn thạc sỹ Hình 1.3. Cơ chế thủy phân của enzyme β- galactosidase Gen lacY mã hóa cho protein vận chuyển permease. Pemease nằm xuyên màng tế bào vi khuẩn và có vai trò vận chuyển chủ động lactose từ môi trƣờng ngoại bào vào trong tế bào. Gen lacA mã hóa cho enzyme thiogalactoside transacetylase có vai trò giải độc tế bào đối với các hợp chất thiogalactoside và enzyme thiogalactoside transacetylase cũng đƣợc vận chuyển vào tế bào nhờ protein vận chuyển permease [4]. Hình 1.4. Cấu trúc operon lac [70] Những gen này chỉ đƣợc biểu hiện mạnh khi môi trƣờng có lactose và không có glucose. Có hai protein điều hòa tham gia điều khiển hoạt động của operon lac. Đó là protein hoạt hóa CAP và protein ức chế LacI. Gen mã hóa CAP (Catabolite Activator Protein), còn có tên là CRP (cAMP Receptor Protein), nằm xa operon lac. LacI đƣợc mã hóa bởi gen lacI nằm về phía đầu 5’ của operon lac. Mỗi protein điều hòa tiếp nhận một tín hiệu khác nhau từ môi trƣờng và truyền tín hiệu tới operon lac. Khi môi trƣờng không có lactose, LacI liên kết với operator và ức chế operon 10 Nguyễn Thị Thúy Luận văn thạc sỹ lac. Khi có mặt lactose, LacI bị bất hoạt và operon lac đƣợc biểu hiện. Ngƣợc lại, protein CAP khi liên kết operon lac lại có vai trò thúc đẩy operon hoạt động. Tuy vậy, CAP chỉ liên kết mạnh khi môi trƣờng không có glucose. Vì vậy, sự phối hợp của hai protein điều hòa CAP và LacI sẽ bảo đảm cho operon chỉ biểu hiện mạnh khi môi trƣờng có lactose, không có glucose [4]. Ở operon lac, trình tự điều khiển (operator) gồm 21 bp với trình tự hai đầu lặp lại đảo chiều, đối xứng qua cặp nucleotide số 11. Cấu trúc đối xứng của operator đƣợc nhận biết bởi hai tiểu phần của LacI. Do trình tự liên kết của LacI tại operator phủ lên một phần của trình tự promoter lac nên nó ngăn cản RNA polymerase liên kết với promoter. Vì vậy, nó cũng ngăn cản quá trình phiên mã của operon lac. Khi môi trƣờng có lactose, lactose đƣợc chuyển vào tế bào nhờ permease. Khi vào trong tế bào, một số lactose (liên kết β-1,4) đƣợc chuyển thành allolactose (liên kết β-1,6) nhờ β-galactosidase. Allolactose là chất cảm ứng, nó gắn vào LacI làm thay đổi cấu hình của protein này và dẫn đến sự liên kết lỏng lẻo trong liên kết giữa LacI và operator làm LacI rời khỏi promoter. Lúc này các gen cấu trúc của operon lac đƣợc bật mở, RNA polymerase bắt đầu phiên mã từ gen cấu trúc. 11 Nguyễn Thị Thúy Luận văn thạc sỹ z Hình 1.5. Cơ chế điều hòa của operon lac I. Cấu trúc operon lac, II. Sơ đồ điều hòa âm tính operon lac. III. Sơ đồ điều hòa dƣơng tính operon lac [79] 2.2. Gen lacZ và β-galactosidase Gen lacZ là một trong ba gen cấu trúc nằm trong operon lac của E. coli. Gen lacZ mã hóa cho enzyme β-galactosidase. Trình tự của β-galactosidase ở E.coli đƣợc giải mã vào năm 1970 và β-galactosidase có 1024 amino acid, nặng 464 kDa. Cấu trúc bậc 4 đối xứng của nó đƣợc xác định vào năm 1994 với mỗi một đơn vị βgalactosidase gồm 5 miền [47]. 12 Nguyễn Thị Thúy Luận văn thạc sỹ Hình 1.6. Cấu trúc của β-galactosidase ở E. coli [66, 67] Trong kỹ thuật sàng lọc thể tái tổ hợp ở tế bào vi khuẩn, gen lacZ (kết hợp với IPTG và X- gal) đƣợc sử dụng phổ biến nhƣ gen chỉ thị màu, do tính dễ nhận biết thể tái tổ hợp nhờ màu sắc khuẩn lạc. Nếu môi trƣờng có mặt X-gal (5-bromo 4-cloro-3-indolyl -β-D- galactopyranoside), enzyme β-galactosidase có khả năng thuỷ phân X-gal từ một hợp chất không màu thành màu xanh. Do đó, ở môi trƣờng nuôi cấy vi khuẩn sau khi biến nạp có bổ sung thêm X-gal và chất cảm ứng IPTG (isopropylthiogalactoside - chất đồng đẳng của lactose), các tế bào vi khuẩn có gen lacZ nguyên vẹn (không có DNA tái tổ hợp) có khả năng tổng hợp enzyme βgalactosidase thuỷ phân X-gal và các tế bào này phát triển thành khuẩn lạc có màu xanh. Nếu DNA lạ đƣợc xen vào giữa gen lacZ làm cho gen lacZ mất hoạt tính dẫn đến enzyme β-galactosidase không đƣợc tổng hợp thì tế bào vi khuẩn phát triển thành các khuẩn lạc có màu trắng. Sau đó, các khuẩn lạc có màu trắng đƣợc lựa chọn và cấy chuyển vào môi trƣờng dinh dƣỡng để thu đƣợc dòng tế bào mang vectơ tái tổ hợp [71]. 13
- Xem thêm -

Tài liệu liên quan

Tài liệu vừa đăng

Tài liệu xem nhiều nhất