BẬC TÔPÔ CỦA MỘT SỐ LỚP ÁNH XẠ

  • Số trang: 70 |
  • Loại file: PDF |
  • Lượt xem: 47 |
  • Lượt tải: 0
nhattuvisu

Đã đăng 26946 tài liệu

Mô tả:

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Dương Nguyễn Thành An BẬC TÔPÔ CỦA MỘT SỐ LỚP ÁNH XẠ LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Dương Nguyễn Thành An BẬC TÔPÔ CỦA MỘT SỐ LỚP ÁNH XẠ Chuyên ngành: Toán giải tích Mã số: 60 46 01 02 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. NGUYỄN BÍCH HUY Thành phố Hồ Chí Minh – 2014 LỜI CÁM ƠN Lời đầu tiên, tác giả xin bày tỏ lòng biết ơn chân thành và sâu sắc tới PGS. TS. Nguyễn Bích Huy người đã tận tình và nghiêm khắc dạy bảo để luận văn này được hoàn thành. Đồng thời, tác giả cũng xin chân thành cám ơn Khoa Toán-Tin Phòng Sau Đại Học, trường Đại học Sư phạm Thành phố Hồ Chí Minh đã tạo mọi điều kiện thuận lợi cho tác giả trong quá trình học tập và nghiên cứu. Cám ơn các thầy cô và đồng nghiệp đã trao đổi cùng tác giả những kiến thức và kinh nghiệm quý báu để giúp cho luận văn được hoàn thiện hơn. Bên cạnh đó, sự quan tâm của gia đình, bạn bè là nguồn động viên không thể thiếu để giúp tác giả hoàn thành luận văn này. Xin chân thành cám ơn. Học viên: Dương Nguyễn Thành An Lớp: Toán giải tích K23 MỤC LỤC Trang phụ bìa Lời cám ơn Mục lục MỞ ĐẦU.................................................................................................................................... 1 Chương 1. BẬC TÔ PÔ CỦA ÁNH XẠ CÔ ĐẶC ................................................................ 3 1.1. Độ đo phi compact........................................................................................................... 3 1.2. Ánh xạ cô đặc theo một độ đo phi compact .................................................................. 11 Chương 2. BẬC TÔPÔ CỦA ÁNH XẠ DƯƠNG ................................................................ 24 2.1. Không gian banach có thứ tự ......................................................................................... 24 2.2. Bậc tôpô của ánh xạ dương ........................................................................................... 25 2.3. Điểm bất động của ánh xạ dương .................................................................................. 31 Chương 3. BẬC TÔPÔ CỦA ÁNH XẠ A–RIÊNG ............................................................. 34 3.1. Ánh xạ a-riêng ............................................................................................................... 34 3.2 Bậc tôpô của ánh xạ a-riêng ........................................................................................... 36 Chương 4. BẬC TÔPÔ CỦA ÁNH XẠ ĐA TRỊ ................................................................. 46 4.1. Ánh xạ đa trị .................................................................................................................. 46 4.3. Lát cắt xấp xỉ của ánh xạ đa trị ...................................................................................... 53 KẾT LUẬN ............................................................................................................................. 65 TÀI LIỆU THAM KHẢO...................................................................................................... 66 1 MỞ ĐẦU Bậc tôpô của ánh xạ (hay cũng còn gọi là số quay của trường vectơ) được xây dựng từ những năm 1910 và ban đầu được ứng dụng trong Giải tích phức, trong Lý thuyết đường và mặt. Chỉ sau khi bậc tôpô tìm được ứng dụng trong chứng minh sự tồn tại điểm bất động thì nó mới được các nhà Toán học quan tâm nghiên cứu một cách tập trung và có hệ thống. Ngày nay, bậc tôpô là công cụ quan trọng bậc nhất trong nghiên cứu sự tồn tại nghiệm và cấu trúc tập nghiệm của nhiều lớp phương trình vi phân, tích phân xuất phát từ Khoa học Tự nhiên và Xã hội. Bậc tôpô ban đầu được xây dựng cho ánh xạ liên tục trong không gian hữu hạn chiều, sau đó được Leray-Schauder mở rộng cho ánh xạ hoàn toàn liên tục tác động từ một tập mở, bị chặn trong không gian Banach vô hạn chiều và ứng dụng để nghiên cứu các phương trình đạo hàm riêng. Tiếp theo, sự phát triển của khoa học và kĩ thuật đưa tới những lớp ánh xạ mới và nảy sinh nhu cầu xây dựng bậc tôpô cho các ánh xạ này. Trong luận văn này, tác giả tập trung nghiên cứu phương pháp xây dựng bậc tôpô, xét các tính chất chung và riêng của bậc tôpô cho các lớp ánh xạ: ánh xạ dương trong không gian Banach có thứ tự, cho ánh xạ A-riêng, cho ánh xạ cô đặc theo một độ đo phi compact, cho ánh xạ đa trị. Đồng thời vận dụng phương pháp bậc tôpô để nghiên cứu sự tồn tại điểm bất động của các lớp ánh xạ này. Cấu trúc của luận văn gồm bốn chương: - Chương 1: Trình bày các kiến thức cơ sở về định nghĩa cũng như các kết quả về độ đo phi compact, ánh xạ cô đặc theo một độ đo phi compact và bậc tôpô của ánh xạ cô đặc. - Chương 2: Trình bày các kiến thức cơ sở về định nghĩa cũng như các kết quả về không gian Banach có thứ tự và bậc tôpô của ánh xạ dương. - Chương 3: Trình bày các kiến thức cơ sở về định nghĩa cũng như các kết quả về ánh xạ A-riêng, bậc tôpô cho ánh xạ A-riêng và phương trình với ánh xạ Fredholm chỉ số 0. 2 - Chương 4: Trình bày các kiến thức cơ sở về định nghĩa cũng như các kết quả về ánh xạ đa trị, ánh xạ đa trị nửa liên tục, lát cắt xấp xỉ của ánh xạ đa trị và bậc tôpô của ánh xạ đa trị trong  n . Mặc dù đã rất cố gắng song luận văn chắc chắn cũng còn nhiều thiếu sót. Tác giả rất mong nhận được sự góp ý của các thầy cô và đồng nghiệp để luận văn được hoàn thiện hơn. Tp Hồ Chí Minh, ngày 28 tháng 09 năm 2014 3 Chương 1. BẬC TÔ PÔ CỦA ÁNH XẠ CÔ ĐẶC 1.1. Độ đo phi compact 1.1.1. Định nghĩa Cho (X,d) là không gian metric và A ⊂ X . Ta gọi diam( A) = sup d ( x, y ) là đường x , y∈ A kính của tập A. Nếu diam( A) < +∞ , thì ta gọi A là tập bị chặn. 1.1.2. Mệnh đề [2, trang 56] Nếu A ⊂ B thì diam ( A ) ≤ diam ( B ) và diam ( A ) = diam ( A ) . Chứng minh • (Lấy x, y ∈ A ⇒ x, y ∈ B ) ⇒ sup d ( x , y ) ≤ sup d ( x , y ) ⇒ x , y∈A x , y∈B diam ( A ) ≤ diam ( B ) . • Lấy x , y ∈ A suy ra tồn tại { xn } ⊂ A,{yn } ⊂ A sao cho= lim xn x= ,lim yn y , ta có: d ( x , y ) ≤ d ( x , xn ) + d ( xn , yn ) + d ( yn , y ) , ∀n ∈ * ≤ d ( x , xn ) + diam ( A ) + d ( yn , y ) , ∀n ∈ * Cho n → ∞ , ta được d ( x , y ) ≤ diam ( A ) ⇒ diam ( A ) ≤ diam ( A ) (1) Mặt khác A ⊂ A ⇒ diam ( A ) ≤ diam ( A ) (2) Từ (1) và (2) suy ra diam ( A ) = diam ( A ) . 1.1.3. Mệnh đề [2, trang 56] Cho X là không gian Banach và A, B ⊂ X . Thì ta có 4 (1) diam ( λ B ) = λ diam ( B ) ; ( 2 ) diam ( x + B ) = diam ( B ) ; ( 3) diam ( A + B ) ≤ diam ( A ) + diam ( B ) ; ( 4 ) diam ( conv ( A ) ) = diam ( A ) . Chứng minh (1) diam ( λ= B ) sup x −= y y/ λ sup x / − = y/ λ diam ( B ) . sup λ x / − λ= x , y∈λ B ) (2) diam ( x + B= x / , y / ∈B x / , y / ∈B sup y −= z sup ( x + u) − ( x + v= ) sup u −= v diam ( B ) . y , z∈x + B u ,v∈B u ,v∈B (3) Lấy x , y ∈ A; u, v ∈ B , ta có: ( x + u ) − ( y + v ) ≤ x − y + u − v ≤ diamA + diamB. Do đó diam ( A + B ) ≤ diam ( A ) + diam ( B ) . (4) Lấy x, y ∈ conv ( A ) . Khi đó, tồn tại si ∈ ( 0;1) , xi ∈ A, i = 1, 2,...k , m k m j =1 i =1 j =1 k ∑s i =1 i =1 ti ∈ ( 0;1) , yi ∈ A, i = 1, 2,...m , ∑ t j = 1 sao cho x = ∑ si xi và y = ∑ t j y j . Ta có: k m =i 1 =j 1 x −= y k yj ∑ si xi − ∑ t j = k m k m k m ∑∑ sit j xi − ∑∑ sit j y j ≤ ∑∑ sit j xi − y j =i 1 =j 1 =i 1 =j 1 =i 1 =j 1 m diam ( A ) . ≤ ∑∑ si t j diam ( A ) = =i 1 =j 1 Do đó diam ( conv ( A ) ) ≤ diam ( A ) diam ( conv ( A ) ) = diam ( A ) . mà diam ( A ) ≤ diam ( conv ( A ) ) nên 5 1.1.4. Mệnh đề [2, trang 56] Cho (X,d) là không gian metric. Cho hai tập bị chặn A và B, metric Hausdorff H được định nghĩa bởi { } H ( A, B ) = max sup d ( x, B ) ,sup d ( y, A ) x∈ A y∈B (trong đó d ( x , B ) = inf d ( x , y ) ) y∈B Gọi B(X) là tập hợp tất cả các tập con bị chặn của X. Thì (B(X),H) là không gian metric. 1.1.5. Định nghĩa Cho (X,d) là không gian metric, B(X) là tập hợp tất cả các tập con bị chặn của X và A, B ∈ B ( X ) . Một hàm α : B ( X ) → [0; +∞) xác định bởi α ( A ) = inf { δ > 0 : A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ } Được gọi là độ đo phi compact Kuratowski. Nếu ta thay α ( A ) bởi β ( A ) = inf { δ > 0 : A được phủ bởi hữu hạn quả cầu đóng có bán kính δ } Khi đó ta gọi β ( A ) là độ đo phi compact Hausdorff. Mối quan hệ giữa α và β được thể hiện qua bất đẳng thức sau 1.1.6. Mệnh đề [2, trang 57] β ( A ) ≤ α ( A ) ≤ 2β ( A ) với mọi A ∈ B ( X ) . Chứng minh k Lấy bất kỳ δ > α ( A ) , tồn tại hữu hạn tập hợp A1 , A2 ,..., Ak sao cho A ⊂  Ai và i =1 diam ( Ai ) ≤ d k với i = 1, 2,..., k . Chọn xi ∈ Ai . Thì B ( xi , δ ) ⊃ Ai , vì vậy ta A ⊂  B( xi , δ ) dẫn đến β ( A ) ≤ δ . Cho δ → α ( A ) , ta được β ( A ) ≤ α ( A ) . i =1 có 6 Lấy bất kỳ δ > β ( A ) , tồn tại hữu hạn quả cầu B ( y1 , δ ) , B ( y2 , δ ) ,..., B ( ym , δ ) sao m cho A ⊂  B ( yi , δ ) . Mà diam ( B ( yi , dd ) ) = 2 , nên ta có α ( A) ≤ 2δ . Cho δ → β ( A) , i =1 ta được α ( A ) ≤ 2β ( A ) . 1.1.7. Mệnh đề [2, trang 57] Cho X là không gian metric và B(X) là tập hợp tất cả các tập con bị chặn của X. Cho φ là độ đo phi compact Kuratowski hoặc Hausdorff và A, B ∈ B ( X ) . Thì ta có các tính chất sau: (1) φ ( A ) = φ ( A ) ; (2) φ ( A ) = 0 nếu và chỉ nếu A compact tương đối; (3) Nếu A ⊂ B thì φ ( A ) ≤ φ ( B ) ; (4) φ ( A ∪ B ) = max {φ ( A ) , φ ( B )} ; (5) φ ( A ∩ B ) ≤ min {φ ( A ) , φ ( B )} ; (6) φ ( A ) − φ ( B ) ≤ 2 H ( A, B ) ; (7) Nếu X là không gian Banach, thì a) = φ ( λ A ) λ φ ( A ) , λ ∈ , b) φ ( A + B ) ≤ φ ( A ) + φ ( B ) , c) φ ( conv ( A ) ) = φ ( A ) . Chứng minh Giả sử φ = α . Chứng minh tương tự cho φ = β . 7 (1) Đặt B = { δ > 0 : A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ }, C = { δ > 0 : A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ }. Lấy δ ∈C ⇒ A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ ⇒ A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ ⇒ δ ∈ B . Do đó C ⊂ B . Mặt khác Lấy δ ∈ B ⇒ A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ. Giả k A ⊂  Ai ; δiam ( Ai ) ≤ δ , ∀i =1, k . sử Do đó : i =1 k ( Ai ) δiam ( Ai )= A ⊂  Ai ; δiam = ≤ δ , ∀i 1, k suy ra δ ∈ C ⇒ B ⊂ C. i =1 Vậy B = α ( A) . C ⇒ α ( A) = inf C = inf B = (2) Giả sử A compact tương đối suy ra A compact. 1  n   Xét dãy   . Cố định n, ta có A ⊂  B  x , x∈A k   hữu hạn sao cho A ⊂  B  xi , i =1 1   . Do A compact nên tồn tại số k 2n  1  1  1, k . Nên ta có   ⊂ { δ > 0 : A được  , xi ∈ A, i = 2n  n ( ) phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ }. Mà 1 → 0 nên n α ( A ) = 0 hay α ( A ) = 0 . (3) Đặt C = { δ > 0 : A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ }, D = { δ > 0 : B được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ }. 8 Lấy δ ∈ D ⇒ B được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ ⇒ A được phủ bởi hữu hạn tập hợp có đường kính nhỏ hơn hoặc bằng δ ⇒ δ ∈ C ⇒ D ⊂ C ⇒ inf C ≤ inf D ⇒ α ( A ) ≤ α ( B ) . (5) Ta có: ( A ∩ B) ⊂ A ⇒ α ( A ∩ B ) ≤ α ( A )   ⇒ φ ( A ∩ B ) ≤ min {φ ( A ) , φ ( B )}. ( A ∩ B) ⊂ B ⇒ α ( A ∩ B ) ≤ α ( B )  (6) Lấy ε > 0 , tồn tại một phủ hữu hạn A1 , A2 ,..., Ak của A với diαm ( Ai ) ≤ α ( A ) + ε , i = 1, 2,..., k . Đặt: = η H ( A, B ) + ε , Bi ={y ∈ B : tồn tại x ∈ Ai , d ( x, y ) < η} , i = 1, 2,..., k . k Từ H ( A, B ) < η , ta có B ⊂  Bi . Thật vậy: lấy y0 ∈ B , ta chứng minh tồn tại i =1 x0 ∈ Ai , i0 ∈ {1,2,..., k} sao cho d ( x0 , y0 ) < η . Giả sử ngược lại: không tồn tại x0 ∈ Ai 0 0 k sao cho d ( x0 , y0 ) < η nghĩa là d ( x , y0 ) ≥ η , ∀x ∈ A (do A ⊂  Ai ). Ta suy ra i =1 inf d ( x , y0 ) ≥ η hay d ( y0 , A ) ≥ η . Do y0 ∈ B nên sup d ( y, A ) ≥ η (mâu thuẫn với x∈A y∈B H ( A, B ) < η ). Vậy tồn tại x0 ∈ Ai , i0 ∈ {1,2,..., k} sao cho d ( x0 , y0 ) < η hay y0 ∈ Bi . 0 0 Khi đó diαm ( Bi ) ≤ 2η + diαm ( Ai ) ≤ 2 H ( A, B ) + α ( A ) + 3ε , i = 1, 2,..., k . y1 , y2 ∈ Bi thì tồn tại x1 , x2 ∈ Ai sao cho d ( x1 , y1 ) < η , d ( x2 , y2 ) < η . Nên: d ( y1 , y2 ) ≤ d ( y1 , x1 ) + d ( x1 , x2 ) + d ( x2 , y2 ) < 2η + diam ( Ai ) ) Cho ε → 0+ , ta được α ( B ) ≤ 2 H ( A, B ) + α ( A ) . Tương tự, ta có α ( A ) ≤ 2 H ( A, B ) + α ( B ) . Do đó, ta có: (do nếu lấy 9 α ( A ) − α ( B ) ≤ 2 H ( A, B ) . (7a) Lấy ε > 0 , tồn tại một phủ hữu hạn A1 , A2 ,..., Ak của A với k 1, 2,..., k . Suy ra λ A ⊂  λ Ai nên: diαm ( Ai ) ≤ α ( A ) + ε , i = i =1 a ( λ A ) ≤ max {a ( λ A1 ) ,...,a ( λ Ak )} ≤ max {diam ( λ A1 ) ,..., diam ( λ Ak )} { } = max λ diam ( A1 ) ,..., λ diam ( Ak ) ≤ λ (a ( A ) + ε ) . Cho ε → 0+ , ta được α ( λ A ) ≤ λ α ( A ) . Mặt khác lấy ε > 0 , tồn tại một phủ hữu hạn B1 , B2 ,..., Bk của λ A với k k i =1 i =1 diαm ( Bi ) ≤ α ( λ A ) + ε , i = 1, 2,..., k . Hay λ A ⊂  Bi nên A ⊂   1  1   1 1 λ Bi , do đó ta có: 1   ( A ) ≤ max   B1  ,...,  Bk   ≤ max diam  B1  ,..., diam  Bk   aaa  λ  λ   λ   λ   1  1 1 = max  diam ( B1 ) ,..., diam ( Bk )  ≤ (a ( λ A ) + ε ) . λ λ  λ Cho ε → 0+ , ta được α ( λ A ) ≥ λ α ( A ) . (7b) Lấy ε > 0 , tồn tại một phủ hữu hạn A1 , A2 ,..., Ak của A với diαm ( Ai ) ≤ α ( A ) + ε , i = 1, 2,..., k ; tồn tại một phủ hữu hạn B1 , B2 ,..., Bm của B với diαm ( B j ) ≤ α ( B ) + ε , j = 1, 2,..., m . Do đó: m  k  k m  ( A + B) ⊂   Ai +  B j  ⊂   ( Ai + B j ) =  i 1 =j 1  =i 1 = j 1  { ( ) } { ( ) } ( A + B ) ≤ max ⇒ aa Ai + B j , i = 1, k , j = 1, m ≤ max diam Ai + B j , i = 1, k , j = 1, m { ( ) } ( A ) + ( B ) + 2ε . ≤ max diam ( Ai ) + diam B j , i =1, k , j =1, m ≤ aa 10 Cho ε → 0+ , ta được α ( A + B ) ≤ α ( A ) + α ( B ) . (7c) Ta có: α ( A ) ≤ α ( conv ( A ) ) . Lấy ε > 0 , tồn tại một phủ hữu hạn B1 , B2 ,..., Bk của A với diαm ( Bi ) ≤ α ( A ) + ε , i = 1, 2,..., k . Ta giả sử B i lồi (do diam ( conv ( Bi ) ) = diam ( Bi ) , i = 1, 2,..., k ).Đặt: k   = Λ ( λ1 , λ2 ,...,= λk ) : λi ≥ 0, i 1,= 2,..., k , ∑ λi 1 i =1   k với mỗi λ Và B ( λ ) = ∑ λi Bi = i =1 ( λ1 , λ2 ,..., λk ) ∈ Λ . Ta có: α ( B ( λ ) ) ≤ α ( A ) + ε với mọi λ ∈ Λ. lồi. Lấy λ = ( λ1 , = λ2 ,..., λk ) , µ  B (λ ) Ta chứng minh λ∈Λ = x k ) , y ∑ λi xi ∈ B ( λ= i =1 k ∑ µ y ∈ B ( µ ) với i =1 i i xi , yi ∈ Bi , i = 1, 2,..., k . Ta có: t λi  k ∑ ( tλ + (1 − t ) µ )  tλ + (1 − t ) µ )y tx + (1 − t= i =1 Điều này dẫn đến i i  i xi + i (1 − t ) µi  yi . t λi + (1 − t ) µi  B ( λ ) lồi. Do đó, ta có  λ ∈Λ  k  conv ( A ) ⊂ conv   Bi  ⊂  B ( λ ). =  i 1  λ∈Λ Do Λ compact, nên tồn tại hữu hạn λ 1 , λ 2 ,..., λ n ∈ Λ sao cho: n  B ( λ ) ⊂  B ( λ i ) + ε B ( 0,1). λ∈Λ i =1 Do đó,ta có n conv ( A ) ⊂  B ( λ i ) + ε B ( 0,1), i =1 ( µ1 , µ2 ,..., µk ) ∈ Λ và 11 Điều này kéo theo α ( conv ( A ) ) ≤ α ( A ) + 3ε . Cho ε → 0+ , ta có α ( conv ( A ) ) ≤ α ( A ) . Vì vậy α ( conv ( A ) ) = α ( A ) . 1.2. Ánh xạ cô đặc theo một độ đo phi compact 1.2.1. Định nghĩa Cho X là không gian định chuẩn thực, D ⊂ X , T : D → X là một ánh xạ và α là độ đo phi compact. (1) T được gọi là một k- cô đặc nếu α (TB ) ≤ kα ( B ) với mọi tập con bị chặn B ⊂ D , k > 0 hằng số; (2) T được gọi là ánh xạ cô đặc nếu α (TB ) < α ( B ) với mọi tập con bị chặn B ⊂ D , α ( B ) > 0. 1.2.2. Định lý [2, trang 60] Cho X là không gian định chuẩn thực, B ( 0,1) là quả cầu đơn vị của X và T : X → B ( 0,1) được xác định bởi  x  , Tx =  x  x,  x ≥ 1, x ∈ B ( 0,1) . Khi đó T là một 1- cô đặc. Chứng minh Lấy tập bị chặn A ⊂ X . Khi đó T ( A ) ⊂ conv ({0} ∪ A ) , thật vậy: Lấy y ∈ T ( A ) ⇒ ∃x0 ∈ A : y =T ( x0 ) . Khi đó: + Nếu x0 ∈ B ( 0,1) ⇒ y = T ( x0 ) = x0 ∈ A ⊂ conv ({0} ∪ A ) . + Nếu x0 ∉ B ( 0,1) ⇒ y= T ( x0 = ) x0 x0 = x0  1  + 1 −  0 ∈ conv ({0} ∪ A ) . x0  x0  Vì vậy ta có ) α ({0} ∪ A=) α ( A) . α (T ( A ) ) ≤ α ( conv ({0} ∪ A )= 1.2.3. Mệnh đề [2, trang 61] Cho X là không gian Banach vô hạn chiều, φ : [ 0;1] → [ 0;1] là một hàm liên tục và 12 giảm nghiêm ngặt, B ( 0,1) là quả cầu đơn vị của X và T : B ( 0,1) → B ( 0,1) được xác định bởi Tx = φ ( x ) x với mọi x ∈ B ( 0,1). Khi đó α (TB ) < α ( B ) với mọi tập B ⊂ B ( 0,1) , α ( B ) > 0. Chứng minh   c 2 Lấy B ⊂ B ( 0,1) , α ( B )= c > 0. Lấy r ∈  0;  và đặt B1 = B ∩ B ( 0, r ), B2 = B \ B ( 0, r ). ( B ) T ( B1 ) ∪ T ( B2 ) , vì vậy ta có: Khi đó T= aaaa (T ( B )) = (T ( B1 ) ∪ T ( B2 )) ≤ max { (T ( B1 )), (T ( B2 ))} . Hơn nữa aaa ) ) ( B1 ) ≤ diam ( B1 ) ≤ 2r < c (T ( B1 ) ) ≤ ( conv ({0} ∪ B1 = Và T ( B2 ) ⊂ conv ({0} ∪ φ ( r ) B ) , thật vậy: Lấy y ∈ T ( B2 ) ⇒ ∃x0 ∈ B2 : y =T ( x0 ) . Khi đó: = y T ( x= 0) φ ( x0 φ (r ) φ( x ) ) φ (r ) = x φ (r ) x 0 0 φ (r ) ( )  0 ∈ conv ({0} ∪ φ ( r ) B ) .  φ x 0 1 − + 0  ( φ r)    (do x0 ∈ B2 ⇒ x0 > r ⇒ φ ( x0 ) < φ ( r ) ) Vì vậy α (T ( B2 ) ) ≤ α (φ ( r ) B ) = φ ( r ) α ( B ) < α ( B ) . Do đó, ta có α (TB ) < α ( B ) . 1.2.4. Định nghĩa Cho X là một không gian Banach thực, D ⊂ X , T : D → X là một ánh xạ và α là độ đo phi compact. (1) T được gọi là một k – cô đặc đếm được nếu α (TB ) ≤ kα ( B ) với mọi tập con bị chặn đếm được B ⊂ D , k > 0 hằng số; (2) T được gọi là ánh xạ cô đặc đếm được nếu α (TB ) < α ( B ) với mọi tập con bị chặn đếm được B ⊂ D , α ( B ) > 0. 13 (3) H ( t , x ) : [ 0;1] × D → X được gọi là một đồng luân của ánh xạ cô đặc đếm được nếu α ( H ([ 0;1] × B ) ) < α ( B ) với mọi tập con bị chặn đếm được B ⊂ D , α ( B ) > 0. Ta thấy một ánh xạ cô đặc là một ánh xạ cô đặc đếm được. 1.2.5. Mệnh đề [2, trang 63] Cho E là không gian Banach, Ω ⊂ E là một tập con bị chặn và T : Ω → E là ánh xạ cô đặc đếm được. Đặt F= { x ∈ Ω : Tx= x} . Thì tồn tại một tập con (của E) lồi, compact C sao cho: (1) F ⊆ C ; (2) Nếu x0 ∈ conv ( C ∪ {Tx0 } ) thì x0 ∈ C ; (3) C conv (T (C ∩ Ω) ) . = Chứng minh Đặt F ={K:F ⊂ K ⊂ E lồi đóng, T ( K ∩ Ω ) ⊆ K và (2) đúng cho K }. Thì F khác rỗng do conv (T Ω ) ∈ F. Ta đặt C = K . Khi đó: C thỏa mãn (1), K ∈F (2), (3) và C lồi đóng. Ta chứng minh C compact. Giả sử điều này không đúng. Thì tồn tại = C1 { x1 , x2 ,...} ⊂ C không có dãy con Cauchy. Do C conv (T (C ∩ Ω) ) nên tồn tại một tập con đếm được A1 ⊂ C ∩ Ω sao cho = C1 ⊆ conv (TA1 ) . Khi đó: H1 conv (T ( C1 ∩ Ω ) ) khả ly và H1 ∩ Ω khả ly, do đó tồn tại những tập = con đếm được B1 ⊂ H1 , D1 ⊂ H1 ∩ Ω sao cho B= H1 , D= H1 ∩ Ω. 1 1 C2 = C1 ∪ A1 ∪ B1 ∪ D1 . Khi đó: C1 ⊂ C2 , conv (T (C1 ∩ Ω) ) ⊂ C2 , (do C2 = C1 ∪ A1 ∪ B1 ∪ D1 mà conv (T (C1 ∩ Ω)= ) H=1 B1 ) Đặt 14 conv (T (C1 ∩ Ω) ) ∩ Ω ⊂ C2 ∩ Ω. Bằng cách đặt tương tự, ta có dãy {Cn } những tập con đếm được của C, sao cho: Cn ⊂ Cn +1 , conv (T (Cn ∩ Ω) ) ⊂ Cn +1 , conv (T (Cn ∩ Ω) ) ∩ Ω ⊂ Cn +1 ∩ Ω. ∞ Ta đặt L =  Cn .Thì L ⊆ convT ( L ∩ Ω ) . n =1 Do đó, ta có: α ( L ) ≤ α ( convT ( L ∩ = Ω ) ) α (T ( L ∩ Ω ) ) < α ( L ∩ Ω ) . Điều này là mâu thuẫn. Do đó, C compact. 1.2.6. Mệnh đề [2, trang 176] Cho E là không gian Banach, B ⊂ E là một tập con đóng, bị chặn và T : B → E là một ánh xạ cô đặc đếm được. Đặt C1 = conv (= TB ) , Cn +1 conv (T (Cn ∩ B) ) với n ≥ 1 và ∞ C =  Cn . Nếu M ⊂ E và M \ Cn hữu hạn với mọi n = 1,2,... , thì M compact tương n =1 đối. Trường hợp đặc biệt, C compact. Chứng minh Đặt F là họ tất cả các tập con M ⊂ E sao cho M \ Cn hữu hạn với mọi n = 1,2,... và F B là họ tất cả các tập con đếm được M ∈ F thỏa M ⊂ B . Bước 1: Ta chứng minh tồn tại B* ∈ F B sao cho α ( K ) ≤ α ( B* ) , với mọi K ∈ F B F B ), ta có s sup{α ( K ) , K ∈ F B } < +∞ , Thật vậy, từ α ( K ) ≤ α ( B ) (với mọi K ∈ = ∞ và lấy K n ∈ F B sao cho α ( K n ) → s khi n → ∞ . Đặt B* =  K n , thì B* đếm được và n =1 α ( B* )= s ≥ α ( K ) , với mọi K ∈ F B . Bước 2: Nếu M ∈ F và xn ∈ M , n = 1,2,... thỏa không có x n nào xuất hiện vô hạn lần, thì tồn tại A ∈ F B và yn ∈ conv ( T ( A ) ) sao cho xn − yn → 0 khi n → ∞ . Thật vậy: Do M \ C1 hữu hạn và chứa hữu hạn x n , vì vậy ta giả sử xn ∈ C1 với mọi n ≥ 1 . 15 Với n bất kỳ, lấy k n đủ lớn sao cho xn ∈ Ck . Nếu không tồn tại số tự nhiên k n như n thế, ta đặt kn = n . Với số tự nhiên k bất kỳ, M \ Ck hữu hạn, do đó {n : xn ∉ Ck } là hữu hạn. Ta có: {n : k I= k n ≤ k} ⊂ I k +1 ∪ {1,2,..., k} vì C1 ⊃ C2 ⊃ ... do đó I k hữu hạn với mọi k. Ta có: ( ( n −1 ( n = xn ∈ Ck conv T Ck n )) ∩ B , với mọi n ≥ 1 . ) Do đó, tồn tại yn ∈ conv T ( Ck −1 ∩ B ) sao cho xn − yn < 1 . Ta có thể lấy tập A n n hữu hạn, An ⊂ Ck −1 ∩ B sao cho yn ∈ conv ( TAn ) . n ∞ Ta đặt A =  An , thì A là tập con cần tìm. Ta kiểm tra A ∈ F B . Từ C1 ⊃ C2 ⊃ ... , n =1 ta có An ⊂ Ci , i ≤ kn − 1 , và do đó ta có: = A \ Cn ∞ (A \C )  (A \C ) ⊂  A = =i 1 Mà A i∈I n i i n i ,n > ki −1 i n i∈I n i . hữu hạn nên A ∈ F B . Bước 3: Ta chứng minh bất kỳ K ∈ F B hữu hạn. Giả sử K vô hạn. Thay K bởi K ∪ B* , ta được α ( K ) = s . Vì K đếm được nên ta giả sử = K {x n : n ≥ 1} . Theo bước 2, tồn tại A ∈ F B và yn ∈ conv ( T ( A ) ) sao cho xn − yn → 0 khi n → ∞ . ) α ( K=) s . Đặt: Khi đó, K ∪ A ∈ F B do đó α ( A ∪ K= K n = { x1 , x2 ,..., xn , yn +1 , yn + 2 ,...} , K 0 = { y1 , y2 ,...} . ( K ) s . Mặt khác: Ta có α = ( K0 ) α= s =α ( K 0 ) ≤ α ( conv ( TA ) ) ≤ α ( T ( A ∪ K ) ) . Nhưng T là đếm được, compact, nên ta có s = 0. Dẫn đến K compact tương đối. Bước 4: Ta chứng minh bất kỳ F ∈ F là compact tương đối. Lấy dãy ( xn ) ⊂ F , nếu tồn tại n sao cho x n xuất hiện vô hạn lần thì ta có điều cần chứng minh. Ngược lại, 16 ta lấy y n và A như trong bước 2. Theo bước 3, A compact tương đối, vì vậy conv ( TA ) compact tương đối. Do đó {yi : i ≥ 1} compact tương đối nên F compact tương đối. 1.2.7. Mệnh đề [2, trang 64] Cho E là không gian Banach, Ω ⊂ E là một tập con bị chặn và T : Ω → E là một ánh xạ cô đặc đếm được. Đặt = C1 conv (T= Ω ) , Cn +1 conv (T (Cn ∩ Ω) ) với n ≥ 1 và ∞ C =  Cn . Thì C lồi và compact. n =1 (Đây là trường hợp đặc biệt của mệnh đề 1.2.6). 1.2.8. Hệ quả Cho E là không gian Banach, C ⊂ E là một tập con lồi đóng bị chặn khác rỗng, và T : C → C là ánh xạ cô đặc đếm được liên tục. Khi đó T có điểm bất động trong C. Chứng minh: Giả sử T là ánh xạ k - cô đặc đếm được với k ∈ [0;1) . Cho C1 = convTC và ∞ Ci +1 = convTCi với i = 1, 2,.... Theo mệnh đề 1.2.7, K =  Ci là lồi compact và i =1 T : K → K là ánh xạ liên tục. Ta chứng minh K ≠ ∅ . Lấy x0 ∈ C thì T i x0 ∈ Ci với i ≥ 1 . Ta có α ({T i x0 , i ≥ n}) ≤ k nα ({T i x0 , i ≥ 0}) với n ≥ 1. {T x , i ≥ 0} thì (Do nếu ta = đặt B = TB = T 2B i 0 {T x , i ≥ 1} i 0 {T x , i ≥ 2} i 0 … = T nB {T x , i ≥ n} i 0 mà α (TB ) ≤ kα ( B ) nên α (T n B ) ≤ k nα ( B ) ). Mặt khác: { } aaaa , i ≥ 0} ) max ({T i x0 , i ≥ n} ) , ({T i x0 , 0 ≤ i= < n} ) ({T i x0 = ({T i x0 , i ≥ n})
- Xem thêm -